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In this thesis we present the density estimation framework for computing view-

independent global illumination solutions. The framework consists of three phases: par-

ticle tracing, density estimation, and decimation. Monte Carlo particle tracing is used to

accurately simulate the light transport under a general spectral geometric-optics based

physical model. Next kernel density estimation is used to reconstruct perceptual illumina-

tion functions. Finally decimation is used to optimize the resulting mesh for compactness

and rapid interactive display as Gouraud-shaded triangles.

The three principal contributions of this work are the framework's separation of trans-

port and function reconstruction computations, its ability to produce accurate solutions

with precisely known error characteristics, and the techniques that we introduce to im-

prove its e�ciency and accuracy.

Particle tracing's generality allows us to eliminate or delay many common simplifying

assumptions and improves our accuracy and error analysis. Delaying the density esti-

mation until particle tracing is complete allows us to make better use of the expensive

particle data. The separation of global transport and local representation computations



also reduces the computational complexity of each phase, enhances the framework's scal-

ability, and exposes abundant opportunities for parallelism. Another advantage is that

we can solve directly for the radiant exitance without needing to estimate the more

complicated spectral radiance function.

Despite its advantages, if naively implemented the framework would be prohibitively

expensive. Thus we also introduce several techniques that signi�cantly improve its accu-

racy and e�ciency. These include the separation of luminance and chromaticity band-

widths, perceptually-motivated noise visibility predictors, statistical bias detection tech-

niques to automatically enhance underresolved illumination features, a local polynomial

density estimation method to eliminate boundary bias, and wavelength importance sam-

pling to reduce the spectral noise. Results of the framework are shown for some complex

environments and compared against measured data for a simple scene.

The strength of our framework is that it can simulate a wider variety of lighting ef-

fects, with fewer simplifying assumptions, and more precise error analysis that current

view-independent methods. Furthermore, because of its accuracy, our density estimation

framework solutions are used as reference solutions for judging the quality and e�ective-

ness of more approximate but faster rendering methods.
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Chapter 1

Introduction

This thesis presents a density estimation framework for computing view-independent

global illumation solutions. We will discuss all the aspects of the framework including

the particle tracing, density estimation, and decimation phases with special emphasis on

the density estimation. Portions of this work have previously been published in in [47,

56], but several techniques including the automatic adaptive bandwidth selector and the

wavelength importance sampling are presented here for the �rst time.

The goal of global illumination algorithms is to simulate the ow of light in an en-

vironment in a way that mimics the propagation of light in the real world. This is

a complex problem and many di�erent approaches have been proposed, but every ap-

proach represents a compromise among competing goals such as accuracy, interactivity,

generality, and practicality. The true advantage of the density estimation framework

is that it makes progress toward several of these goals simultaneously with particular

emphasis on accuracy and generality.

The major contributions of this work are threefold. First is the framework itself and

its total separation of transport and function estimation phases. These phases are com-

puted using Monte Carlo particle tracing and kernel density estimation respectively. This

separation reduces the computational complexity of each phase, enhances the framework's

1



2

scalability, and exposes abundant potential parallelism.

The second contribution is the framework's accuracy and precisely characterized er-

ror. Particle tracing's generality allows us to eliminate or delay most of the common

simplifying assumptions. It is also unbiased and simulates a general geometric-optics

based model of light transport for increased accuracy. The density estimation introduces

some bias but in a controlled and purely local fashion that is easy to analyze. Taken

together, these components allow the density estimation framework to simulate a wider

variety of lighting e�ects, with fewer simplifying assumptions, and a more precise error

analysis than other current view-independent global illumination methods.

The third contribution is the e�ciency and accuracy enhancing techniques that we

introduce. If naively implemented, the framework would be too expensive to produce

the highly accurate solutions that are its strength. Techniques such as our automatic

adaptive kernel bandwidth selector make generating high quality solution feasible.

We begin this thesis with a brief description of our motivation and goals in designing

a new global illumination algorithm. The physical and perceptual quantities that we are

simulating are de�ned in Chapter 2 as well as a discussion of previous approaches and

how they relate to our new framework. We give an overview of the density estimation

framework in Chapter 3 and briey describe each of its component phases: particle trac-

ing, density estimation, and decimation. Next we describe the density estimation phase

in greater detail. Chapter 4 covers kernel density estimation in general and our local poly-

nomial approach to the problem of boundary bias. Chapter 5 describes the derivation of

our automatic adaptive kernel bandwidth selector. The bandwidth is a crucial parameter

in controlling solution quality and our approach includes both perceptually-motivated

components and a statistical bias detection algorithm. Chapter 6 discusses some further

issues and optimizations in implementing our framework including wavelength impor-

tance sampling. Results from our current implementation are presented in Chapter 7

including a comparision between a real measured environment and our simulation of it.

Finally, Chapter 8 summarizes our �ndings.
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1.1 Motivation

Realistic three dimensional graphics has enjoyed a tremendous amount of success and

popularity in a wide variety of applications such as entertainment, sales, and visualization.

It is no accident that these are also the uses with the least rigorous requirements for the

global illumination. The results can be quite compelling but they need not be physically

correct or predictive. There are many potential applications, particularly in design and

simulation, that could be enabled if we had global illumination algorithms that were

predictive and easy to use.

Perhaps the most obvious such application is in illumination engineering. A lighting

engineer is responsible for ensuring that the lighting in an environment is both energy

e�cient and provides appropiate levels of light for the tasks to be performed there. Too

much or too little light can cause discomfort, loss of productivity, and even injury. Their

evaluation criteria can often be expressed as speci�c numerical ranges for physically mea-

surable quantities such as candelas per square meters. A useful global illumination result

would be to guarantee that the illuminance in a prospective environment con�guration

would be within the target range.

Another application with slightly di�erent needs is architectural preview. An architect

might be exploring a variety of possible building designs and want to evaluate their

relative merits. In this case the evaluation is likely based on aesthetic as well as numerical

criteria. Does the space have the kind of \feel" that the architect was trying to create.

One crucial requirement for both of these applications is that the simulations must be

predictive in order to be useful. The much easier goal of plausibility, which is necessary

for many photorealistic applications, is not su�cient for these applications.

1.1.1 Goals

For realistic graphics to become truly useful as a predictive design tool, we will need

to keep developing improved global illumination algorithms to better meet these users'
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needs. To help us in this pursuit, it is useful to list some of the goals that we would like to

achieve. This list represents a continuing challenge as no current or forseeable algorithm

will be able to perfectly achieve all of these goals simultaneously. Some of our goals are:

Predictive: If we really expect a designer to use lighting simulations to help choose

among the variety of possible designs, then it is imperative that the simulations ac-

curately predict the consequences of those choices. Moreover since some inaccuracy

is inevitable, it is important to know and to communicate the expected accuracy of

the results. Only then can the simulations be used as a rational basis for decision

making.

Interactive: Ideally the simulation should provide instantaneous feedback whenever the

user wants. The goal is to allow the user to explore the model and design spaces in

a natural manner and at their own pace. In practice we will often have to settle for

lesser forms of interactivity such as interactive walkthroughs of static environments.

Automatic: The process should seem like a \black box" to the users. They should

not need to understand the inner workings of the global illumination algorithm

or need to \tweak" its internal parameters. They may need controls to specify

which information is of most interest, but any such controls should be high-level

and intuitive.

General: The simulation should handle a broad class of possible inputs. In our case

this means complex geometry, complex luminaires and complex material (BRDF)

properties. The users' choice of designs should not be constrained by simulation

software.

1.1.2 Why the Density Estimation Framework

What makes the density estimation framework interesting is that it makes progress toward

several of these goals simultaneously.
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In a realistically complex environment, the spectral radiance function, which describes

the complete illumination in an environment, is generally too complicated to be solved

for, stored, or computed with precisely. Unlike traditional �nite element approaches, the

density estimation framework is designed to work without simplifying assumptions or the

need to �nd the spectral radiance explicitly. Instead the light transport is simulated using

Monte Carlo particle tracing and then simpli�ed functions that we can recover accurately

are estimated from the particle statistics. This approach allows the framework to take a

much more rigorous approach to accuracy and generality.

It also greatly simpli�es our error analysis. The particle tracing is unbiased though

noisy. The density estimation reduces this noise to an acceptable level by introducing

bias, but does so in a controlled and purely local fashion that makes the bias easy to char-

acterize. Together with the noise estimates we compute during the density estimation,

this completely describes the error in our results and gives us much more precise error

information than is available in other view-independent global illumination algorithms.

Interactivity and e�ciency is perhaps the weakest attribute of the density estimation

framework. Although we have made considerable improvements in its e�ciency, it still

takes many hours of computation to produce a high quality solution. Fortunately this

can be reduced considerably by using parallel processing and many further algorithmic

improvements remain to be made. Because we produce view-independent solutions, we

are still able to achieve a limited form of interactivity. Once the solution has been

computed, the user can wander freely throughout the environment at interactive rates

as long as they do not change the enviroment. Such walkthroughs are quite valuable as

they often reveal features and problems that are much harder to �nd by examining a few

images from static viewpoints.

Another strength is that we have developed automatic techniques to choose the solu-

tion parameters based on perceptual and statistical measures. This is a hidden burden in

many global illumination methods where correct user-provided algorithm-speci�c hints

are required for the algorithm to work acceptably.
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It is the combination of these strengths that makes the density estimation framework

a signi�cant contribution toward the goal of predictive global illumination. It is our hope

that this work will stimulate further research toward this very challenging goal.



Chapter 2

Radiometry, Photometry, and

Colorimetry

Before we can quantitatively discuss light and its ow through an environment, it is

necessary to establish some basic de�nitions and notation. Wherever possible we follow

the ANSI standard for illumination engineering nomenclature [30] as it represents the

best current candidate for establishing a single standard notation in the graphics and

global illumination communities.

2.1 Spectral Radiometry

The most common measure of light used in the graphics literature is the radiance. How-

ever some caution is required as this term is often used ambiguously. The term radiance

is frequently used to refer to any one of a family of related functions.

The fundamental member of this family is the spectral radiance, which is denoted

L�. The spectral radiance is a function of four variables: position, direction, wavelength,

and time. The amount of energy owing through a position x, in direction !, as light

of wavelength �, at time t is written as L�(x; !; �; t). Radiance is measured in units of

7
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x
ω

Infinitesmal Measurable

Ω

A

Figure 2.1: While the radiance is de�ned at each in�nitesmal point, it is only physi-

cally meaningful when measured over a non-in�nitesmal region. In order to collect a

measurable amount of light energy, a physical sensor must be sensitive to light over a

�nite area A and �nite solid angle 
.

joules per meter squared per steradian per nanometer per second or watts
m2 sr nm

1.

In theory, we could directly measure the spectral radiance by placing an appropiate

sensor in the path of the light except that the spectral radiance at a point represents an

in�nitesmal amount of energy. In order to collect a measurable amount of energy, our

sensor will have to collect light energy over some area A, some solid angle or range of

directions 
, some range of wavelengths, �, and some time interval, T . The amount of

energy Q that our virtual sensor would collect is:

Q =
Z
A

Z



Z
�

Z
T
L�(x; !; �; t) [! �n̂] dt d� d! dx (2.1)

where n̂ is the surface normal of the sensor's collecting area. The dot product [! � n̂]
is equal to the cosine of the angle between the direction ! and the surface normal n̂.

This cosine factor is due to the fact that the sensor's e�ective collecting area, also called

its projected area, decreases as the angle between the surface normal the light direction

increases (Figure 2.2).

1A watt is a joule per second.
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Surface
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ω

ω

Figure 2.2: The e�ective collecting area, which is also called the projected area, of a

sensor changes with angle. When the light direction ! is aligned with the surface

normal n̂ (left), the sensor's projected area is the same as its surface area. However its

projected area decreases as the angle between ! and n̂ increases (right). The projected

area equal to the surface area times the cosine of the angle between the light direction

! and the surface normal n̂.
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2.1.1 Sensor Speci�c Radiometry

Because the spectral radiance is a seven2 dimensional function, it is often quite complex

and di�cult to estimate, manipulate, and store. When possible we would prefer to use

lower dimensional functions that are simpler and easier to handle. One way to reduce

the dimensionality is to specialize the radiance function for a particular type of sensor.

A sensor's response to light energy typically varies depending on the wavelength of

the light. This dependence can be expressed as a spectral response function which we

will write generically as r(�). We can create a specialized radiance function as:

L(x; !; t) =
Z 1

0
L�(x; !; �; t) r(�) d� (2.2)

which describes the light in terms of the potential response of our particular sensor. It

no longer contains enough information to predict the response of other sensors.

The exact spectral response function used will depend on the application. Heat trans-

fer applications are interested in how much energy reaches a surface regardless of its wave-

length and the appropiate spectral response function in this case is r(�) = 1. This partic-

ular specialized radiance function is denoted Le and called the radiance. In monochrome

imaging applications, we are interested in the brightness to a human observer and the

most appropiate spectral response function is the CIE Standard Luminous E�ciency

Function V (�) [61]. In this case the specialized radiance is denoted Lv and is called

the luminance. The various radiance functions generally have distinguishing names and

subscripts, however it is common practice to leave o� the subscript and simply refer to

the application-speci�c function as the radiance3. In this thesis we will specify the exact

function we mean and only use the unquali�ed \radiance" terminology with statements

that are true for all radiance functions.

2Three spatial dimensions, two directional dimensions, one spectral dimension and
one dimension for time

3Although the o�cial de�nition of the term radiance is Le [30], this is rarely, if ever,
what is meant when the term radiance is used in the computer graphics community.
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x

f(
x)

Figure 2.3: A jump disconuity in one dimension. The function is well de�ned on either

side of the discontinuity, but the value exactly at the discontinuity can be de�ned

arbitrarily. The open circles are the two choices that come from enforcing continuity

from one side or the other, known as left or right continuity. We resolve this ambiguity

for the radiance at surfaces using a similar constraint which we call forward continuity.

2.1.2 Radiometry at Surfaces

Another problem that we need to clarify is the de�nition of the radiance at surfaces. In

the graphics community, we generally model our surfaces as being in�nitely thin or two

dimensional (e.g., polygons or spline patches). As a result the radiance along a ray will

change discontinuously when it crosses a surface. The radiance is well de�ned on either

side of the surface but its not obvious what value it should have exactly at the surface.

Figure 2.3 shows this ambiguity for a 1D function. The two most reasonable choices are

to de�ne it by continuity from one side or the other. In essence our choice is, should the

radiance at a surface be de�ned as the amount of light reaching the surface or the amount

of light leaving the surface. We are free to choose either, but we want our de�nition of

radiance to be unambiguous and mathematically well de�ned.

We resolve this ambiguity by de�ning the radiance to be forward continuous. Let

us quickly introduce some notation to make it clear what this means. We represent

directions by the symbol, !. Given a point x then we de�ne y = x+ a! to be the point
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that we would arrive at by starting at x and then moving a distance a in direction !.

We also de�ne �! to be the direction opposite to !. Thus we can return to point x by

starting at y and moving distance a in direction �! (i.e. x = y+ a(�!) = y� a!). We

can now write our forward continuity condition as:

L(x; !; �; t) = lim
a#0

L(x+ a!; !; �; t) (2.3)

Note that this is a one-sided limit as the strictly positive a decreases toward zero. With

this constraint, L(x; !; �; t) will always be continuous in direction !. There is still an

ambiguity about the radiance at a point on a planar surface in a direction parallel to the

surface, but this will not e�ect our computations and we are free to choose the radiance

to be zero in this case.

Since we de�ned the radiance as the light energy traveling in direction !, our con-

tinuity constraint means that the value of the radiance function at a surface is equal

the outgoing radiance (i.e. the light leaving the surface). It is also useful to have a

convenient way to refer to the incoming radiance at a surface. We can de�ne a func-

tion Li called the incoming radiance that measures the amount of light coming from a

direction4. Compared to the usual radiance, this function reverses the meaning of its

directional argument. When we want to emphaize this distinction, we can relabel the

usual radiance as the outgoing radiance Lo. The incoming radiance still obeys Equa-

tion 2.3, but its value at surfaces is the incoming light rather than the outgoing light. If

there is not a discontinuity in the radiance function at x (i.e. x is not on a surface), then

Li(x; !; �; t) = Lo(x;�!; �; t), and in all cases we have:

Li(x; !; �; t) = lim
a#0

Lo(x+ a!;�!; �; t) (2.4)

Some authors choose to only de�ne the radiance at surfaces, but there is no real reason not

4An alternate notational convention (e.g., in [20]) is to overload the directional ar-
gument to also include a continuity constraint. For each physical direction then there
are two distinct directions whose only di�erence is that they imply a di�erent continuity
constraint. This seems counter-intuitive and confusing to us.
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Figure 2.4: The hemisphere of directions 

n̂
about a surface normal.

to de�ne it over all space. A full de�nition gives a clean conceptual basis for extensions

such as transmissive surfaces and participating media.

2.1.3 Irradiance and Radiant Exitance

Now that we can refer unambiguously to the radiance at surfaces, we can de�ne some

further quantities that are useful at surfaces. The spectral irradiance E� measures how

much light energy is striking one side5 of a surface from all directions and is de�ned by:

E�(x; �; t) =
Z


n̂

Li(x; !; �; t)[! �n̂] d! (2.5)

where again n̂ is the surface normal at the point x and 
n̂ is the hemisphere of directions

centered about the surface normal. It will hopefully be clear which of the two possible

surface normal directions is meant and we will not usually bother to specify this explicitly.

Since it is de�ned in terms of the Li, the irradiance measures the amount of light striking

the surface. There is also an analogous quantity for the light leaving one side of a surface

called the spectral radiant exitance M� and de�ned by:

M�(x; �; t) =
Z


n̂

Lo(x; !; �; t)[! �n̂] d! (2.6)

5Note there is some ambiguity as to whether the irradiance and radiant exitance refer
to the light on one side of a surface or both sides. We have chosen to de�ne it as one-sided
as this seems more useful.
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These functions can be specialized for particular spectral response functions and are

then denoted using the same subscripts as with the radiance. Many other specialized

radiometric function have been de�ned (e.g., see [30, 20]) which will not be considered

here. An alternate derivation of radiometric measures which readers may �nd helpful is

given by Arvo [5] and is explicitly based on a particle model of light.

2.2 Colorimetry and Photometry

In realistic computer graphics we are usually interested in the appearance of an environ-

ment to a human observer. We can use this to our advantage because humans see colors

rather than spectra. Quite di�erent spectra can be perceived as being the same color and

hence indistinguishable to an observer. Such spectra are known as metamers, and their

existence implies that we actually need signi�cantly less information than if we had to

reconstruct complete spectra.

For an normal observer in the range of ordinary color vision, also called the photopic

region, the trichromatic generalization [15, 61] has become well established. The idea is

that any color stimulus can be duplicated by an appropiate combination of three primary

colors. The coe�cients which describe this mixture are known as the color's tristimulus

values. The actual numerical values depend on which particular colors we chose as our

primaries, but the important point is that we can adequately represent any color stimulus

with just three numbers.

The most widely used standard tristimulus space is the CIE 1931 Standard Colormet-

ric Observer [61, 20, 30]. This tristimulus space consists of three channels called X, Y, and

Z and de�ned by their corresponding spectral response functions: �x(�), �y(�), and �z(�)

which are shown in Figure 2.5. The XYZ primaries are imaginary in that individually

they are not physically realizable color stimuli, but there is no mathematical di�culty in

representing all real color stimuli as a combinations of these imaginary primaries.

The CIE XYZ space and response functions provides us with a standard and well
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Figure 2.5: The XYZ spectral response functions. The X, Y, and Z tristimulus values

of a stimulus are found by integrating its spectrum against the corresponding spectral

response functions �x, �y, and �z which are shown above.

de�ned way to convert from a physical/spectral space to a perceptual/tristimulus space.

Given a color stimulus with spectrum s(�), we can compute its XYZ tristimulus values

using:

X = 683
Z 1

0
s(�) �x(�) d� (2.7)

Y = 683
Z 1

0
s(�) �y(�) d� (2.8)

Z = 683
Z 1

0
s(�) �z(�) d� (2.9)

where 683 is a required conversion constant.

The XYZ primaries were chosen so that the XYZ tristimulus values of any physical

stimulus are always positive and �y(�) = V (�). As mentioned earlier, V (�) is the luminous

e�ciency function standardized by CIE in 1924. It is intended to correspond roughly to

the human perception of brightness. Thus the Y value gives us the brightness of a color.

It also useful to have a way to refer to the parts of a color stimulus that are \orthogonal"

to the brightness (i.e. invariant under a simple change in overall intensity) such as hue

and saturation. Chromaticity coordinates, such as x and y, are frequently used for this
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purpose.

x =
X

X+Y + Z
(2.10)

y =
Y

X+Y + Z
(2.11)

Together these are known as a stimulus' chromaticity. It is easy to convert between a

color's Yxy coordinates and its XYZ tristimulus values.

2.2.1 Photometry and Tristimulance

When the luminous e�ciency function is used as the spectral response function to create

specialized radiometric functions (as in Equation 2.2), these functions have special names

and are known collectively as photometric functions and denoted with the subscript v.

The luminance Lv is derived from the spectral radiance L� by:

Lv(x; !; t) = 683
Z 1

0
L�(x; !; �; t)V (�) d� (2.12)

where 683 lumens/watt is a required conversion constant. The illuminance Ev and lumi-

nous exitance Mv are derived similarly from the spectral irradiance E� and the spectral

radiant exitance M� respectively. Thus they measure the brightness of the light striking

and leaving a surface respectively.

Photometry is su�cient for monochromatic applications, but for color applications we

need all three XYZ channels. The quantity we ultimately need is the \tristimulus values

of the spectral radiance". Unfortunately, there does not seem to be an standard name

for this quantity. One can avoid this lack of a concise name by refering to this quantity

as luminance plus chromaticity (i.e. Yxy coordinates). We consider this terminology to

be a little awkward because it does not correspond how we actually compute or store it.

Instead in this thesis we have invented names6 Although these names are non-standard,

their use will ease our discussion somewhat.
6The three terms propose are the tristimulance, intristimulance and tristimulus exi-

tance for the tristimulus values of the spectral radiance, spectral irradiance, and spectral
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The tristimulus values of the spectral radiance, we term the tristimulance, denoted

by Lt. When expressed in terms of CIE XYZ space the components of Lt will be denoted

Lt;X , Lt;Y , and Lt;Z and de�ned by:

Lt;X (x; !; t) = 683
Z 1

0
L�(x; !; �; t) �x(�) d�

Lt;Y (x; !; t) = 683
Z 1

0
L�(x; !; �; t) �y(�) d� (2.13)

Lt;Z (x; !; t) = 683
Z 1

0
L�(x; !; �; t) �z(�) d�

Earlier we introduced the spectral irradiance E� and spectral radiant exitance M�

as being useful measures of the aggregate incoming and outgoing light at a point on

a surface. We de�ne tristimulus versions of these functions as the intristimulance, Et,

and tristimulance exitance, Mt. Much of this thesis will be devoted to computing the

tristimulus exitance which from Equations 2.6 and 2.13 is de�ned by:

Mt;X (x; t) = 683
Z


n̂

Z 1

0
L�(x; !; �; t) �x(�) d� [! �n̂] d!

Mt;Y (x; t) = 683
Z


n̂

Z 1

0
L�(x; !; �; t) �y(�) d� [! �n̂] d! (2.14)

Mt;Z (x; t) = 683
Z


n̂

Z 1

0
L�(x; !; �; t) �z(�) d� [! �n̂] d!

2.2.2 Other Color Spaces

While XYZ is our standard color space, there are occasionally good reasons to work with

other color spaces. The two examples we will mention here are an opponent-color space

and CIE L�a�b� space. We will have more to say about these color spaces in Chapter 5.

The choice of the XYZ primaries was largely arbitrary; one can equivalently use any

linear transform of this space. There is good evidence [43, 28] that, at least at some

point in our visual system, color stimuli are actually encoded as a luminance channel

radiant exitance respectively. While these terms are non-standard, we consider these
quantities important enough to be given names and hope the graphics community will
eventually adopt standard names for them.
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plus two color-opponent channels which correspond roughly to the general categories:

brightness, red vs. green, and yellow vs. blue. Experiments [43] have shown that these

channels have di�ering sensitivities and are approximately separable. The ability to treat

these channels as being roughly independent can be a strong advantage and is not true

of XYZ space. The use of color-opponent channels allows to solve for individual channels

independently with much less worry about problems due to correlations and covariances

between channels.

We often want to measure how perceptually di�erent two colors are. In XYZ space,

this is not straightforward as the distance7 between colors does not correspond very well

with their perceptual di�erence. A perceptually uniform space is one where Euclidean

distance and perceptual di�erence would be the same, and a variety of color spaces have

been designed with this as their goal. CIE L�a�b� space is currently the best of these

uniform spaces [15]. The transform from XYZ space to CIE L�a�b� space is given by:

L� = 116 g(
Y

Yn
)� 16 (2.15)

a� = 500
�
g
�
X

Xn

�
� g

�
Y

Yn

��
(2.16)

b� = 200
�
g
�
Y

Yn

�
� g

�
Z

Zn

��
(2.17)

g(x) = x1=3 if x > 0:008856

7:787x+ 16
116

if x � 0:008856 (2.18)

In 1994 CIE further updated this space by adopting a distance measure that di�ers

slightly from Euclidean distance[15, p _94]. The complete procedure for estimating per-

ceptual color di�erence is to transform the colors into CIE L�a�b� space and then apply

the modi�ed distance formula.

7Distance here means the usual or Euclidean distance between values when viewed as
points in 3D space.
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Figure 2.6: The distance function D(x; !) returns the distance to the �rst intersection

of the corresponding ray with the surfaces in the environment.

2.3 Light Transport

Now that we have de�ned the measures to talk quantitatively about light, next we need

to formulate the equations that will govern our simulation of the ow of light throughout

an environment. The �rst decision is at what level should we model the light. Fol-

lowing the general consensus of the global illumination community, we use a geometric

optics based approximation. This approximation includes most of the visually important

lighting phenomena, but it does exclude long range wave e�ects such as di�raction and

interference.

The principle assumption is that light travels in straight lines between scattering

events. For simplicity, let us assume that scattering only occurs at surfaces; this is

known as the non-participating medium assumption. One consequence of the geometric

optics approximation is that in the absence of scattering, the radiance of light remains

constant as it travels along its ray [40]. In our case, this means its radiance can only

change at surfaces.

We can formulate this precisely with the help of a few de�nitions. Let M be the set

of surfaces in our environment and let D(x; !) be a distance function whose value is the
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Figure 2.7: The radiance of light does not change as it travels unless something such

as a surface scatters the light. Thus the radiance remains the same between points x

and y but may change after it strikes the surface to the right.

distance to the nearest surface along the corresponding ray (Figure 2.6 and de�ned by:

D(x; !) = min
a>0

fa : x+ a! 2 Mg (2.19)

We can state the constancy of radiance in the absence of scattering as:8

L�(x; !; �; t) = L�(x + a!; !; �; t+
an

c
) if a < D(x; !) (2.20)

The radiance of the light does not change as it travels through time and space unless an

obstruction scatters the light (Figure 2.7).

If we assume that the speed of light is extremely large compared to the distances and

time scales of interest and neglect the propagation delays in the ow of light, we get:

L�(x; !; �; t) = L�(x+ a!; !; �; t) if a < D(x; !) (2.21)

This is equivalent to assuming that the speed of light is in�nite, or alternatively that

the ow of light is always in static equilibrium. In essence we assume that the lighting

8Note c is the speed of light in a vacuum ( 3x108 m/s), n is the index of refraction of
the medium through which the light is traveling (e.g., n � 1 for air or n � 1:4 for glass),
and n

c
is the speed of light in this medium.
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at any point in time is the same as if conditions were always the same at they are at

that moment. With this assumption the time parameter will always be a constant in our

equations, and we will no longer include it explicitly.

2.3.1 BSDF

We still need some way to describe how the light scatters at surfaces or other obstructions.

The standard method is with a bidirectional scattering distribution function, or BSDF,

denoted by fs. A BSDF describes how much of the light of wavelength � which is incident

at x location on a surface from direction ! with be scattered in direction !0 and is de�ned

by:

fs(x; !; !
0; �) =

L�o(x; !
0; �)

Li(x; !; �) j! �n̂j (2.22)

We use L�o to indicate that this is the outgoing radiance induced by light from the speci�ed

incoming direction. It does not include self-emitted light or light scattered from other

directions. The factor j! �n̂j is simply part of the o�cial de�nition of the BSDF and is

equal to the absolute value of the cosine the angle between the incoming light and the

surface. Its rationale is the projected area e�ect we discussed earlier. We can �nd the

total radiance being scattered from a surface in a particular direction by summing the

contributions induced by all possible incoming directions:

Lscat(x; !
0; �) =

Z

�
fs(x; !; !

0; �; )Li(x; !; �) j! �n̂j d! (2.23)

where 
� is the sphere of all possible directions.

Note that the de�nition of the BSDF implicitly assumes that the light scattering is

linear; how a part of the incident light is scattered does not depend on the total amount of

incident light. Non-linear scattering e�ects do exist and can be important in some cases

(e.g., self-darkening sunglasses or frequency doubling crystals), however we will assume

that these are negligible in our environments.

For opaque surfaces, the BSDF is zero unless both directions lie on the same side

of the surface. In this case the bidirectional reectance distribution function, or BRDF,
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Figure 2.8: Of the light that is incident on a surface at a point x from direction ! the

fraction that is scattered in direction !0 determines the BSDF (bidirectional scattering

distribution function).

fr can be used instead of the BSDF fs. The only di�erence is that the BRDF is only

de�ned when both incoming and scattering directions lie on the same side of the surface

(i.e. it is a subset of the BSDF). Some care is required when creating a BSDF that

includes transmission as well as reection. Thus for simplicity, many authors only mention

BRDFs. See [53] for a discussion of some of these issues.

BSDFs and BRDFs may come from many sources. They can be measured by a

device called a gonioreectometer (e.g., [22]), calculated from theoretical models (e.g.,

[26, 41, 13]), estimated by numerical simulations (e.g., [59]), or created using empirical

representations (e.g., [58, 34]). If we want our results to be accurate, it is essential that

our BSDFs be accurate. For our purposes, we assume that the BSDFs are part of our

input and that they have been correctly speci�ed.

Because of their simplifying properties, Lambertian BRDFs play a special role in

many global illumination algorithms. A Lambertian surface is an opaque surface whose
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BRDF does not depend on either the incoming or outgoing direction.

fr;Lambertian(x; !; !
0; �) = �x(�) (2.24)

where � is known as the spectral reectance. The major advantage of Lambertian surfaces

is that their reected radiance does not depend on the exiting angle. If the surface is not

itself a light source then there is a direct mapping between the radiance L and radiant

exitance M at a Lambertian surface:

L(x; !; �) =
1

�
M(x; �) if ! 2 


n̂
(2.25)

The factor of � is because
R


n̂

[! �n̂] d! = �. The same relation also holds between the

tristimulance and the tristimulus exitance so that the color of a Lambertian surface does

not depend on the direction from which you view it. This greatly simpli�es the global

illumination problem on such surfaces as we can solve for the radiant or tristimulus

exitance rather than the full higher dimensional radiance function.

2.3.2 Global Balance Equation

Equation 2.23, the local scattering equation, can be extended into one expressing the

total light ow in an environment. First we note that the radiance coming from a surface

consists of two components: the light being emitted by the surface and the light being

scattered by the surface. Thus we can write:

L(x; !0; �) = Lemit(x; !
0; �) + Lscat(x; !

0; �)

L(x; !0; �) = Lemit(x; !
0; �) +

Z

�
fs(x; !; !

0; �)Li(x; !; �) j! �n̂j d! (2.26)

Using the non-participating media assumption, the constancy of radiance along a ray

implies that the incoming radiance at point x equal to the outgoing radiance at some

other point y (Figure 2.9). Using Equation 2.19, we can de�ne a geometry function,

G(x; !) to give us this other point.

G(x; !) = x+D(x; !)! (2.27)
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Figure 2.9: Assuming non-participating media, the incident radiance at a point on one

surface is equal to the outgoing radiance a corresponding point on another surface. In

the con�guration shown above, Li(x; !; �) = Lo(y;�!; �).

We now complete our balance equation by making use of Equations 2.21 and 2.4 to get:

L�(x; !
0; �) = Lemit(x; !

0; �) +
Z

�
fs(x; !; !

0; �)L�(G(x; !);�!; �) j! �n̂j d! (2.28)

The balance equation completely speci�es the radiance in our environment; only the

correct radiance function will satisfy this equation. Note that because of our non-

participating media assumption, we need only know the radiance at surfaces which can

then be trivially extended to all space.

Equations of this general form were �rst introduced to the graphics community as the

rendering equation [33, 29]. Since then several di�erent but equivalent formulations have

been introduced including the adjoint equation [42, 53] and the path space equation [54].

The particular formulation is not important as the essence of the problem remains the

same. The radiance appears both inside and outside the integral because the radiance

at a point depends on the radiance at many other locations and vice-versa. This is what

makes the problem inherently global and inspired the name global illumination. Also note

that before we can begin, three functions must be speci�ed as the input: the geometry

G, the light scattering fs, and light emission Lemit.

One advantage that we have is that, under our assumptions, the global illumination

problem is linear in many respects. For example the problem is linear with respect to the
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Figure 2.10: The geometry function G(x; !) returns the point which is the �rst inter-

section of the corresponding ray with a surface. It is closely related to the distance

function shown in Figure 2.6.

light sources. The radiance due to two light sources is simply the sum of the radiances

due to each of them individually. This linearity assumption along with the that of the

BSDFs, allows us to simulate the lighting using a simple non-interacting particle system.

Linearity is an extremely useful property that we want to exploit whenever possible to

simplify the solution process.

2.3.3 Image Formation

Typically the results of the global illumination are displayed to a user as a set of one

or more images. The pixels that make up each image are samples9 of the tristimulance

function Lt, hence it is these values that we will ultimately need.

This process of forming an image from the tristimulance function is illustrated in

Figure 2.11. A camera model along with the constant radiance assumption, de�nes a

mapping from parts of the tristimulance function on surfaces to pixels in our desired

9More generally each pixel is the integral of a �lter function with the tristimulance
function over a small region. For simplicity we will assume that our pixels are point
samples of the tristimulance.
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Camera

Image
Plane

Figure 2.11: The camera de�nes a mapping between pixels on the image plane and val-

ues in the tristimulance. These tristimulance can further be mapped back to tristimu-

lance values at surfaces. (Remember that tristimulance is our name for the tristimulus

values of the spectral radiance.)
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image. Finding these tristimulance values, though, is much more di�cult. From Equa-

tion 2.13, in order to �nd the tristimulance, we will need to know something about the

spectral radiance. From Equation 2.28 we can see that in order to obtain the spectral

radiance in one place, we need in general information about the spectral radiance in many

other places (Figure 2.12) and each of them depends on yet other places.

Reducing the spectral radiance to its tristimulus values (i.e. the tristimulance in our

terminology) simpli�es it considerably. Thus it is tempting to perform all our global

illumination calculations in terms of the tristimulance. However a perceptual function

such as the tristimulance only contains enough information to predict how the light

will interact with a human observers' eyes. It may not accurately predict how light will

interact with other objects such as the scattering at a surface and a premature conversion

to perceptual measures can lead to unwanted error. Many current rendering systems fail

to properly distinguish between proper uses for physical and perceptual spaces. We can

legitimately neglect parts of the spectral radiance (e.g., infrared light) that we know will

not a�ect the �nal tristimulus values.

2.4 Previous Work

In discussing previous global illumination algorithms and their relation to the density

estimation framework, it will be helpful to introduce some classi�cation criteria.

2.4.1 View-Independence vs. View-Dependence

One useful way to classify global illumination algorithms is by their degree of view-

dependence vs. view-independence. Since a particular view or image may need only a

small part of the total tristimulance function, one approach is to try to only compute as

small a portion as necessary. A pure view-dependent method stores tristimulance values

only on the image plane and computes the minimum information necessary to �nd these
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Figure 2.12: According to Equation 2.28 the radiance at a point depends on the radiance

at all other points which are visible from that point. Their radiances, in turn, depend

on all points visible to them and so on ad in�nitum. This is what makes global

illumination both global and di�cult.
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values. One disadvantage is that as shown in Figure 2.12, �nding the tristimulance at

one point generally involves computing radiance information at many points. Because

these intermediate results are not stored, they may have to be recomputed many times

in the process of �nding all the tristimulance values needed to make up an image.

View-independent methods take the opposite approach. They do not try to compute

a single view, rather they attempt to compute and store a complete global radiance

function, usually the tristimulance. Once this is known, the individual tristimulance

values can be quickly queried and the image from any viewpoint quickly generated10. If

we are only interested in a small number of views, we may compute information that is

not needed for any of our views. But the largest problem is that the complete radiance

function is in general extremely complex. It is not clear that we can estimate it adequately

or that we could store it even if we could �nd it. In practice these methods actually

compute a simpli�ed form of the global radiance that is limited by our need to be able

to store and manipulate it conveniently.

In summary, view-dependent methods have the advantage that they require minimal

storage, need to make few simplifying assumptions, and do not compute parts of the

radiance which are not necessary. Their primary disadvantage is primarily in e�ciency

due to the potential for large amounts of redundant computation and di�culty in �nding

certain types of lighting features such as caustics.

View-independent methods allow all of the illumination to be precomputed which

allows quick generation of arbitrary views and interactive walkthroughs of static environ-

ments. Their disadvantage is that the sheer complexity of a complete radiance function

leads to an explosion of resource usage and requires simplifying assumptions to make it

tractable.

Many current approaches are hybrids that attempt to combine the strengths of both

view-independent and view-dependent methods. Typically they use a low resolution view-

independent �rst pass to accelerate a view-dependent second pass. The low resolution

10This presumes a static model so that the radiance function does not change
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greatly simpli�es the view-independent computation. Using the results of the �rst pass,

the second pass avoids much of the redundant computation and reduces the artifacts

caused by the initial low resolution.

When a suitable partition of work between the passes can be found, hybrid methods

are often the fastest way to compute individual images, but it is not always obvious

how to partition the work. Also the view-dependent pass is still currently too slow for

interactive walkthroughs, and the interaction between the passes greatly complicates the

error analysis.

In this thesis we will emphasize the use of the our density estimation framework as

a view-independent method. When used in this fashion, we will be able formulate a

relatively precise error model and to perform interactive walkthroughs. This framework

can also be used as the view-independent part of a hybrid approach and we will discuss

that use briey as well.

2.4.2 Transport vs. Representation

To understand our framework, it will be helpful to introduce a conceptual split of view-

independent global illumination simulation into two distinct pieces: light transport and

lighting function representation. The light transport is the ow of light between surfaces

and throughout the environment. Since light from each surface potentially interacts with

every other surface, we say the problem has a high inter-surface or transport complexity.

Representation is the process of reconstructing and storing an estimate of the a radiance

function on each surface. For a purely view-independent method, we want these estimates

to be su�ciently detailed for direct display, so we need to be able to capture complex

features such as shadows and caustics. Thus, whatever representation we choose (e.g.,

piecewise linear or wavelet), it must be complex enough to capture these features if they

exist. Thus it has a high intra-surface or representation complexity. The combination of

transport and representation complexity is one of problems that makes global illumination
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particularly challenging.

The clean separation of these two parts is a chief characteristic and advantage of

the density estimation framework. The split allows us to optimize each part individ-

ually. The transport can be handled with considerable generality. Simpli�cations and

approximations needed for quick display and compact storage can be delayed until the

representation stage without compromising the accuracy of the transport phase.

2.4.3 Finite Element Methods

Currently the most widely used view-independent global illumination methods are the

�nite element methods11. Their general approach is outlined below.

If we had a guess L0� for the true spectral radiance function L� in theory we could verify

its correctness by seeing if it satis�es Equation 2.28. We would evaluate the righthand

side of the equation, assuming for the moment that we could compute the integral, as:

L00�(x; !
0; �) = Lemit(x; !

0; �) +
Z

�
fs(x; !; !

0; �)L0�(G(x; !);�!; �) j! �n̂j d! (2.29)

If this matches the lefthand side of Equation 2.28 (i.e. L0� = L00�) then L
0
� is the correct

radiance function. Even if L0� is not correct, under some mild conditions L00� (i.e. the

function we found by substituting into the righthand side of Equation 2.28) will be closer

to the true spectral radiance function than L0� was. By repeatedly applying this process,

we can generate a sequence of ever improving radiance function estimates. This is the

basic idea that underlies the current �nite element approaches to the view-independent

global illumination problem. This approach however, requires two assumptions which are

somewhat problematic. First, we need to assume that we can adequately represent these

11In the graphics community these methods are often refered to as \radiosity" meth-
ods, but this name is really a misnomer. Radiosity is an older name for the radiant
exitance. While some �nite element methods estimate the radiance exitance, others es-
timate di�erent functions such as the irradiance or tristimulance. In addition there are
non-�nite element methods that also estimate the radiance exitance. The name �nite
element methods is more descriptive.
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radiance function estimates which may be quite complex. Second, we need to assume

that we can adequately evaluate this complex integral.

Finite element methods work by choosing a �nite set of basis functions. Only func-

tions which are combinations of these basis functions can be represented as a set of

corresponding coe�cients. Of course these basis functions will only span a small subset

of the space of all possible functions. Each time we generate a function, we will have

to project it into our representable space adding some amount of error. A large number

of basis functions are required to reduce the projection errors and allow for su�ciently

detailed estimates which creates a high representation complexity.

At each iteration we will estimate the integral in Equation 2.29, or more typically

some subset of this integral, project the results into our representable space, and update

our current radiance function estimate. When evaluating the integral each basis function

potentially interacts with every other basis function which results in a high transport

complexity. Because each iteration mixes elements of both representation and transport,

it su�ers from their combined complexity. It also means that we may need to access the

entire representation which must be kept it in local memory for good performance. This

causes severe memory constraints that are often the limiting factor in such computations.

This process can be accelerated considerably by �nding ways to reduce either the

transport or representation complexity. One way to reduce the transport complexity is

by approximating some weak interactions between groups of basis functions as a single

aggregate interaction. Examples of this include hierarchical [23], wavelet[21], and clus-

tering [50] methods. These can reduce the transport complexity, but require additional

data structures that further increase the memory requirements.

Many di�erent approximations have been used to reduce the representation complex-

ity. The most current view-independent methods, including most �nite-element methods,

ignore the distinction between spectral and perceptual space and compute Equation 2.28

using the tristimulance rather than the spectral radiance. This simpli�es the representa-

tion considerably, but may not be physically accurate. The error introduced is di�cult
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to predict and depends on the spectral complexity of the emission and BRDF functions.

Another common approximation is to assume that all the BRDF and emission func-

tions are Lambertian or di�use. Under this assumption there is a simple relationship

between the radiance and the radiant exitance at surfaces given by Equation 2.25. In

this special case it is su�cient to compute and to store the simpler radiant exitance rather

than the higher dimensional radiance function. Without the directional information of

the complete radiance function though, a �nite element method cannot correctly handle

non-Lambertian materials such as metal, glass, or glossy surfaces.

An increasingly popular approximation is to abandon the idea of directly displayable

results and move toward hybrid methods. The view-independent solution is computed at

a very coarse resolution to keep the representation complexity down. If viewed directly

this would lead to disturbing artifacts and low quality images. Instead a view-dependent

pass is used to �ll in much of the higher frequency information which is missing from the

low resolution solution. This greatly lowers the representation complexity but has the

disadvantages listed previously for hybrid methods.

In theory we could represent the radiance function with very few coe�cients if we

could somehow pick basis functions that were speci�cally tailored toward the true radiance

function. Therefore another approach is to try to precompute some information about

the radiance function in order to choose a better set of basis functions. The principal

example of this approach is discontinuity meshing [36] which attempts to precompute

the locations of shadow boundaries. This approach can dramatically improve targeted

features such as primary shadows. However for general features, it is not clear that

predicting such features is any easier than solving the global illumination problem in the

�rst place. Thus this approach tends not to generalize very well to complex situations.

Another way to deal with the high combined complexity is to try to partition the

environment into small, weakly interacting subsets. If such a partitioning can be found

then the subsets can be solved semi-independently [52] and the computation can be

ordered to use virtual memory e�ciently. The di�culty is that such a partitioning is not
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always possible, particularly in a large open environment such as a hotel atrium.

In summary, the basic �nite element method is conceptually simple and appealing,

but su�ers from several drawbacks. Researchers have devised a variety of techniques that

greatly reduced many of these drawbacks, but they do not work in all circumstances and

each one adds additional complexity to the basic method. Writing a state of the art �nite

element system is a major software engineering undertaking. We believe that it is still

interesting and useful to explore alternate approaches toward view-independent global

illumination.

2.4.4 Monte Carlo

Monte Carlo methods are widely used for attacking global illumination and other di�cult

problems. Finite element approaches simplify the problem of handling arbitrary functions

by restricting themselves to working in the much simpler and smaller space of functions

spanned by the set of basis functions. The Monte Carlo approach is quite di�erent. When

evaluating a di�cult function or integral, a Monte Carlo method uses random numbers

to make a guess at its value. In general this guess will be wrong, but has the very special

property that it will be right on average. Thus one can get an arbitrarily good answer by

averaging together enough of these guesses. Monte Carlo methods are useful because it

is often much easier to be right on average than it is to be right, especially for complex

and high dimensional problems.

The error in a Monte Carlo (or any other) method can be separated into noise and

bias. Each time a Monte Carlo method is executed it will in principle produce a di�erent

answer and this variation in the results is called the noise. The noise can always be

reduced by averaging together many results. In general the noise will fall o� inversely

with the square root of the number of samples (i.e. you need to average four times as

many estimates to cut the noise in half).

The bias is the part of the error that would be remain even after averaging an in�nite
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number of samples (i.e. eliminating the noise). Deterministic methods, which always

produce the same result given the same input, by de�nition produce no noise and all of

their error is bias. The results of an unbiased Monte Carlo method, such as was discussed

above, contain noise but no bias. Monte Carlo methods can also contain bias if the results

are not quite right on average.

Among Monte Carlo advocates there is a justi�able prejudice against biased Monte

Carlo methods. Frequently it is quite di�cult to estimate the nature or magnitude of

such bias while noise is much easier to understand and measure. The density estimation

framework is a Monte Carlo method which allows some bias in order to reduce the noise.

In our case, though, we understand and can precisely formulate the nature of our bias.

2.4.5 Density Estimation Framework

In designing the density estimation framework [47, 56] we wanted to explore methods

that would not su�er from the same problems as current �nite element methods. One

idea we wanted to explore is reducing the amount of complexity that must be dealt

with at one time, by splitting the computation into distinct and separate transport and

representation stages. During the transport stage we compute the ow of light within

our environment via particle tracing without ever explicitly attempting to reconstruct a

radiance function.

The representation stage then explicitly reconstructs an estimate of the tristimulus

exitance, using information recorded during the transport stage. The lighting intensity

on a surface is reected in the density of light particles that strike the surface. Therefore

our reconstruction problem is a density estimation12 problem.

Particle tracing has been used by many other researchers [1, 2, 42] to compute light

ow and Heckbert [27] �rst noted that reconstructing lighting from particles is a density

12Density estimation is the problem of estimating a unknown density function from a
set of discrete samples drawn according to the density function [49]. This is a common
statistical problem that occurs in many �elds.
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estimation problem. Since then a variety of di�erent density estimation techniques have

been applied, including histograms [27], kernel methods [10, 12], and splines [44]. Our

density estimation technique is kernel based and includes several new innovations, but

the most signi�cant di�erence between our framework and previous work is the complete

separation of the transport and reconstruction stages.

The particle tracing stage computes an unbiased statistical simulation of global light

transport. By our linearity assumptions in formulating the light transport equations, the

light does not interact with itself. This frees us from needing an explicit estimate for the

radiance function and each of our particles can be traced independently. Instead some

particle history information is recorded for later use. Thus the particle tracing can work

directly with the raw input data, and deals only with the transport complexity without

the representation complexity. As such it can easily handle complex geometry, BRDF,

and emission functions.

The lighting reconstruction stage uses the recorded particle histories to estimate the

lighting function on each surface. Because all of the global transport was handled in the

previous stage, we can now reconstruct the lighting on each surface independently. The

absence of transport complexity means that we can divide the reconstruction problem

into pieces that have a manageable representation complexity. An additional bene�t

is that we can take a truly non-parametric approach in the reconstruction that delays

making any decisions or assumptions about our target function until we have collected

as much information as possible. This allows us to produce better reconstructions from

the particle data, a de�nite advantage as the particle tracing is still the most expensive

part of the process. We will allow some bias in the reconstruction, but because of the

separation, it is purely local in e�ect.

By separating the transport and representation complexity into di�erent stages, the

individual stages require fewer resources than �nite element methods, especially in terms

of memory. But we have not completely escaped the complexity problem. The combined

complexity is contained in the voluminous particle history data which is far larger than
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the �nal results will be. Thus, careful attention must be paid to how the particle histories

are stored and accessed. The particle tracing only writes particle data and the density

estimation only needs the particle data associated with one surface (or piece of a surface)

at a time. The only operation we ever need to perform on the entire particle data set is a

sort by surface; otherwise, the computation can be structured so that the particle data is

processed in a largely predictable and localized order. This means that we can e�ciently

store the particle data using secondary storage such as a hard disk, which is typically 50

to 100 times cheaper than physical memory (RAM). The e�cient use of secondary storage

is one of the key ideas that makes our framework feasible. A more detailed description

of the density estimation framework will be given in Chapter 3.

2.4.6 Di�use vs. Non-Di�use

The extent to which the density estimation framework can handle non-di�use materials

is a common point of confusion because it di�ers from most previous methods. The

separation of transport and reconstruction phases allows us to use di�erent assumptions

in each phase. The transport phase can simulate the full spectral radiance and includes

the inuence of non-di�use surfaces. In our implementation, the reconstruction phase

converts to tristimulus space and introduces a Lambertian approximation but only after

the transport phase has completed.

Here we will only reconstruct the tristimulus exitance even though we simulate the

full spectral radiance. During the reconstruction we will approximate each surface as

being Lambertian and only reconstruct the tristimulus exitance. This also means that

our reconstruction will not contain complete information on non-di�use surfaces. Dis-

playing these surfaces correctly requires additional processing to �ll in the missing di-

rectional information. Frequently we simply do not attempt any reconstruction at all

on the non-di�use surfaces. Note that unlike �nite element methods, our representation

approximations do not a�ect the accuracy of our transport. Figure 2.13 illustrates the
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Figure 2.13: Three solutions for two glass planes on a base plane. (Left) Finite element

methods typically use a Lambertian-only approximation for both transport and rep-

resentation. (Center) The density estimation correctly handles general transport but

then uses a Lambertian-only representation. (Right) Further adding a view-dependent

pass for non-Lambertian surfaces produces the correct image.

distinction between transport and representation/reconstruction approximations.

In order to work with the simpler tristimulus exitance function, most �nite element

methods require that all BRDFs must be Lambertian along with a premature conversion

to tristimulus space. Our framework can use such simpli�cations even in the presence of

non-Lambertian and/or spectrally complex BSDFs without compromising the the accu-

racy within the transport simulation.

We could actually try to reconstruct the full tristimulance rather than the tristimu-

lance exitance, but this would entail several di�culties. Since the tristimulance is a higher

dimensional and more complex function, it would require signi�cantly more particle data

to estimate adequately. To store it compactly and display it quickly, we would need to

�nd good ways of representing the tristimulance with its directional as well as spatial

dimensions. Lastly, would need to update our reconstruction and decimation techniques

to handle the tradeo� between spatial and directional resolution. Therefore this has been

left as future work.
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2.4.7 Hybrid or Multi-Pass Methods

A second approach toward non-di�use surfaces is to use the density estimation framework

as part of a hybrid or multi-pass technique. A ray-tracing based view-dependent pass is

added to generate images. For di�use surfaces, this pass will directly display the results

computed by the density estimation process, but for non-di�use surfaces it will trace

additional rays in order to estimate their view-dependent directionally-varying appear-

ance. The center image in Figure 2.13 shows the results of the density estimation while

the right image used a view-dependent pass to �ll in the appearance of the glass blocks

themselves. We will use this hybrid technique for a few of the images in this thesis, but

will not include such a view-dependent pass in our error analysis.

Many researchers feel that hybrid (or multi-pass) methods (e.g., [10, 45, 50, 31]) are the

most promising of global illumination approaches. While we do not necessarily disagree

with this assessment, we have chosen to emphasize the density estimation framework as

a purely view-independent technique for several reasons.

Hybrid methods split the lighting into various components, some of which are pre-

computed once by the view-independent phase while others are computed anew for each

image. Generally they try to divide the lighting into low and high frequency compo-

nents by using distinctions such as direct vs. indirect lighting and specular vs. di�use

reection. Each component is computed by the method which seems best suited to its

expected characteristics.

The work of Jensen [31] is particular relevant here as he makes use of a particle

tracing phase similiar to ours. He uses two particle tracing phases to estimate two lighting

components: di�usely reected indirect light and specularly reected indirect light. A

view-dependent phase then performs density estimation to query these components, �lters

the results through a local-gather operation, and combines them with estimates of the

other lighting components. This method often works quite well especially when the

distinctions between di�erent lighting components are clear, and is much faster than the
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framework presented here when only a small number of views are needed.

Nevertheless there are also many cases where hybrid or multi-pass methods are not

currently suitable. Their view-dependent passes are currently too slow for interactive

walkthroughs even for static environments. We also believe that the kinds of distinctions

used in multi-pass methods are sometimes di�cult to make. For example, if we move

away from \bare bulb" lights and direct sunlight toward complex lighting �xtures and

areas lit by reected sunlight, the distinction between direct and indirect light becomes

unclear and unhelpful. Thus it is interesting to explore methods that do not rely on

such distinctions. Lastly the heterogeneous nature of hybrid methods makes their error

analysis extremely di�cult. By computing all of the transport using a single and simple

statistical particle tracing approach, we can more easily and precisely analyze the error

in our solutions. We hope that availability of a precise error analysis will enable some

new applications of global illumination and can also be used as feedback to improve the

solution process itself.

A few other di�erence between our work and Jensen's are worth mentioning. Jensen

does not ever explicitly reconstruct the illumination function on a surface in our sense.

Instead a new density estimation calculation is performed each time he wants to query

information computed by particle tracing. To make this feasible, he needs to be able

to keep all his particle data in memory, which puts a stringent limit on the number of

particles. He also uses a very simplistic density estimation technique, which su�ers from

errors due to boundary e�ects, surface curvature, and nearby surfaces, but the resultant

artifacts are mostly �ltered out by his local-gather display computations. In our work we

need to be more careful since our density estimation results are directly displayed.



Chapter 3

The Density Estimation Framework

3.1 Overview of Framework

The density estimation framework is divided into three principal phases: particle trac-

ing, density estimation, and decimation. As discussed in Section 2.4.2, we separate the

view-independent global illumination problem into light transport and light representa-

tion. By transport, we mean simulating the total ow of light throughout the target

environment. Representation, on the other hand, is the process of �nding and storing us-

able estimates of lighting or radiance functions on individual surfaces. We �rst simulate

the complete transport in the particle tracing phase before we attempt to reconstruct

appropiate representations.

To simplify our task, we further split the representation phase into two pieces: density

estimation and decimation. The goal of the density estimation phase is to reconstruct

the best approximation possible. The decimation phase then optimizes these results for

compactness while maintaining their perceptual quality. In between the transport and

representation stages, a sorting step is used to reorder the particle data for e�cient access

during density estimation.

The three phases can be summarized as follows:

41
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1. Particle-tracing phase: Power-carrying particles, each with a speci�c wave-

length, are emitted from the luminaires according to their emitted spectral radiance

distribution, Lemit. They are tracked as they travel through the environment until

they are absorbed. Each time a particle hits a surface it is probablistically absorbed

or scattered in a new direction according to the BSDF fs, or Bidirectional Scatter-

ing Distribution Function, of the surface. A list of \hit points" where particles hit

surfaces is generated and saved.

2. Density-estimation phase: The stored hit points are used to reconstruct approx-

imate lighting functions on each surface. The intensity of illumination is related to

the density of the hit points so this is a density estimation problem. To reconstruct

the tristimulus exitance, the hits are weighted by the surface reectance1 and the

CIE XYZ response functions and then their density is estimated at a set of points

using local linear density estimation. The result is a Gouraud-shaded, or piecewise

linear, mesh of triangles with a color at each vertex suitable for direct display.

3. Mesh decimation phase: The initial mesh is generated conservatively and in

most places is more dense than required. The decimation creates a sparser mesh

while minimizing the changes in its appearance. The mesh is decimated by progres-

sively removing vertices as long as the resulting change is below a perceptually-based

threshold. The simpli�ed mesh is more compact and faster for display.

3.1.1 Some Bene�ts

There are a number of advantages to dividing the view-independent global illumination

problem into these three phases. Each phase is less complex, both conceptually and

computationally, than the original problem. The high complexity of global illumination

makes divide-and-conquer strategies quite appealing when the divisions can be made

1Or more properly by the surface's BSDF on non-Lambertian surfaces.
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Figure 3.1: Overview of the density estimation algorithm showing the type of results

produced by each phase.
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Figure 3.2: Overview of the density estimation algorithm showing the ow of data

through the phases and the inherent parallelism.
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cleanly as is done here. As we argued in Section 2.4, the separation of transport and

representation complexity reduces the overall computational complexity.

The division also allows us to use di�erent assumptions and approximations in each

phase. They can be optimized for their particular sub-goals in pursuit of the total goal

without altering the other phases. For example we can use a simplifying approximation,

such as all surfaces are Lambertian, in the density estimation phase without compromising

the accuracy within the transport phase (see Figure 2.13). The particle tracer can be

optimized for physical accuracy, the density estimation for perceptual accuracy, and the

decimation for compactness and display speed.

The software naturally divides into three modular pieces corresponding to the three

phases. Once the format for data owing between the phases is chosen, they can be

implemented, debugged, maintained, and even updated independently. In our case each

phase was implemented by a di�erent person with very little coordination required2.

Another bene�t is the inherent parallelism in this framework. Finite element methods

tend to be di�cult to parallelize because, they mix transport and representation opera-

tions. Our particles do not interact with each other, thus each particle could potentially

be traced in parallel. Surfaces do not interact during the representation phases, thus

the lighting reconstruction on each surface or piece of a surface could be performed in

parallel. As shown in Figure 3.2 signi�cant communication is only required during the

sorting operation, and parallel sorting is well studied problem. Some of this potential

was demonstrated in [62], and this parallelism has remained one of our design goals

throughout our algorithmic improvements.

2The three phases were implemented by Peter Shirley, Bruce Walter, and Philip Hub-
bard respectively.
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3.2 Particle Tracing

The goal of the particle tracing phase is to simulate the complete ow of light throughout

a target environment. One of particle tracing's advantages is that it can simulate a fairly

general geometric optics based model of light propagation. The two major limitations

are that light is assumed to travel in straight lines between scattering events and that

the scattering is a linear process. Wave e�ects such as di�raction and interference are

not included except where such e�ects can be hidden inside the scattering function fs.

Our current implementation handles e�ects such as refraction and dispersion, and several

others such as polarization and uorescence could be added relatively easily.

Tracing of light particles is sometimes referred to as \photon tracing". While it has

intuitive appeal, this name can be a little misleading. Unlike photons, our particles

generally do not obey wave optics and carry an amount of power based the human eye's

sensitivity to their wavelength. A one-for-one photon simulation would infeasible anyway,

even if it were desirable, due to the incredibly large number of photons in real environ-

ments. The properties of our particles are often chosen for computational e�ciency rather

than to match physical photons.

The particle tracing consists of three basic operations: generation, ray casting, and

scattering. A particle is �rst generated randomly at a light source. Next a ray is cast to

�nd the �rst obstruction in its straight line of travel. Here it is probabilistically either

absorbed or scattered in some new direction. If scattered, another ray is cast to �nd the

next scattering event and the process is repeated until the particle is eventually absorbed.

More particles are generated and traced in the same way until some stopping criteria is

reached. At each step we want our particles, on average, to mimic the behavior of light

so that our simulation will be faithful to reality.

The particle tracing is a Monte Carlo process and the particles are generated according

a probability density function pe(x; !; �) where x is the initial position of the particle, !

is its initial direction, and � is its wavelength. The power distribution of these particles
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must match the emitted radiance Lemit as speci�ed for this particular environment. We

can ensure this by setting the initial amount of power � carried by the particle to be:

� =
Lemit(x; !; �) [! �n̂]
Np pe(x; !; �)

(3.1)

where n̂ is the surface normal at x and Np is the total number of particles traced.

As before, we assume a non-participating medium so that scattering only occurs

at surfaces. We �nd the location, x0, of the next scattering event by casting a ray

and �nding the �rst surface it intersects. This is equivalent to evaluating the geometry

function, x0 = G(x; !) (Section 2.3.2), and depends solely on the geometry of the target

environment.

During a scattering event at location y, a particle traveling in direction ! with wave-

length � will be scattered in direction !0 with some probability ps(!
0). Alternatively the

particle may be absorbed with some probability which we will write as ps(0). Note that

we have added zero as a special direction to signify the case when the particle does not

leave in any direction. Again we must ensure that the power distribution of scattered

particles matches that speci�ed by the BSDF fs. We can achieve this by setting the new

amount of power �0 carried by the scattered particle to be:

�0 = �
fs(y;�!; !0; �)[!0 �n̂]

ps(!0)

�
n1
n2

�2
(3.2)

where � is the power carried by the particle before it was scattered, n̂ is the suface

normal at y and n1 and n2 are the indices of refraction of the medium that the particle

is coming from and scattered to respectively. The last factor is only needed when the

particle crosses a surface into a region with a di�erent index of refraction (e.g., goes from

air to glass) and is further discussed in [53].

3.2.1 Choosing the Particle Power

Our choice of emission and scattering probabilities determines the amount of power car-

ried by each particle and has a large e�ect on computational e�ciency. The number of
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particles traveling through a region, and hence the amount of information we have about

the lighting there, depends partially on the amount of power carried by those particles.

For a �xed number of particles, varying the particle power allows us to trade o� increased

resolution of the radiance function in some regions for a corresponding decrease in other

areas.

Such a trade o� only makes sense when we know that certain parts of the radiance

function are more important to us than others. In the absence of such prior knowledge

about the radiance function, the most rational decision is to have all particles carry the

same power. We can achieve this by making the emission probability, pe, proportional to

the emitted radiance:

pe(x; !; �) / Lemit(x; !; �) [! �n̂] (3.3)

Since pe is a probability density function whose total volume must be equal to one, this

completely determines pe. Similiarly to maintain constant particle power, the scattering

probability ps for an particle being scattered at location y that was previously traveling

in direction ! with wavelength � will be:

ps(!
0) = fs(y;�!; !0; �)[!0 �n̂]

�
n1
n2

�2
if !0 6= 0 (3.4)

The requirement that ps be a probability density function3 then determines ps(0), the

probability of absorbtion.

When we do have some knowledge about the relative importance of parts of the radi-

ance function, we can use that to choose di�erent probability functions. Some strategies

for allowing the particle power to vary will be discussed in Section 6.1.

3Strictly speaking pe, as we have de�ned it, is not a probability density function be-
cause we used its value at a single point, zero, to denote a non-in�nitesmal probability
(i.e. the probability of absorbtion). One can de�ne ps more rigorously using the for-
malisms of measure theory [7] or the Dirac delta function notation [37] from the physics
literature.
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3.2.2 Recording Particle Hits

The purpose of the particle tracing is to generate data for use by the density estimation

phase. As we are interested in the illumination at surfaces, we record the interactions

between particles and surfaces.

We could record either all incident particles to a surface or only the particles which

are scattered and leave the surface. The scattered particles more closely correspond to

our target function, the tristimulus exitance, but the incoming particles are a better

choice. They form a superset4 of the outgoing particles They correspond to the incident

radiance, but we can weight them by the BSDF fs to estimate the the reected light.

It also allows us to reconstruct the irradiance or intristimulance when we wish (e.g., at

textured surfaces).

Each time a particle strikes a surface we record a surface identi�cation number (id),

the location of the hit, and the wavelength of the particle. The surface id is encoded

using four bytes which allows for up to 4 billion surfaces. The x, y, and z coordinates

of the hit are recorded using two bytes each using a �xed point represenation relative to

the bounding box of the surface. This is su�cient to give sub-millimeter accuracy for

surfaces smaller than 60 meters in length. Large surfaces could always be subdivided if

more accuracy is necessary. The wavelength is stored as a two byte integer measured

in nanometers. In total the particle tracer writes 12 bytes to disk for each particle hit.

Each hit point �le also contains the total emitted power and the number of particles used

to generate it. This allows us to compute the power carried by each particle even when

combining the results from multiple executions of the particle tracer.

4Except for newly emitted particles of course, but we assume the emission function
Lemit is already known.
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3.3 Sorting

The density estimation needs to be able to rapidly identify all hit points on a surface

that are near an arbitrary point. This is a problem as the hit points, as produced by

the particle tracer, are quite voluminous and in a nearly random order. To make these

operations quick, we �rst introduce a sorting step to reorder the particle hit data for

e�cient localized access and to minimize the number times data must be loaded into

memory from disk.

Previously [47, 56] we only required that the particles be sorted by surface id. We

have since changed the sorting to enforce a more structured ordering. The newer format

is necessary for our improved adaptive density estimation techniques and also makes load

balancing easier in parallel implementations.

The sorted data is organized in a three level hierarchy (Figure 3.3). The data is

�rst divided into �les which are small enough to be completely loaded into memory

for processing. The �les are then further divided into the loadable segments that will

be individually loaded and cached in memory as needed during the density estimation

phase. For e�ective caching, the loadable segements must be small enough that many of

them can �t in memory at once. Finally the data in each loadable segment are organized

using a regular grid for e�cient access to local regions of the data.

We expect that the total particle data will be larger than the available memory

(RAM), so our �rst task is to partition the data into �les that can �t in memory. We

accomplish this using a statistical partitioning based on a random subset of the data

points. This data is then partitioned into �les using a single pass to through the particle

data. The actual size of these �les will vary somewhat from what we originally estimated,

but these variations should be small. For example, if we have 300 million data points

and we use 3 million of them to create a partitioning scheme such that each partition

should have around 3 million data points, the relative standard deviation in the actual

partitioned �le size will be less than 1%, which is easily accommodated.
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Figure 3.3: Before sorting the hit points are in a random order and encoded using twelve

bytes per point. After sorting the data is organized into a three level hierarchy of �les,

loadable segments, and regular grids and encoded using only six bytes per point.
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Our partition scheme can combine points from multiple surfaces into a single �le and

split the hits from a single surface across multiple �les as needed to meet the target �le

size. Whenever a surface needs to be split, we compute a local 2D coordinate system,

and split by whichever coordinate has a greater extent. The median coordinate value

is used to split the surface into pieces with equal numbers of hit points. Note that this

splitting is for storage and organization purposes only. The density estimation process

still uses all hits associated with a surface regardless of such splitting.

After the initial partition is complete, each �le is loaded in turn and divided into

loadable segments based on a suitable smaller maximum size. Each loadable segment

contains data from only one surface and may require further splitting of surfaces. Finally

the points within each loadable segment are organized using a regular grid in the local

2D space for rapid access to the points in any vicinity.

During the sorting process we also convert the hit points to a more space e�cient

form. We can drop the surface id because hit points are grouped by surface. Also we

translate from 3D space to a local 2D space. The resulting u and v coordinates are

stored as two bytes each in a �xed point format relative to the bounding box of the

surface piece corresponding to its loadable segment. Together with the wavelength, each

point is encoded using six bytes after sorting instead of the original 12 bytes. This

compact and highly organized format allows to rapidly and e�ciently access the particle

data as needed during the density estimation phase.

3.4 Density Estimation

The goal of the density estimation phase is to estimate the tristimulus exitance function

as best we can from the information recorded during the particle tracing phase. If the

particle tracing is performed correctly, then there is a simple relation between the spectral

radiance and the density of the recorded particle hits. Let p(x; !; �) be the probability

that a particular hit occurred at location x due to a particle traveling in direction ! with
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wavelength �. If each particle carries the same amount of power �, then the probability

density p of the particle hits is:

p(x; !; �) =
j! �n̂j
�n

Li(x;�!; �) (3.5)

where n is the total number of particle hit points recorded and the dot product is due to

the projected area in the de�nition of radiance. The relation is to the incident radiance

Li because we chose to log incident particles. If we can estimate the probability density

function p, we can use this relation to estimate the radiance or any related function

including the tristimulus exitance that we want.

The problem of estimating a density function from a set of discrete samples distributed

according to it is known as density estimation. Chapters 4 and 5 will be devoted to density

estimation techniques, so we will defer a more detailed discussion until then.

We use density estimation to estimate the tristimulus exitance at a set of discrete

points. These points are connected together into a mesh of triangles with piecewise

linear interpolation over each triangle to create a continuous estimate of the tristimulus

exitance. The spacing between these points is designed to be smaller than the smallest

feature that the density estimation is capable of reconstructing. Where such a feature is

not actually present, the generated mesh will be more dense than is actually required.

Piecewise linear interpolation over a triangle is identical to Gouraud shading. This is

convenient as Gouraud shaded triangles are the most widely supported primitive for fast

shaded 3D graphics displays. For fastest display, however, we would prefer a mesh with

as few vertices and triangles as possible.

3.5 Decimation

The decimation phase takes the meshes produced by the density estimation phase and

optimizes them for compactness and quick display. The idea is replace an overly dense

mesh with a sparser mesh whose appearance closely matches the original. We will only
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very briey discuss the decimation here, as it is the density estimation that is the main

focus of this thesis. See [47, 56] for a more complete discussion of our current decimation

techniques.

Our approach is to make a sparser mesh by identifying and removing redundant

vertices. First we need a metric to tell us how much we can change the tristimulus

function before the change is likely to be either noticeable or disturbing. Each vertex is

then evaluated to see how much change would be caused by its removal. Using a priority

queue, vertices are removed in order of minimal incremental change in the visibility metric

as long as each removal causes a change that is below some threshold. The result is a

triangular mesh whose vertices are a subset of the original vertices, and which in most

cases is much sparser.

The decimation parameters that control the threshold and visibility metric were cho-

sen using a simple user study on a computer monitor under particular viewing conditions.

Ideally the decimation would be recalibrated for each display device and viewing condi-

tions, but in practice our initially determined values seem to work well in most cases.

The metric used in the decimation is currently based solely on luminance changes

and does not include e�ects such as Mach bands and color shifts. It also does not use

spatial frequency information because our solutions are view-independent. We do not

know from what direction or distance a surface will be viewed. Better perceptual metrics

would almost certainly lead to better performance and higher decimation ratios. Even so,

the current decimation typically reduces meshes to approximately 15% of their original

triangle count.

3.6 Improvements over Prior Implementation

The density estimation framework is part of an ongoing research project and earlier

versions have been described in [47] and [56]. The basic three-phase framework has

remained similiar to the one we proposed in [47], but the individual phases have been
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considerably improved. In [56] we introduced some improvements including:

� The particle tracing was changed from an RGB color space to spectral radiometry

for better physical accuracy.

� Used a density estimation technique based on locally-weighted linear least-squares

regression to handle arbitrary polygons and boundary bias problems.

� Perceptually-based heuristics and user studies provided a systematic way to choose

decimation parameters.

In addition this thesis presents several further improvements including:

� Spatially varying adaptive bandwidths over surfaces for improved density estima-

tion.

� Wavelength importance sampling in the particle tracing to increase the information

content per particle hit.

� Use of a perceptual noise metrics to better control our visual error.

� Bias detection techniques to automatically detect and sharpen important features

such as shadow boundaries.



Chapter 4

Density Estimation

Density estimation is a common problem that occurs in many di�erent contexts and

�elds. One might be trying to estimate the geographic distribution of pet owners from a

random phone survey, the automobile fatality rate by time of day from a set of accident

reports, or the illumination on a surface from a light particle simulation. The essence of

the problem is the same in each of these cases.

We are interested in estimating an unknown function f . What we are given is a set of

data points that are distributed according to this function. In other words the probability

that a data point will be found in the vicinity of x is proportional to f(x) so that there

is a strong connection between the local density of data points and the value of f .

This is a common problem in many contexts, and there is an entire �eld in statis-

tics that is devoted to density estimation techniques [49, 57]. We can broadly classify

the techniques into parametric and nonparametric approaches. Parametric approaches

assume that the density function is known to be a member of some particular family of

functions. We might, for example, know that the unknown function is a gaussian or a

third-order polynomial. Such prior knowledge greatly simpli�es the problem. We need

only estimate the parameters that de�ne the function within its family.

Often, however, we know very little a priori about the density function. In this case

56
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Figure 4.1: A histogram in one dimension.

nonparametric approaches are more appropriate. These try to make as few assumptions

about the unknown function as possible, though typically they will prefer smoother func-

tion estimates as long as they are consistent with the input data. In our case, we expect

our illumination functions to be mostly smooth, but they can contain discontinuities of

all orders and need not belong to any parametric family. For us, it is best to take a

nonparametric approach and let the data drive the estimation as much as possible.

4.1 Kernel Density Estimation

The histogram is probably the oldest and most widely known density estimation tech-

nique. It consists simply of dividing the domain of the problem into regions, or bins. Then

we form a piecewise constant approximation by counting the number of data points in

each bin and dividing by the size of the bin. The simplicity of histograms is appealing,

but there are other methods that generally produce better approximations to the real

density function.

In the statistics literature, kernel density estimation is one of the most widely used

and recommended nonparametric density estimation technique. The density function at

a point is estimated by taking a weighted sum of nearby points and dividing by the area
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under the weighting, or kernel, function. Usually the kernel is normalized to have unit

area so that the division is unnecessary.

It is traditional to split the choice of a kernel function into the general shape of the

kernel in a canonical form, written as K, and a kernel width parameter h, which is usually

called the bandwidth. The kernel scaled by the bandwidth h is written as Kh and de�ned

as:

Kh(x) =
1

hd
K
�
x

h

�
(4.1)

where d is the dimension1 of domain. It is also traditional to assume the density function

has unit volume (i.e. is a probability density function), though this can easily be gener-

alized to other densities by adding a scaling factor2. Given n data locations fX1 : : :Xng
the estimated function ~f is:

~f(x) =
1

n

nX
i=1

Kh(x�Xi) (4.2)

We can think of this expression as a kernel centered at the estimation point used to

weight nearby data points, or alternatively we can think of it as the sum of n kernels

centered on the data points3 and summed as shown in Figure 4.2. Thus our function

estimate is simply a sum of suitably translated kernel functions. Essentially we are

blurring the data points to produce a smooth estimate where the bandwidth parameter

controls the amount of blurring.

1For our application, the domain is a two dimensional surface or more speci�cally a
polygon, however some of our examples will be one dimensional for simplicity.

2This scaling factor is independent of the spatial distribution of data points and must
be known from some additional information. In our case we can �nd the scaling factor
because we know the amount of spectral power carried by each particle. For now we will
assume the function has unit volume.

3We will break this symmetry when we introduce the local polynomial methods, but
the intuition built here is still useful.
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Figure 4.2: Kernel Density Estimation: data points (x's) are distributed according to a

density function (dashed) and kernels (gray) centered on the data points are summed

to form an estimate (solid) of the density function.

4.1.1 Choosing the Kernel

The conventional wisdom in the statistics literature (e.g., [49, p. 43]) which is borne out

by our own experience [55], is that the exact shape of the kernel makes little di�erence

in the quality of the density estimation4. However, we can reduce the computational

costs by choosing a kernel that has compact support and is simple to calculate. The two

kernels that we use are the uniform kernel and the Epanechnikov kernel.

Of all compactly supported kernels, the uniform kernel is the easiest to compute and

gives the minimum variance for a given bandwidth. The equation for the uniform kernel

in two dimensions is:

Kuniform(x) =

8><
>:

1
�

if kxk � 1

0 otherwise
(4.3)

The main drawback of the uniform kernel is that it contains jump discontinuities, and

hence so will an estimate made using it. This is not a problem if the discontinuities are

4In a truly nonparametric approach where we are making few prior assumptions about
the function, each kernel will necessarily cover a large number of neighboring points. In
this case the kernel shape is much less important than the kernel width.
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Figure 4.3: Uniform kernel in one dimension.

small enough, but we may prefer to use a smoother kernel. The Epanechnikov kernel

is simple to compute, continuous, and, under some conditions, has been shown to be

optimal [57, p. 30], though its e�ciency advantage over other kernels is slight. The 2-D

Epanechnikov kernel is given by:

KEpan(x) =

8><
>:

2
�
(1� kxk2) if kxk � 1

0 otherwise
(4.4)

Many other kernels shapes are possible and have been used. If continuity of derivatives

in the estimate is important one can use smoother kernels with continuous derivatives.

In our application, there is nothing to be gained by using these smoother kernels.

4.1.2 Choosing the Bandwidth

Choosing a good bandwidth is much more di�cult. To do this intelligently we need to

understand the trade o� between bias and variance. It is well known that the expected

value of kernel density estimation via Equation 4.2 is [57]:

E ~f(x) =
Z
Kh(x� y)f(y) dy (4.5)
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Figure 4.4: Epanechnikov kernel in one dimension.

In other words, our estimate ~f converges, not to the correct function f , but rather to

the correct function convolved with the kernel. The di�erence is bias and is one of the

sources of error that we want to minimize. In general, the way to reduce the bias is to

reduce the kernel size which implies we want to use as small a bandwidth as possible.

Since we use a �nite amount of data, our solution will also have variance, or noise.

The variance is given by:

Var ~f(x) =
1

n

�Z
Kh(x� y)2f(y)dy

�
� 1

n

�Z
Kh(x� y)f(y)dy

�2
(4.6)

We can get the leading term in the variance by neglecting the second term above, using the

Taylor expansion, f(y) � f(x) + (y� x)f 0(x), Equation 4.1, and assuming a symmetric

kernel so that K(x) = K(�x) to �nd:

Var ~f(x) �
R
K(y)2dy

nh2
f(x) (4.7)

From this we can see that the variance is inversely related to the bandwidth and to

minimize the noise we want to use a large kernel. In essence, varying the bandwidth

controls a tradeo� between bias and variance. The optimal value will depend on the

local complexity of the density function f and on the relative importance that we attach
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to bias and noise errors. We will return to consider this bandwidth tradeo� issue more

closely in Chapter 5.

Once a kernel function and bandwidth are chosen, it would be quite straightforward

to implement Equation 4.2. Unfortunately, there is a fundamental problem with kernel

density estimation called boundary bias.

4.2 Boundary Bias

The cause of boundary bias is that a naive kernel method does not di�erentiate between

regions that have no data points because the density function is near zero, and regions

which have no data points because they lie outside the domain where we have information

about the function. E�ectively it assumes that the function goes to zero everywhere

outside of the domain; consequently, there is a strong bias toward zero in regions that

are within a bandwidth of the boundary of the domain. In our application this would

show up as a noticable darkening near the edges of surfaces or polygons (see Figure 4.5).

This might not seem like a big problem because it only a�ects boundary regions, but in

applications like ours, the boundary region can be a large fraction of the total domain.

This is especially true for complex scenes, which often consist of many small polygons.

We distinguish between two degrees of boundary bias. As the bandwidth shrinks, we

want the bias to converge to zero. If bias near the boundary does converge to zero, but

at a slower rate than in the interior, we call this asymptotic boundary bias. If the bias

does not converge to zero, we call this absolute boundary bias. The naive kernel method

of Equation 4.2 su�ers from absolute boundary bias. For example points on a boundary

edge will typically converge to half their proper value even in the limit of many points and

small bandwidths. This is unacceptable in many cases. We need methods that reduce

the boundary bias problem to the asymptotic level or eliminate it entirely.

A variety of techniques have been used to reduce boundary bias. One simple tech-

nique is to create \phantom" data outside the domain by reecting data across the
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boundary [48]. Unfortunately, this only partially corrects for the boundary bias and is

only easy to implement for shapes which can tile the plane (e.g., rectangles). In the

statistics literature, when the boundary bias problem is dealt with at all it is usually by

using modi�ed kernels in boundary regions called boundary kernels (e.g., [57, p. 47]).

The di�culty with boundary kernels is that they are derived in an ad hoc manner, and

there is no general agreement as to which are the best.

We have developed a new method for reducing or eliminating boundary bias by adapt-

ing the locally-weighted polynomial least-squares regression method described below. The

results are demonstrated in Figure 4.5. The advantages of this new method are its clean

conceptual basis, and that it helps to build our intuition about the behavior of kernel

density estimation.

4.2.1 Local-Weighted Polynomial Least-Squares Regression

Regression is the problem of reconstructing a function given a set of function estimates at

various points. It is closely related to density estimation and also su�ers from boundary

bias problems. In the regression literature, the locally-weighted polynomial least-squares

regression technique has recently become popular, in part because it eliminates boundary

bias in a natural way [25]. At each point where we want to estimate the function we �t

a polynomial to the function estimates using a weighted least-squares �tting. A kernel

function is used to give large weight to nearby data and little or no weight to more distant

data. The value of the �tted polynomial at the estimation point is used as our estimate

of the function at that point. Note that we �t a di�erent polynomial at every point where

we estimate the function.

In applying this method we are free to choose the degree of polynomial to �t. Any

polynomial order will eliminate the absolute boundary bias and it turns out that odd-

order polynomials do not su�er from asymptotic boundary bias. If the function is rela-

tively smooth locally then higher order �ts tend to do better. On the other hand if the
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Figure 4.5: Illumination contours on a polygon with a hole. Reconstructed from �
23,000 hit points using kernel density estimation (top left), local constant (top right),

and local linear density estimation (bottom left), along with a path traced reference

image (bottom right). The constant and linear methods are examples of local polyno-

mial methods introduced in this paper.
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density function changes abruptly over distances comparable to a bandwidth, then lower

order �ts tend to perform better. This is because higher order �ts tend to require larger

bandwidths to achieve an equivalent variance, while small bandwidths are the best way

to capture abrupt function changes. For us, relatively sharp features such as shadow

boundaries are important. Therefore we use either constant or linear �ts which are zero

and �rst order polynomials respectively. Linear �ts have the advantage of eliminating the

asymptotic boundary bias, but constant �ts are simpler and may be preferable in some

cases. We will �rst concentrate on the local linear �ts.

From basic calculus, any smooth function appears linear or straight if you look at

a small enough piece of the function. Thus, if we can use �ts that are local enough,

we should be able to �t any smooth function accurately. In practice this is not always

achieved and the estimates will be biased to the extent that the function does not look

like a straight line, or linear, over the region of a local linear �t. The bias will be greatest

in regions of high curvature and at discontinuities in the function. In boundary regions

we simply have less nearby data for our linear least-squares �ts which results in more

noise but does not introduce any additional bias.

In order to apply this technique to our problem we need to transform this regression

method into a density estimation method. The standard way to accomplish this is by

�rst performing a histogram on the data (e.g., [16, p. 50]). Each histogram value is

then an estimate of the density function at the bin center, and we can apply a regression

method to the histogrammed data. This transformation of density estimation problem

into a regression problem is illustrated in Figure 4.6. This still leave us with the problem

of how to form the histogram bins and how many to use. Using too many bins results in

excessive computational costs while using too few can introduce additional bias due to

loss of spatial information. This error is particularly a problem because it is di�cult to

analyze.

Instead we have devised a way to eliminate the histogramming step by taking the limit

as the number of histogram bins goes to in�nity. We call this method local polynomial
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Figure 4.6: Density estimation performed using locally-weighted linear regression with

a �nite number of bins. Samples from a density function (top left) are histogrammed

(top right),and then local linear regression is applied (bottom right) to produce the

estimated density function (bottom left).

density estimation. The derivation of the local linear case is presented in Section 4.3.

One surprising result is that local linear density estimation is identical to kernel density

estimation in the interior, and thus we can still use the intuition we have gained about

kernel density estimation. However in boundary regions this new method automatically

adapts to eliminate boundary bias.
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4.3 Local Linear Density Estimation

The local linear density estimation method is derived from locally-weighted linear least-

squares regression. In a regression problem we are given a set of points fxig and corre-

sponding, possibly noisy, estimates fYig of a function at these points. Our goal is to use

these estimates to predict the function at any point. This is similiar to density estimation

except that in density estimation we only have the points fXig, not the estimates, and
we have to try to reconstruct the function from the density of these points. In regres-

sion there need not be any relation between the function and the density of the sample

points. We can transform a density estimation problem into a regression problem by

dividing the domain into a large number of small bins and performing a histogram on the

data. We can then use the bin centers as our points fXig and the histogram values give

us our fYig estimates of the density function. The histogram value Yi is just the number

of data points in bin i divided by its area Ai and divided by the total number of data

points n. In itself this is not a very good approximation for the function due to its high

variability and lack of smoothness, but we can use this as input for a regression method

such as locally-weighted linear least-squares regression, as illustrated for one dimension

in Figure 4.6, to produce a better estimate.

We will be working in two dimensions, and will denote 2D points in boldface and

their two spatial coordinates by the subscripts u and v. Let xi be the center of the ith

histogram bin, with area Ai and histogram value Yi. Let m be the number of bins, and

Kh(y) be the kernel function scaled for our choice of bandwidth. Then we can write the

local least squares �t at point x as a matrix equation using the following matrices. Let

B be the matrix whose columns are the basis functions for a polynomial �t, given in our

case by:

B =

2
66664
1 [x1 � x]u [x1 � x]v
...

...
...

1 [xm � x]u [xm � x]v

3
77775 (4.8)
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Let W be a diagonal matrix of weights:

W =

2
66664
Kh(x1 � x)A1 0 0

0
. . . 0

0 0 Kh(xm � x)Am

3
77775 (4.9)

and � be the vector of coe�cients for the linear polynomial:

� =

2
66664
�0

�u

�v

3
77775 (4.10)

where the �tted polynomial is �0 + �u[y � x]u + �v[y � x]v. Note that our function

estimate at this point, x, will just be the value of �0. Finally, let Y be the vector of

computed histogram values:

Y =

2
66664
Y1
...

Ym

3
77775 (4.11)

If the histogram values happened to lie exactly on a plane, we could solve for � using

the equation B� = Y , but in general this equation will have no solution. We could

instead �nd the closest solution in the least squares sense by using the normal equation

BTB� = BTY , however this would be a global least squares �t. We turn this into a local

least squares �t by using a weighting matrix to give more inuence to nearby values.

The locally-weighted least squares �t, which can also be thought of as a minimizer of the

residual quantity kW 1=2B� �W 1=2Y k, is given by:

BTWB� = BTWY (4.12)

We can multiply these matrices to �nd:

BTWB =

2
66664
Q0;0 Q1;0 Q0;1

Q1;0 Q2;0 Q1;1

Q0;1 Q1;1 Q0;2

3
77775
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Qi;j =
mX
k

Kh(xk � x)Ai([xk � x]u)
i([xk � x]v)

j (4.13)

and:

BTWY =

2
66664

Pm
i Kh(xi � x)AiYiPm

i Kh(xi � x)AiYi[xi � x]uPm
i Kh(xi � x)AiYi[xi � x]v

3
77775 (4.14)

All of these values could be calculated and the matrix equation solved by standard

techniques, as is sometimes done in the statistics literature [16]. The di�culty with this

is in choosing the number of histogram bins m to use. If we use too few bins, we will have

thrown away too much spatial information, adding a complicated bias to our estimate.

If we use too many bins, the computation expense becomes excessive.

Fortunately, there is a way to avoid this di�culty; we take the limit as the number of

bins goes to in�nity. In the process, our sums turn into integrals and our histogram bins

become delta functions if they lie exactly on a hit point or are equal to zero otherwise.

When we take the limit as our histogram bins shrink to in�nitesmal size, our matrices

become:

BTWB =

2
66664
M0;0 M1;0 M0;1

M1;0 M2;0 M1;1

M0;1 M1;1 M0;2

3
77775

Mi;j =
Z
D
Kh(y � x)([y� x]u)

i([y � x]v)
jdy (4.15)

and:

BTWY =

2
66664

1
n

Pn
j Kh(Xj � x)

1
n

Pn
j Kh(Xj � x)[Xj � x]u

1
n

Pn
j Kh(Xj � x)[Xj � x]v

3
77775 (4.16)

where n is the number of hit points, Xj are the original data points, and D is the

intersection of the support of the kernel and the domain, which are a circle and a polygon

respectively in our case.
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One interesting and important case is when we are in the interior, or in other words,

when the support of the kernel lies entirely within the domain. Since we use symmetric

kernels, we can easily show that the o�-diagonal elements of the matrix (4.15) are zero in

this case. Recalling that kernels are normalized such that
R
Kh(y)dy = 1, our estimate

reduces to the simple form:

~f(x) = �0 =
1

n

nX
j

Kh(Xj � x) (4.17)

This is exactly the same as Equation 4.2 for standard kernel density estimation. This is

an useful and perhaps surprising result.

When we are in a boundary region then the matrix BTWB will generally not be

diagonal and we will need to obtain a solution using Equations 4.12, 4.15, and 4.16.

By taking the limit, we have transformed a regression method into a density estimation

method which turns out to be identical to the standard kernel method in non-boundary

regions, but automatically adapts to eliminate boundary bias in boundary regions.

4.3.1 Computing Kernel Moments

There is one major di�culty with the local linear density estimation method derived

above. Solving the integrals in Equation 4.15, which we will call the kernel moments, is

a non-trivial problem in boundary regions. We can take advantage of the fact that our

surfaces are polygons to �nd analytic formulas for these integrals. We accomplish this

by breaking the computation up into three classes: kernel moments when the support

of the kernel lies completely within the polygon, modi�cations to those moments when

an edge of the polygon crosses the support of the kernel, and modi�cations to the edge

e�ects when two edges meet at a vertex within the support of the kernel (see Figure 4.7).

It can be shown that these three pieces are complete in that when summed they su�ce

to calculate the kernel moments on any arbitrary polygon5.

5Interestingly this construction has some similiarities to the polygon anti-aliasing �l-
ters used in [17].
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Figure 4.7: Dark shaded areas are the part of a kernel's support a�ected by an edge

(left) and a vertex (right).

The entire kernel, edge, and vertex formulas could be solved by a symbolic math

package, such as Mathematica [60]. However the results turn out to be too complicated

to be useful, so we will simplify the integrals before solving them. The �rst simpli�cation

is to notice how Equation 4.15 changes under rotations about the evaluation point, x.

We de�ne three quantities M0, M1, and M2 by:

BTWB =

2
66664
M0;0 M1;0 M0;1

M1;0 M2;0 M1;1

M0;1 M1;1 M0;2

3
77775 =

2
64 M0 M1

M1
T M2

3
75 (4.18)

We could work out the rotation equations directly from the integrals, but its easier to

notice that M0, M1, and M2 are zero, �rst, and second order tensors [14] respectively.

Given a coordinate frame and an angle �, we can express a point, y, in a coordinate

frame rotated by � as y0 = Ry where:

R =

2
64 cos � � sin �

sin � cos �

3
75 (4.19)

We can express the tensor moments in the rotated coordinate frame by the following

formulas:

M0 =M0
0

M1 =M0
1R

M2 = R�1M0
2R (4.20)
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Figure 4.8: To simplify the computation vertex kernels are split into four regions: two

right triangles (T1 and T2) and two half-edges (H1 and H2).

We can compute the edge and vertex moments in a canonical orientation and then

rotate the result into the proper orientation using these equations. The second simpli�-

cation we will use is to split the vertex moments into four pieces as shown in Figure 4.8.

With this decomposition, we need only compute the moments for four simple shapes: the

whole kernel, a vertical edge, a vertical half-edge, and an axis-aligned right triangle. The

last three are shown in canonical position with their relevant parameters in Figure 4.9.

Note that a, b, c, and d are all signed quantities. As shown they are all positive, but

some care is required to get the signs correct in other cases. Let us de�ne the following

integrals for these pieces of the kernel moments:

MW
i;j =

Z h

�h

Z p
h2�u2

�
p
h2�u2

Kh(u; v)u
ivj dv du (4.21)

ME
i;j =

Z h

d

Z p
h2�u2

�
p
h2�u2

Kh(u; v)u
ivj dv du (4.22)

MH
i;j =

Z h

c

Z b

q
h2�u2

b2

0
Kh(u; v)u

ivj dv du (4.23)
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Figure 4.9: The three standard shapes for computing kernel moments: edges (E), right

triangles (T), and half-edges (H).

MT
i;j =

Z c

a

Z bu�a
c�a

0
Kh(u; v)u

ivj dv du (4.24)

If these are known, then we can handle any arbitrary polygon by rotating and summing

regions of these shapes. These integrals can be solved using a symbolic math package such

as Mathematica [60] or Maple. The kernel moments for the uniform kernel of Equation 4.3

are listed in Tables 4.1 - 4.4. The other kernel we commonly use is the Epanechnikov

kernel whose moments are listed in Tables 4.5 - 4.8. Note these formulas are for kernels

that have been rescaled by the bandwidth as in Equation 4.1.

Assembling these pieces into a complete kernel moment calculator is an exacting

task, and a careful case analysis is required to get the various signs correct. We used a

simple Monte Carlo integrator to check against while debugging our implementation and

strongly recommend this practice. Also in some cases it is necessary to add whole kernel

moments in order to get the correct result. An example is shown in Figure 4.10. These

cases are easily detected since when �nished, M0;0 should always be non-negative. While

computing analytic kernel moments may look di�cult, once implemented we have found

runtime costs to be negligible in practice. Other parts of the density estimation process

dominate the computation time.
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Table 4.1: Whole kernel moments for uniform kernel

MW
0;0 = 1

MW
1;0 = 0

MW
0;1 = 0

MW
2;0 = h2

4

MW
1;1 = 0

MW
0;2 = h2

4

Table 4.2: Edge kernel moments for uniform kernel

ME
0;0 = �de+h2 arccos(d=h)

h2�

ME
1;0 = 2e3

3h2�

ME
0;1 = 0

ME
2;0 = 2de3�deh2+h4 arccos(d=h)

4h2�

ME
1;1 = 0

ME
0;2 = �2de3�3deh2+3h4 arccos(d=h)

12h2�

e =
p
h2 � d2
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Table 4.3: Half-edge kernel moments for uniform kernel

MH
0;0 =

�bc+h2 b

jbj
arccos(c=h)

2h2�

MH
1;0 = b3

3h2�

MH
0;1 = 2h3�b2c�2ch2

6h2�

MH
2;0 =

2b3c�bch2+h4 b

jbj
arccos(c=h)

8h2�

MH
1;1 = b4

8h2�

MH
0;2 =

�2b3c�3bch2+3h4 b

jbj
arccos(d=h)

24h2�

Table 4.4: Triangle kernel moments for uniform kernel

MT
0;0 = (c�a)b

2h2�

MT
1;0 = b(c�a)(2c+a)

6h2�

MT
0;1 = b2(c�a)

6h2�

MT
2;0 = b(c�a)(�3b2+a2+2ac+3h2

12h2�

MT
1;1 = b2(c�a)(3c+a)

24h2�

MT
0;2 = b3(c�a)

12h2�

Table 4.5: Whole kernel moments for Epanechnikov kernel

MW
0;0 = 1

MW
1;0 = 0

MW
0;1 = 0

MW
2;0 = h2

6

MW
1;1 = 0

MW
0;2 = h2

6
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Table 4.6: Edge kernel moments for Epanechnikov kernel

ME
0;0 = �2de3�3deh2+3h4 arccos(d=h)

3h4�

ME
1;0 = 8e5

15h4�

ME
0;1 = 0

ME
2;0 = 8de5�2de3h2�3deh4+3h6 arccos(d=h)

18h4�

ME
1;1 = 0

ME
0;2 = �8de5�10de3h2�15deh4+15h6 arccos(d=h)

90h4�

e =
p
h2 � d2

Table 4.7: Half-edge kernel moments for Epanechnikov kernel

MH
0;0 =

�2b3c�3bch2+3h4 b

jbj
arccos(c=h)

6h4�

MH
1;0 = 4b5

15h4�

MH
0;1 = �3b4c�4b2ch2�8ch4+8h5

30h4�

MH
2;0 =

8b5c�2b3ch2�3bch4+3h6 b

jbj
arccos(c=h)

36h4�

MH
1;1 = b6

12h4�

MH
0;2 =

�8b5c�10b3ch2�15bch4+15h6 b

jbj
arccos(c=h)

180h4�
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Table 4.8: Triangle kernel moments for Epanechnikov kernel

MT
0;0 = b(c�a)(�a2�2ac+2b2+3h2)

6h4�

MT
1;0 = b(c�a)(�3a3�6a2c+8ab2+8cb2+ah2+8ch2)

30h4�

MT
0;1 = b2(c�a)(�a2�3ac+3b2+4h2)

30h4�

MT
2;0 = b(c�a)(�6a4�12a3c+17a2b2+20ab2c�20b4�3a2h2+6ach2+5b2h2)

90h4�

MT
1;1 = b2(c�a)(�a3�3a2c+5ab2+5b2c+ah2+5ch2)

60h4�

MT
0;2 = b3(c�a)(�a2�4ac+4b2+5h2)

90h4�
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Figure 4.10: The shaded region on the left is a region that is outside the domain, or

polygon, but inside the support of the kernel. When we naively include the e�ects of

these edges we get the �gure on the right, where the singly shaded regions have been

subtracted once and the double shaded region have been subtracted twice. We can get

back to the correct con�guration on the left by simply adding back the entire area of

support for the kernel once.
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4.4 Local Polynomial Density Estimation

One can alternatively locally �t di�erent functions such as constant or quadratic polyno-

mials and the derivation remains essentially the same, although higher order �ts would

require many more kernel moments and are considerably more di�cult to implement.

One can also �t non-polynomial functions if other types of functions were desirable for

some reason.

The only other function �tting that we will consider here is the local constant method

which locally �ts a constant function at each point. Its derivation is similar and simpler

than the linear case. Before we give the resulting density estimation equation, let us �rst

revisit the distinction between regression and density estimation problems.

4.4.1 Weighted Points in Density Estimation

In Section 4.2.1, we presented regression as the problem when data points have values

associated with them and density estimation as the problem when only the density of the

points is relevant. However, there is no reason that we cannot perform density estimation

on points which have weights associated with them. The real distinction between density

estimation and regression is whether the density of the sample points is an intrinsic part

of the information we are trying to recover, or just a nuisance function that ideally would

not a�ect our results.

Consider estimating the local population density from a random phone survey. It

would be essential to ask how many people live in each household reached. A household

of �ve could then be considered to be �ve data points at the same geographic location

or as a single data point with �ve times the weight of single person household. Care is

required to make sure the overall volume of the function stays the same, but in principle

the results should be identical either way.

It is possible to preprocess the data to force each data point to have the same weight,

but this can result in a loss of information. It is often preferable to allow each data point
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to have an associated weight wi. The summarized density estimation equations in the

next section will include these weighting factors.

4.4.2 Naive, Constant, and Linear Density Estimation Revis-

ited

The three density estimation methods that we have discussed so far are the standard, or

naive, kernel density estimation and the local constant and linear methods. It will be

useful to restate their equations here for the data points with weights.

The naive method is given by:

~f(x) =
1

n

nX
i=1

wiKh(x�Xi) (4.25)

The local constant method is given by:

~f(x) =
1

n

nX
i=1

wi
Kh(x�Xi)

M0;0

(4.26)

where M0;0 is a kernel moment as de�ned in Equation 4.15. It is simply the volume of

the kernel function and is equal to one in the interior.

The local linear method is given by:

~f(x) =
1

n

nX
i=1

wi

0
BBBB@
�
êT1 �

�
BTWB

��1� �
2
66664

1

[Xi � x]u

[Xi � x]v

3
77775

1
CCCCAKh(x�Xi) (4.27)

where ê1 = [1; 0; 0]T and we take its dot product with the inverse of the kernel moment

matrix BTWB, which was de�ned in Equation 4.15. Thus the quantity in curly braces

is a row vector that does not depend on i.

The most expensive part for all these density estimation is computing the summation

over the data points. The local constant method has very little incremental cost over

the naive method since their summations are the same, but the local linear method is
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somewhat more expensive. In the interior all three methods produce identical results, so

if we can detect when we are in the interior we can always use the cheaper naive method.

This turns out to be trivial. As part of computing the kernel moments we check to see

if any edges cross the support of the kernel. If none do, then we are in the interior and

use the naive method. Thus we need only pay the extra cost of the local linear method

in boundary regions where it is of bene�t.

In general we recommend using the local linear method for its superior boundary

bias behavior, but there are valid reasons for sometimes using the local constant method.

The local linear method is biased to the extent the function does not look locally like a

constant gradient (e.g., curvature or discontinuities cause bias). In the interior, where

all three methods produce identical results, all three methods share this property. In

boundary regions the local constant method is unbiased as long as the function looks

locally constant (i.e. gradients cause bias in boundary regions, but not in the interior).

The naive method, on the other hand, is biased in boundary regions for all functions. This

makes the naive method unacceptable for any application where the boundary region is

important.

Compared to the naive method, the asymptotic boundary bias of the local constant

method is much less objectionable. Its relative simplicity compared to the local linear

method makes it preferable in some cases. Whenever boundary bias is likely to be

important or noticeable, then the local linear method is the method of choice. One

common example is when a surface that should appear continuous was been split in the

modeling process. Without the linear method, di�ering boundary biases on either side

of the split can cause a jump discontinuity in the lighting across the split that is quite

noticeable and objectionable6.

Higher order �ts such as local quadratic would tend to perform better in smooth

6Note there will also be a discontinuity in the solution noise across the boundary. But
since our bandwidths are chosen, in part, to reduce the noise to an imperceptible level,
the noise induced part of the discontinuity will hopefully not be visible.
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regions, but worse around discontinuities and other sharp illumination features such as

shadow boundaries. Higher order �ts generally require larger bandwidths to achieve

the same variance level, but near discontinuities, using smaller bandwidths is the only

truly e�ective way to reduce the bias. They also can cause perceptually objecctionable

overshoot, or \ringing", artifacts near sharp features.

4.4.3 Equivalent Kernels

Most kernel-based density estimation methods, including the local polynomial methods,

can be written in a form similiar to the naive method (Equation 4.25) by folding the bias

correction terms into the kernel function. Such modi�ed kernels are known as equivalent

kernels and their shape is no longer independent of the evaluation point. We write such

kernels as K0
h;x to emphasize their dependence on the evaluation point x. It is straight-

forward to rewrite the naive, local constant, and local linear methods (Equations 4.25,

4.26, and 4.27) in the form:

~f(x) =
1

n

nX
i=1

wiK
0
h;x(x�Xi) (4.28)

For most users, equivalent kernels are not a particularly useful way to think about

local polynomial methods, but they are discussed and used in the statistics literature

(e.g., [25]) because they provide a way to compare di�erent boundary bias schemes. Using

equivalent kernels, one can consider the local polynomial density estimation methods as

being simply another variant of boundary kernels. The real advantage of local polynomial

methods is not that their results could not be duplicated by older, more ad hoc methods,

but rather that they provide a clean conceptual framework for dealing with boundary

regions and boundary bias.

In the next two chapters we will be discussing various methods to try to extract

as much information from the particle data as possible. For simplicity, the equations

guiding our decisions will be written in terms of the naive method. However except where
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noted, all these equations can be extended to handle the local polynomial boundary bias

correction methods by substituting the appropiate equivalent kernel in place of the kernel

of the naive method.



Chapter 5

Bandwidth Selection

In this chapter we return to the important issue of choosing bandwidths for kernel-based

density estimation methods. This was briey described in Section 4.1.2. Recall that the

bandwidth is the name given to the parameter h that controls the width of the kernels via

Equation 4.1, and determines the size of the local regions that we use. The bandwidth

selection described here can be used with any of the boundary bias correction techniques

from the previous chapter.

The most straightforward way to get better density estimation results is to use more

particles to generate more data, but unfortunately the particle tracing is already the

most expensive part of our computations. For a �xed amount of data, the bandwidth

is the single most important parameter. It determines a tradeo� between two types

of error: bias and noise, as illustrated in Figure 5.1. Our goal in this chapter is to

dynamically optimize this tradeo� using spatially adaptive bandwidths by developing a

good automatic bandwidth selector.

83
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5.1 Bandwidth Selection Strategies

Many di�erent bandwidth selection strategies and rationales have been proposed. The

most popular bandwidth selection techniques among graphics researchers (e.g., [31, 10,

51]) have been variations of the k-th nearest neighbor method. The bandwidth is chosen

to be just large enough that the kernel contains k data points, where k is generally a

user speci�ed parameter. If the data points all have the same weight wi in the sense of

Section 4.4.2, then this results in a constant relative noise level1 (e.g., 2%).

This is the approach we used in our initial work [47, 56]. The bandwidth was constant

over each individual surface and chosen so that on average a user-speci�ed number of

data points fall within each kernel. Setting this parameter forced the user into the

unsatisfactory dilemma illustrated in Figure 5.1. Setting it large enough to eliminate all

noise caused objectionable blurring of important features. Smaller settings resulted in

distracting visible noise artifacts that most users also found equally objectionable.

From these experiences, it was clear to us that using spatially adaptive bandwidths

near features could produce much better results. Because we typically evaluate the den-

sity at millions of points, this requires an automatic inexpensive bandwidth selector,

although some additional cost is inevitable and justi�ed by superior results. Ideally the

selector should include both bias and noise considerations and not require user interven-

tion or tuning.

5.1.1 Mean Squared Error Metric

The standard approach in the density estimation literature[32, 57] is to pick bandwidths to

try to minimize the expected value of the squared deviation between the density estimate

and the true density. At a single point this error metric is called the mean squared error

1This is a desirable property as we will discuss in relation to Weber's law, but we want
a technique that can achieve this property even when particles are unequally weighted as
ours are.
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Figure 5.1: Two solutions using a simple �xed bandwidth kernel density estimation.

Too small a bandwidth causes excessive noise (left) while too large a bandwidth causes

excessive bias or blurring(right). A better idea is to use spatially adaptive bandwidths

to achieve both low noise and good feature resolution.

(MSE). When summed over a region it is referred to as the mean integrated squared error

(MISE).

Squared error metrics, such as the MSE, are appealing because they are easier to

analyze than most other error metrics. In many problems, analytic formulas can be

derived for �nding their minimizers. Unfortunately, this is not true for nonparametric

density estimation where the MSE can only be evaluated when the density function is

known or in the asymptotic limit of in�nite data. In practice the mean squared error and

its optimal bandwidth can only be estimated heuristically. The mean squared error of

the estimate ~f is equal to the squared bias plus the variance:

MSE ~f(x) = E
�
~f(x)� f(x)

�2
=
�
E ~f(x)� f(x)

�2
+Var ~f(x) (5.1)

We could further expand this using Equations 4.5 and 4.6, but it will always remain

in terms of the unknown density function f . The variance component is relatively easy to

estimate, but the bias is not. This is unfortunate as, unlike the variance, the bias could
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easily be removed if it was accurately known.

As shown in Equation 4.5, in kernel-based density estimation methods, the expected

value of the estimator is equal to a blurred version of the true density function. Thus

the bias is equal to the di�erence between a blurred version and the true function. As

such it depends sensitively on the presence or absence of small scale or high frequency

features in the true function. These are precisely the components of the density function

about which we have the least information and which are most di�cult to estimate.

Methods which attempt to minimize the mean squared error have to use some heuris-

tic to estimate the MSE. For example Myszkowski [39] has published results based on

our �rst version of the density estimation framework [47] but modi�ed in several ways

including using variable kernel widths. Although his bandwidth selection theory is based

on minimizing the mean squared error, he decides that an accurate MSE estimator would

be too di�cult and expensive. Instead he uses a simple heuristic based on di�erences of

local estimates. His heuristic is frequently, but not always, correlated to the true mean

squared error. For example, his heuristic considers a local gradient to be bias inducing,

but only elements beyond a constant gradient, such as curvature, actually cause bias2.

It is clear that adaptive bandwidths are a good idea, but our bandwidth selector need

not be based on mean square error. The MSE is hard to evaluate and may not be the

same as the application speci�c error that we really want to minimize. For example

zooming into Myszkowski's results reveals that they still contain potentially visible noise

artifacts. For these reasons, we feel well justi�ed in looking at other rationales for choosing

bandwidths.

2This is true in the interior for all symmetric kernel-based methods and true even in
boundary regions for the local linear method as we discussed in the previous chapter.
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5.1.2 Perceptual Error

We expect that, in most cases, our results will be displayed to a human observer in a

realistic manner (i.e. in a way intended to mimic real world appearances). In this case,

the relevant error is how closely does the observer's perception of our results resemble

what their perception would be of the correct results. Unfortunately, perceptual errors

are hard to model, quantify, or measure. Current models of human visual perception

are still evolving [15], but some graphics researchers (e.g., [18, 9]) have tried to apply

these models. For us, the complexity of these models presents one di�culty, but the real

obstacle is that we do not and can not know some of the information required by the

more complete models. Instead we will use some relatively simplistic standard perceptual

procedures such as Weber's law and CIE L�a�b� space.

The density estimation framework produces view-independent results, but what the

user actually sees are images on an output device, typically a computer monitor. The

mapping from our results to images, which consists of choice of view and tone mapping,

will be under user control and hence is necessarily unknown to us. The view controls

which surfaces will be visible and how they will be spatially warped in the mapping.

This means that there are important perceptual factors such as the resultant spatial

frequencies on the display that we cannot know at computation time. To circumvent this

problem, we use conservative perceptual metrics that can assure us that a pattern will

remain imperceptible regardless of spatial warping.

Most display devices are only capable of reproducing a small fraction of the range

of tristimulus values present in our results. The problem of mapping a larger set of

tristimulus values to the limited gamut of a display device is known as tone mapping.

The tone mapping will also be under user control, but we need to make some assumptions

about it to be able to proceed. As a working basis, we assume that the tone mapping is

essentially compressive in nature, or more speci�cally that chromaticities are preserved

and that the relative luminance di�erences are not exaggerated.
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5.2 Basic Approach

Our goal in selecting bandwidths is to preserve the important features in illumination

reconstruction while suppressing spurious perceptual artifacts; the latter being primarily

caused by noise in our data. We begin our bandwidth selection process by using some

metrics for measuring the visibility of noise. Our estimations of a color stimuli functions

are split into separate estimations of luminous and chromatic parts, for which we use

perceptual noise metrics based on Weber's law and the CIE L�a�b� color standard re-

spectively. These noise metrics are somewhat simplistic and conservative, but are also

relatively easy to compute and use. They do not account for spatial frequency, but our

intention is to insure that color stimuli are imperceptibly di�erent regardless of the spa-

tial pattern in which they appear. We will use these metrics to choose initial bandwidths

to insure that the remaining noise will not be visible.

In some cases however, reducing the noise to such a low level may cause an excessive

amount of bias. This causes undesirable blurring of important features such as the edges

of shadows and caustics (e.g., on the right in Figure 5.1). In general the way to reduce

the bias is to reduce the bandwidth (see Figure 5.2), but this may also reintroduce visible

noise artifacts. Only in some cases will the reduction in bias be perceptually signi�cant

enough to justify the consequent increase in noise.

To address this concern, we introduce a bias detection technique based on a statistical

model of our solution process. It automatically searches for cases where a signi�cant

change in the bias can be reliably detected above the inherent background noise and a

reduction in bandwidth is perceptually justi�ed. One nice feature of this bias detection

technique is that it enhances the resolution of important illumination features without

regard to their underlying physical causes (i.e. it could be a shadow, caustic, or any other

illumination feature).
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Figure 5.2: Bias and noise as functions of the bandwidth. Two di�erent example bias

curves are shown. In most cases the the bias is a slowly varying function of the

bandwidth (short dashes). In this case we choose the bandwidth (h0) to eliminate

the visible noise. However near a sharp feature, the bias shows a marked increase

when the kernel crosses the feature boundary (long dashes). Then we want to choose

a bandwidth (h1) to avoid blurring this feature.

5.2.1 Luminance and Chromaticity

The most obvious artifacts in Figure 5.1 are the chromatic noise and the blurring of the

shadow which is primarily a brightness, or luminance, feature. By splitting the estimation

process into separate estimates of the luminous and chromatic components of a color, we

can apply di�erent amounts of blurring to each and optimize the bias vs. noise tradeo�

in each component individually. This split is similar to many common color encodings

for compression such as in NTSC television. Rapid variations are more common and

perceptually important in the luminance components than in the chromatic components.

Hence it is generally in the luminance channel Y where excessive bias or blurring is most

objectionable, and currently we do not use bias detection in our chromatic estimation.

Naively combining estimates at di�erent bandwidths may cause perceptual artifacts
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due to di�erent amounts of bias. These artifacts can be minimized by combining the

luminance computed at one bandwidth with the chromaticity computed at a di�erent

bandwidth. Because the chromaticity (Equation 2.10) is invariant under changes in

overall intensity level, and this prevents changes in bias due to di�ering bandwidths from

causing anomalous color shifts. If Y0 is our luminous estimate at one bandwidth and X1,

Y1, and Z1 are the tristimulus values estimated at a di�erent bandwidth, then converting

to chromaticity, combining them, and converting back to tristimulus values gives us:

X =
X1Y0

Y1
; Y = Y0; Z =

Z1Y0

Y1
(5.2)

We will actually compute the tristimulus exitance (see Equation 2.14), but the combina-

tion of its tristimulus channels is the same as given here.

5.2.2 Noise and Just-Noticeable-Di�erences

Humans have limited ability to distinguish two similar stimuli. The minimum deviation

from a base stimulus which is needed for the change to be noticeable is called a just-

noticeable-di�erence (JND) [61]. Our initial goal is to reduce the noise level to just

below a JND. There would be little advantage in reducing the noise any further.

There are many di�erent models for predicting visual JNDs [61]. Unfortunately, most

depend on factors that we are assuming to be unknown. We will use Weber's law, which

is one of the earliest and simplest method for estimating luminance JNDs [8]. It states

that a luminance JND is approximately a �xed fraction of the base luminance.

For chromaticity JNDs, we will derive a simple metric from the CIE L�a�b� color

space and color di�erence standards. In order to measure our chromaticity noise, we will

�rst linearly transform from XYZ space to a color opponent space based on perceptual

experiments [28, 43]. We then use a Taylor expansion to derive a local approximation to

the CIE L�a�b� transform and use a conservative approximation to the CIE 1994 color

di�erence formula to measure the visibility of our chromaticity noise.
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5.2.3 Bias Considerations

Controlling the visible noise is su�cient in many regions, but near important features

such as shadow boundaries and caustics, controlling the bias may be a more important

consideration. It is often desirable to reduce the bandwidth near such features to improve

their resolution even if some noise may be visible. There is also a bene�cial tendency of

strong features to mask nearby noise that would otherwise be visible [18].

Instead of directly estimating the bias, which is quite di�cult, we have devised a

simple statistical procedure to identify regions of high bias without needing to explicitly

estimate the bias. The procedure �rst computes multiple estimates at a point using

di�erent bandwidths. Any deviation between the estimates can be due partially to noise,

but also includes any change in the bias as a function of the bandwidth. Using a statistical

model of our solution process, we estimate the expected noise level and determine when a

deviation is su�ciently unlikely to have been caused by noise alone. When a change in the

bias is detected, we use the estimate at the smaller bandwidth, as it will generally contain

less bias. Ideally, we should have a perceptual criteria for determining how signi�cant

the detected bias is, but in practice we �nd that whenever the bias is large enough to be

detected, it is also large enough to justify reducing the bandwidth.

Together these techniques provide a perceptually motivated way to automatically and

adaptively select bandwidths to produce better results.

5.3 Perceptually-Motivated Bandwidth Selector

Recall that kernel density estimation works by blurring the input data points to produce

a smooth estimate of the density function. The blurring is useful in that it �lters out

much of the noise that is inherent in the data; however it also tends to blur out genuine

features in the input data. In order to understand and control this tradeo�, we need to

understand the equations that govern the kernel density estimation, our perceptual JND
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metrics, and our bias detection. For simplicity we will write the equations for the naive

kernel method, but the method is equally applicable to the local polynomial methods

listed in Section 4.4.2.

The particle tracing phase produces a set of n data points, each of which consists of a

location Xi, and a wavelength �i. It is designed so that the probability density function

p of the data points is related to the spectral irradiance E�, as follows:

p(x; �) =
E�(x; �)

V
(5.3)

where V is the total volume of the spectral irradiance, or in other words the total light

power striking all surfaces. It is easily approximated as the sum of all the powers associ-

ated with all the hit points. Our goal is to recover functions such as the illuminance and

tristimulus exitance which can be written in the form:

f(x) =
Z 1

0
E�(x; �) r(�) d� (5.4)

where r is the corresponding spectral response curve for the function of interest.

Our estimator of the function f is:

~f(x; h) =
nX
i=1

~fi(x; h)

n
=

nX
i=1

V

n
Kh(x�Xi) r(�i) (5.5)

where ~fi is the estimator using only the ith data point and our estimator is an average

using all the data points. Using the probability density of the data points (Equation 5.3),

we can �nd that the expected value of this estimator is:

E ~f(x; h) =
Z
S

Z 1

0
V Kh(x� y) r(�) p(y; �) d�dy

=
Z
S
Kh(x� y) f(y) dy (5.6)

where S is the current surface.

The noise in our estimator can be characterized by its variance, which we will denote

�2.

�2(x; h) = E ~f 2(x; h)�
�
E ~f(x; h)

�2
(5.7)



93

It is necessary to make a few approximations before estimating the variance. First we

will assume the data points are approximately independent and identically distributed

(commonly abbreviated as iid)3. The variance of a sum of iid components is equal to

the sum of the variances of the components.

�2(x; h) �
nX
i=1

8<
:E

 
~fi(x; h)

n

!2

�
 
E

~fi(x; h)

n

!2
9=
; (5.8)

We next neglect the second term in this equation. Its omission can only increase our

estimate of the variance, and we expect it to be negligible anyway. Evaluating the

expected value, we now have:

�2(x; h) � n
Z
S

Z 1

0

V 2

n2
K2
h(x� y) r2(�) p(y; �) d�dy (5.9)

We still cannot evaluate this equation analytically as the probability function p is assumed

to be unknown, but we can easily create an estimator ~�2 with the appropriate expected

value.

~�2(x; h) =
V 2

n2

nX
i=1

K2
h(x�Xi) r

2(�i) (5.10)

We will pick our initial bandwidths to achieve a particular target standard deviation

�, which is just the square root of the variance �2. The standard deviation tells us how

large the random deviations due to noise are likely to be. One of the Central Limit

Theorems states that the random error in an iid sum converges towards a gaussian, or

normal, distribution as the number of terms increases. We can use this approximation

to choose a target � such that the noise is unlikely to exceed a visibility threshold. For

example, under a normal distribution the chance of a random deviation being larger than

the standard deviation �, is about 1 in 3 whereas the chance of seeing a deviation greater

than 4� is less than 1 in 10,000.

3The particles are iid, but the data points caused by a single particle are correlated to
some extent. As more particles are used the signi�cance of this correlation decreases. For
large numbers of particles, it is not usually noticeable outside of arti�cial pathological
cases.
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Figure 5.3: Measured luminance just-noticeable-di�erences �L, as a function of the

base luminance L [61, p. 569]. Only values within the gamut of our output device

(shaded region) are of interest to us. The region below the 3� line shows the common

range of noise values we expect using using our empirical value of CY = 0:008.

5.3.1 Estimating Luminances

Let us begin by estimating the Y channel of the tristimulus exitance Mt;Y , which is

the same as the luminous exitance Mv. Recall that during the reconstruction phase

(but not the transport phase), we approximate all surfaces as being Lambertian. Using

Equations 2.5, 2.14, and 2.24, the luminous exitance at a Lambertian surface is equal to:

Mt;Y (x) = 683
Z 1

0
�(�) �y(�)E�(x; �) d� (5.11)

Since our hit points are distributed according to the spectral irradiance, we can estimate

the luminous exitance by setting r in Equation 5.5 equal to:

rY(�) = 683 �(�) �y(�) (5.12)

Our goal is to �nd bandwidths such that the noise in our luminance estimates is

su�ciently unlikely to exceed a just-noticeable-di�erence. According to Weber's law, a

JND is a �xed percentage of the base luminance, which would correspond to a horizontal
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line in Figure 5.3. In general this does not agree with the measured JNDs, but may serve

as a reasonable approximation within the limited gamut of a typical computer monitor.

We choose a bandwidth such that our Weber's law noise metric is equal to some visibility

threshold value CY.
~�(x; h)
~f(x; h)

= CY (5.13)

From our own experiences we have empirically determined CY = 0:008 as a reasonable

value at which the noise is only rarely visible. Figure 5.3 shows a plot of luminous JNDs

from the psychophysical literature [61]. These are measured by placing a large spot of

one luminance on a larger region of a background luminance and measuring how large the

di�erence in luminances must be for test subjects to be able to perceive them. Because

of the sharp boundary between the two regions, these tests represent a worst case spatial

pattern. Sharper boundaries are almost easier to perceive. If we choose 3� as the range

of typical common noise values, we can see in Figure 5.3 that our value is slightly higher

than would be expected from psychophysical data. We suspect this is because although

our noise can have a high apparent spatial frequency, it is smooth and thus less noticeable

than patterns used in these psychophysical experiments.

Since all these quantities contain some noise, we only require that Equation 5.13 hold

approximately (e.g., �5%)4, but �nding a suitable bandwidth is still a nontrivial task

that involves a numerical search. In the worst case, the search sometimes requires twenty

or more kernel evaluations at di�erent bandwidths.

We have been able to reduce this cost by using a hierarchical re�nement technique.

We store our view-independent results as a piece-wise linear, or Gouraud shaded, triangle

mesh on each surface. The density estimation process that we are discussing is used to

�nd the color at each vertex. We construct this mesh iteratively, �rst estimating with a

coarse mesh. We then repeatedly re�ne the mesh until the vertices are spaced less than

4If this tolerance is too small, the numerical search may never terminate. If it is too
large, random uctuations in the bandwidth can become visible due to changes in the
bias. In our experience however, this tolerance need not be chosen very precisely.



96

half a bandwidth apart. During mesh re�nements we interpolate the bandwidths from

previous calculations and use these as initial guesses in the bandwidth search. Because

the bandwidths are usually slowly varying, the initial guesses are often su�cient to satisfy

Equation 5.13. We �nd that the average number of bandwidths evaluated per vertex is

between 1.2 and 1.6. Since we must evaluate at least one bandwidth per vertex regardless,

this means that the additional cost for this bandwidth search is quite reasonable.

One caveat is that a simple numerical procedure may not work when using the local

linear boundary bias correction. In boundary regions, the local linear method increases

the amount of noise in our estimate of ~� such that Equation 5.13 may be satis�ed by

signi�cantly di�erent bandwidths. This can cause unwanted variability in the chosen

bandwidths and visible artifacts due to consequent changes in the bias. Rather than

abandon our simple interpolation/extrapolation bandwidth search procedure, we always

use the local constant method when �nding the bandwidth. In boundary regions, we

can switch to the local linear method after the \no visible noise" bandwidth has been

found. This is less than ideal as the local linear method has somewhat higher variance

in boundary regions, but seems to work in practice.

5.3.2 A Chromatic Metric

Next we want to take the same approach for our chromaticity estimates and �nd band-

widths such that our chromatic noise is slightly below a just-noticeable-di�erence. First

we need a chromatic noise metric, which we derive from the CIE L�a�b� color space and

color di�erence standards.

Because chromaticities involve a nonlinear transform from a tristimulus space, we

cannot estimate them directly, but must �rst estimate the tristimulus values. Since the

�nal luminance component will come from a separate estimate at a di�erent bandwidth,

we want to ensure that we measure only the chromatic part of our noise and exclude the

luminance part. The easiest way to do this is to �rst perform a linear transform from



97

XYZ space to a color-opponent space as discussed in Section 2.2.2. There is still some

uncertainty about the exact relation between these channels and standard XYZ space,

and we have chosen to use a convenient relation previously suggested by Hurvich [28].

Our luminance channel is Y, our red vs. green channel is (X�Y), and our yellow vs. blue

channel is (Y�Z).
Since there is a simple linear transform between XYZ and our color-opponent space,

estimating in either space will not alter the resulting tristimulus values. It does, however,

a�ect the way we measure the uncertainty or noise in our estimates. Since we model the

opponent channels as being roughly perceptually independent, it is su�cient to mea-

sure the variance in each channel separately. Using the standard X, Y, and Z channels

would require the extra computation and complexity of handling covariances between the

channels.

The CIE L�a�b� color space was designed to be nearly perceptually uniform and is

recommended by CIE for measuring perceptual color di�erences. The transform to CIE

L�a�b� space written in terms of our Y, (X�Y), and (Y�Z) channels is [61]:

L� = 116 g
�
Y

Yn

�
� 16 (5.14)

a� = 500

"
g

 
(X�Y) + Y

Xn

!
� g

�
Y

Yn

�#
(5.15)

b� = 200

"
g
�
Y

Yn

�
� g

 
Y � (Y�Z)

Zn

!#
(5.16)

g(x) = x1=3 if x > 0:008856

7:787x+ 16
116

if x � 0:008856 (5.17)

where Xn, Yn, and Zn are the tristimulus values of a nominally white stimulus under

current viewing conditions.

Our goal is to estimate how large a deviation in CIE L�a�b� space we can expect due

to noise in our estimates of the color opponent channels. We estimate these channels
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using the r functions from Equation 5.12 and below together with Equations 5.5 and

5.10.

r(X�Y)(�) = 683 �(�) f�x(�)� �y(�)g (5.18)

r(Y�Z)(�) = 683 �(�) f�y(�)� �z(�)g (5.19)

Next we transform the variances in (X�Y) and (Y�Z) into estimates of standard deviations
in CIE L�a�b� space. Since we are primarily interested in small deviations near the limit

of perceptibility, we will use a simple linear Taylor expansion of the CIE L�a�b� transform

about our estimated color. Noting that a� does not depend on (Y�Z) and b� does not

depend on (X�Y), we can approximate:

~��a =

����� @a�

@(X�Y)

����� ~�(X�Y) (5.20)

~��b =

����� @b�

@(Y�Z)

����� ~�(Y�Z) (5.21)

where the partial derivatives are evaluated at our estimated values for Y, (X�Y), and

(Y�Z). Finally we combine these together to get our perceptual chromaticity noise metric
~�c:

~�c =

q
~�2a� + ~�2b�

1 + 0:015
q
(a�)2 + (b�)2

(5.22)

The denominator in this equation is inspired by CIE's 1994 revision of the CIE L�a�b�

color di�erence formula [11, 15]. It was recognized that the original formulation tended

to overestimate the perceptual di�erences among saturated colors, and a corrective factor

was standardized. Their correction is somewhat complex to compute, so we have used a

simpler but more conservative correction factor.

Before we can use this metric we need to select Xn, Yn, and Zn. Since chromatic

di�erences are easier to see at high luminance levels, we conservatively pick Yn to be the

same as Y in our color-opponent space estimate. For lack of better information about

chromatic adaptation, we assume that an equal energy, or at, spectrum will appear as

white and set Xn = Yn = Zn = Y.
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With this chromatic noise metric, �nding an appropriate chromatic bandwidth pro-

ceeds in essentially the same way as the search in the preceding section. We choose a

threshold Cc and search for a bandwidth which approximately sati�es:

~�c(x; h) = Cc (5.23)

Empirically, we have found Cc = 0:33 as the value where the chromaticity noise is rarely

visible. CIE L�a�b� space was designed so that just-noticeable-di�erences correspond to

di�erences whose magnitude is near one or unity. Given our value for Cc, this corresponds

to random deviations of three standard deviations or more, and our empirical value agrees

quite well with the CIE speci�cation.

5.3.3 Bias Detection

Our emphasis so far has been on measuring and eliminating perceptual noise. We also

need to be concerned with the bias or blurring of features. The goal of the bias detection

procedure is to identify points and bandwidths where the reduction in bias caused by a

reduction in the bandwidth is more important than the consequent increase in noise.

Unlike the noise, the bias is quite di�cult to estimate directly because it depends

sensitively on �ne details of the unknown density function. One thing we can do easily

is to make estimates using two di�erent bandwidths and look for reliable evidence of a

change in the bias between these estimates. We form a new estimator � as a di�erence

of two estimators:

�(x; h1; h2) = ~f(x; h1)� ~f(x; h2) (5.24)

The expected value of this estimator is:

E �(x; h1; h2) = E ~f(x; h1)� E ~f(x; h2) (5.25)

which is equal to the change in the bias between the two component estimates. Even if

there is no change in the bias between these two bandwidths, its actual value is unlikely

to be zero due to noise.
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The variance �2� of � is:

�2�(x; h1; h2) = E �2(x; h1; h2)� (E �(x; h1; h2))
2 (5.26)

As before, we expand as an iid sum and then omit the second term to get:

�2b (x; h1; h2) �
nX
i=1

(
E

~f 2i (x; h1)

n2
� 2E

~fi(x; h1)

n

~fi(x; h2)

n
+ E

~f 2i (x; h2)

n2

)
(5.27)

The �rst and last terms should look familiar; these are the same as the terms that we

estimated earlier using Equation 5.10. The middle term is new, and is due to the fact that

the two component estimates are partially correlated. As before, we create an estimator

~� , with this term as its expected value:

~� (x; h1; h2) =
V 2

n2

nX
i=1

Kh1(x�Xi)Kh2(x�Xi) r
2(�i) (5.28)

Our variance estimator for � is:

~�2�(x; h1; h2) = ~�2(x; h1) + ~� (x; h1; h2) + ~�2(x; h2) (5.29)

Once we have an estimate of the standard deviation ~�� for the estimator � we can

decide if its value can be plausibly explained as noise alone or should be taken as evidence

of bias. We choose a threshold C� such that it is very unlikely that a random error will

exceed C�~��. If the value of j�j does exceed this threshold, then we assume that there

must have been a signi�cant change in the bias.

It is important to choose C� large enough that we only rarely mistake noise for

bias, to avoid introducing distracting visual artifacts. Based on the normal distribution

approximation, we typically use values in the range of 4 to 6 for C�. An example of one

step of bias detection is shown in Figure 5.4. Notice that the procedure largely succeeds

in detecting the inadequately resolved shadows and, just as importantly, fails to detect

bias in the surrounding areas of low bias.

We have only implemented the bias detection technique for our luminance estimates,

but it could easily be applied to chromaticity estimates as well. We start with the
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Figure 5.4: One level of bias detection. We start with the results (left) after choosing

the bandwidths solely to eliminate visible noise. We then evaluate j�=~��j (right,
false color) using the initial bandwidths and bandwidths one step smaller. Blue, cyan,

green, yellow, and red correspond to values of 1, 2, 4, 8, and 16 respectively. Blue/cyan

indicate no detectable bias. Yellow/red indicate clearly detectable bias.

bandwidth determined using the Weber's law heuristic as our initial guess. Then we

successively evaluate � using our current guess and a set of decreasing bandwidths. Cur-

rently we divide the bandwidth by 4
p
2 at each step. At each bandwidth we evaluate the

estimators given by Equations 5.5, 5.10, and 5.28. If we detect bias (i.e. j�j � Cc~��) at

one of these smaller bandwidths, we substitute the estimate at that bandwidth as our new

best guess and continue the process. As the bandwidth becomes too small, the noise level

rises rapidly and the gaussian approximation for the error breaks down. Therefore, we

stop the process whenever the standard deviation of an estimate exceeds some threshold

(e.g., 7%).

So far we have estimated the bandwidth at each point independently, but it is some-

times desirable to enforce some smoothness of the bandwidths at nearby points. Because

the bias can vary with the bandwidth, rapid uctuations in the bandwidth can show up

as visual artifacts in the results, especially when a larger bandwidth step size is used in
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the bias detection. We use a simple smoothing procedure based on the assumption that

where bias is detected, there is likely to be bias at neighboring points, even if it was not

detected. We use a rule that the bandwidth at neighboring points can only increase by

75% of their spatial separation and reduce bandwidths when necessary to enforce this.

We �nd that the bias detection tends to evaluate an average of between 6 and 12

bandwidths per vertex, but most of these are at smaller bandwidths which are less ex-

pensive to compute. On average, using bias detection increases the density estimation

compute time by roughly a factor of two. We believe this is well justi�ed by the improved

quality of the results, such as shown in Figure 5.5, especially since density estimation of-

ten is only a small part of the total computation. In the density estimation framework

algorithm, it accounts for only 10% to 15% of the computation with the particle tracing

being by far the most expensive part.

Results and luminance bandwidths for two larger environments are shown in Fig-

ure 5.6. You can see how the bandwidths adapt automatically and are smaller in bright

regions and near features. The chromaticity bandwidths are not shown because they

are less interesting. Generally they are somewhat larger than the luminance bandwidths

and do not decrease near features because we are not currently applying bias detection

to them. All of the example �gures in this chapter were computed using local constant

density estimation (i.e. Equation 4.26).
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Figure 5.5: Results (top) before bias detection (left) and after bias detection (right).

The luminance bandwidths are shown in false color (bottom) with blue, cyan, green,

yellow, and red corresponding to bandwidths ranging from small to large. These results

were generated using the same data as used in Figures 5.1 and 5.4.
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Figure 5.6: Images (left) of two environments and the luminance bandwidths (right)

chosen by the bandwidth selector. Blue, cyan, green, yellow, and red correspond to

bandwidths ranging from small to large. Notice that bandwidths are larger in dark

unbiased regions and much smaller around feature boundaries.



Chapter 6

Further Issues and Optimizations

6.1 Importance Sampling

Importance sampling is a common technique used to increase the e�ciency of Monte

Carlo methods. The simplest way to improve solution quality is to use more samples

(e.g., doubling the number of particles in our simulation), but this is costly in terms of

computation time. Importance sampling techniques try reduce the number of samples

needed by altering the ways the samples are generated to increase the average amount of

useful information per sample. Since particle tracing is by far the most expensive part of

our computations, techniques that can reduce the need for additional particles are very

signi�cant.

In the density estimation framework, importance sampling can be accomplished by

modifying the particle emission and scattering probabilities (i.e. pe and ps from Sec-

tion 3.2). Equivalently, we can vary the amount of power carried by individual particles

since the particle probabilities and power mutually determine each other (Equations 3.1

and 3.2). In the previous chapters, we always constrained our particles to carry an equal

amount of power, but we are free to vary the power between particles or even within

the lifetime of a single particle. The challenge is choosing the power in ways that are

105
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bene�cial and will actually improve our results.

The e�ective solution resolution that we achieve depends on the local bandwidths

chosen in the density estimation. As discussed in Chapter 5, these bandwidths are chosen

largely to meet certain variance, or noise, criteria. The variance in the density estimation

for a particular bandwidth depends on the local density of particle hit points and the

amount of variation in the weighting given to these points. Two importance sampling

strategies are thus, to increase the homogeneity of the particle weights and to increase

the local density of particle hits in important regions. The �rst strategy varies the

particle power as a function of its non-spatial attributes (i.e. wavelength) and attempts

to increase the e�ective resolution everywhere. The second is spatially dependent and

trades increased resolution in some regions for decreased resolution in others.

6.1.1 Wavelength Importance Sampling

Our ability to perceive light is strongly dependent on its wavelength. Human vision is

generally considered to be con�ned to the region between 380 to 800 nanometers, and

our sensitivity varies considerably within this range. If we only need our results to match

reality to a human observer, there is little bene�t in wasting computation on wavelengths

to which we have little or no sensitivity. In our initial implementations, we simulated

only the range between 400 and 700nm which contains the vast majority of our visual

sensitivity. Within this range each particle carried a constant amount of energy regardless

of its wavelength.

Even within this limited range our sensitivity varies considerably. A better idea

is to make the power carried by a particle depend on its wavelength and our visual

sensitivity. We �rst choose an importance spectrum  (�) that speci�es the relative

importance of various wavelengths. During the particle tracing, we then ensure that

the power � associated with a particle is inversely proportional to its importance (i.e.

�(�) / 1
 (�)

). This will automatically result in more particles at important wavelengths
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and fewer elsewhere. If the importance spectrum is well chosen, this will increase the

overall e�ciency of our simulation.

Of course we still need to choose a good importance spectrum. We want to increase

the e�ective resolution by enabling the bandwidth selector to achieve its variance targets

using smaller bandwidths. To formalize this goal, let us rewrite the relevant equations

to handle a varying power associated with each particle hit. The basic density estimator

(Equation 5.5) becomes:

~f(x; h) =
nX
i=1

�iKh(x�Xi) r(�i) (6.1)

where �i is the power associated with the ith particle hit point. The expected value

of this estimator is �xed by our requirement that the particle tracing be unbiased. Its

expected value depends on the true function, the bandwidth, and the kernel, but not on

our choice of an importance spectrum.

What does change when varying the particle power is the variance which we want to

minimize. Allowing for varying power, our variance estimator (Equation 5.10) becomes:

~�2(x; h) =
nX
i=1

�2i K
2
h(x�Xi) r

2(�i) (6.2)

Note that this is simply the sum of the squares of the elements in the previous equation.

If the number of elements and their sum is �xed, then a sum of squares is minimized when

all the elements in the sum are equal1. This minimum would be achieved if we could use

the spectral response function r(�) as our importance spectrum  (�). Unfortunately this

is not generally possible.

We actually use many di�erent spectral response functions r(�) even within a single

solution, and our importance spectrum will have to be a compromise between these

various functions. In our application, these spectral response functions are products

of a local spectral reectance function and of a trisimulus channel response function

1This is the same reason why the uniform kernel minimizes the variance among all
kernels of �xed support and bandwidth.
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Figure 6.1: Empirical wavelength importance function. Having particles carry power

inversely proportional to this importance function increases the e�ciency of our com-

putations. This spectrum was chosen based on human visual sensitivity information,

measured typical spectral reectances and some simple numerical experiments. The

trimodal nature of this function is due to the three types of color receptors in human

photopic vision.

(e.g., Equation 5.12). Di�erent surface reectances and the three tristimulus channels

combine to produce many di�erent composite response functions. The luminous channel

is the most important part of the tristimulus values, but optimizing solely for it would

cause excessive color noise. Similarly optimizing the importance for a particular surface's

reectance could cause excessive noise increases at other surfaces.

To �nd an importance spectrum that works reasonably well for generic scenes, we per-

formed some simple numerical experiments using a set of measured spectral reectance

spectra2. We assumed the illumination had equal energy at all wavelengths (i.e. \at"

spectrum light) and used a noise measure based on the CIE L�a�b� color di�erence for-

mula. A simulated annealing process was used to �nd the importance spectrum shown in

2These spectra are publicly available at ftp://ftp.eos.ncsu.edu/pub/spectra.
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Table 6.1: E�ect of wavelength-related noise on reconstructed spatial resolution. This

table lists the number of luminance and chromiticity estimates for three di�erent cases.

In our system, these estimates are spaced relative to their respective bandwidths, and

thus their number directly reects the achieved spatial resolution. The sample scene

consisted of a Macbeth ColorChecker [38] chart uniformly illuminated with uniform

at spectrum light or monochromatic light for the last column. In each trial, about

four million particle hits were generated and local constant density estimation per-

formed using uniform kernels and the bandwidth selector of Chapter 5 except that

bias detection was not used. In the special case of monochromatic light, even a single

particle provides complete chromaticity information and the potential chromaticity

resolution is extremely high.

Vertices or Uniform Power Wavelength Importance Monochromatic

Estimates 400-700nm Sampling Light

# luminance 3983 5752 8123

relative e�ciency 1 1.4 2

# chromaticity 990 1323 very large

relative e�ciency 1 1.3 very large

Figure 6.1. While this importance spectrum is unlikely to be optimal for any particular

scene, it should work well for a wide variety of scenes.

In order to estimate the e�ectiveness of our wavelength importance sampling we cre-

ated a simple test scene consisting of a simulated Macbeth ColorChecker [38] chart. This

chart is intended for color checking and calibration purposes in photography and consists

of 24 squares of varying color with known spectral reectances. Using uniform illumi-

nation, we simulated the chart both with and without wavelength importance sampling.

We also simulated it illuminated with monochromatic light to represent the ideal case

in which each particle carries complete spectral information and there is no wavelength-

dependent noise. The results are summarized in Table 6.1.
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Our simple experiment indicates that, compared to uniform particle power, a scheme

that eliminated all spectral noise would approximately double the e�ciency of our lumi-

nance reconstruction. Or in other words, we could achieve the same luminance resolution

using only half as many particles. Using wavelength importance sampling gets us halfway

to this ideal with approximately a
p
2 increase in e�ciency. The potential gain in chro-

maticity resolution is much greater but perhaps less valuable than it seems. In practice,

most chromaticity features are also luminance features and the luminance part is usu-

ally more perceptually important. Improving the luminance resolution is generally more

important than improving the chromaticity resolution.

Several researchers have suggested that each particle could carry a complete spec-

trum instead of a single wavelength to better reduce the wavelength-related noise. Our

simple experiment indicates that the potential gains in per-particle e�ciency of such an

approach over wavelength importance sampling seem to be fairly modest. Moreover, it

would also introduce several implementational di�culties. Disk space is frequently one

of our limiting factors and storing a complete spectrum with each particle would signif-

icantly increase the space needed per particle. For BSDFs whose spectral and angular

parts are not separable, choosing the scattering probabilities would become signi�cantly

more di�cult. In the worst cases, such as dispersion in glass, each particle will end up

carrying a single wavelength anyway. In our opinion, the wavelength importance sam-

pling approach gives of much of the potential wavelength-related e�ciency gains with

many fewer complications.

One of the advantages of wavelength importance sampling is that it can be imple-

mented with only minimal changes to the basic particle tracer of Section 3.2. To ensure

that each particle starts with a power inversely proportional to its importance  , we need

only modify the emission probability slightly (compare to Equation 3.3).

pe(x; !; �) / Lemit(x; !; �) (�) [! �n̂] (6.3)

E�ectively all we need to do is multiply the emission spectrum of each light by the



111

importance spectrum. The scattering probabilities are unchanged. Since we are already

storing a wavelength with each particle hit, there is no need to store a power with each

hit. A global table can be used to look up a hit's power based on its wavelength. The

density estimation has to include each hit's power in its weighting, but since the weighting

is already a function of wavelength (e.g., Equation 5.12), this is easily folded into the

existing calculations.

In summary, wavelength importance allows us to gain a modest but noticable increase

in solution e�ciency at virtually no cost. However our experiments indicate that there

is not much more bene�t to be obtained from wavelength-based techniques. For further

improvements in sampling, we need to look at spatially dependent techniques.

6.1.2 Spatially Varying Particle Power

When some regions are known to be more important or in greater need of resolution

enhancement, it can be bene�cial to use techniques that explicitly trade o� improved res-

olution in some places for decreased resolution elsewhere. For example, in our framework

as outlined so far, the density of particle hits is directly proportional to the illumination

level. Hence the spatial resolution will be higher in bright regions and coarser in dark

regions. Often it would be preferable to achieve a more uniform resolution everywhere.

We can achieve this by varying the average power associated with the hit points

between regions. One way to accomplish this is to alter the directional components of

the emission and scattering probabilities to preferentially send more particles toward

important regions. Unfortunately, these probabilities have to be chosen before we know

which surface the particle will actually strike next. At any point, we need some way of

predicting which directions are most likely to result in the particle striking an important

surface. In general, steering particles toward fairly broad targets is not di�cult, but

steering them with great precision toward many small targets is probably not feasible.

Another possibility is to take a split and prune approach. A higher power particle
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can be split into multiple lower power particles when it enters an important region. Each

child particle is then traced independently from that point on. In unimportant regions,

low power particles are turned into high power particles using a Russian roulette [4]

algorithm. A major di�culty with splitting is that it tends to increase the correlation

between particle hit points. All the particle hits derived from a single particle, even

after splitting, are potentially correlated. If the correlation among nearby hit points is

too large, it can invalidate the iid approximation that we used in our error analysis and

bandwidth selection.

Due to these di�culties, we have not implemented a spatially varying importance

sampling scheme, but we anticipate that they will be important tools in further enhancing

the e�ciency of the density estimation framework.

6.2 Use of Error Information

One of the advantages of the density estimation framework is that the errors in the

solution process can be characterized relatively easily. Such error information is useful

not only in determining the adequacy or inadequacy of a solution, but it can also be used

as feedback to improve the solution process itself.

As discussed in Sections 2.4.4 and 4.1.2, our error is best analyzed by separating it

into two components: systematic bias and random noise. While the particle tracing phase

itself is unbiased, the raw particle data contains too much noise to be visualized directly.

Thus we use the density estimation phase to reduce the noise at the cost of introducing

some bias. Unlike other biased global illumination methods though, our bias is purely

local in e�ect. This is the key in making our bias undertandable and controlled. In �nite

element methods by contrast, bias error introduced at one point is propagated globally

in complex ways. By Equation 4.5, our bias is simply the di�erence between the true

function and a smoothed, or blurred, version of the true function. The nature of this

bias is easily understood although its actual numerical value is hard to estimate because
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it depends sensitively on details of the true function. A useful rule of thumb is that,

in a particular solution, features larger than the local bandwidth are reliable while the

presence or absence of features smaller than the local bandwidth is not.

The noise only depends on the blurred function and is thus much easier to estimate

numerically (e.g., via Equation 5.10)3. Together the bandwidths and variance estimates

provide us with more complete and accurate error information than is available in most

other global illumination methods.

Such error information is potentially valuable for many purposes such as evaluating

a resultant solution or judging the need for more accurate (and hence more expensive to

compute) solutions. It can also be used to automatically choose the various parameters

within the solution process. This is especially attractive as it helps to minimize the

need for expertise or intervention on the part of the user. An excellent example of this

approach is the bandwidth selector of Chapter 5. The error information can be even be

used to trigger fallback methods outside of the framework if speci�ed error targets are

not being met.

6.2.1 The Small Polygon Problem

While we usually do not have pre-speci�ed bandwidth targets, we do have speci�c variance

targets based on the perceptual noise visibility thresholds in Chapter 5 and can easily

detect when these noise targets are not being met. Kernel density estimation controls the

variance by smoothing the data over some region. If total domain, which in our case is

generally a polygon, is too small, even smoothing over the entire domain may not reduce

the variance su�ciently. The result is visible noise on small polygons (Figure 6.2) with

3Similar empirical variance estimators can be used for any Monte Carlo method, but
are not always reliable. The empirical variance is itself a Monte Carlo estimator with
its own noise. This is a problem when a relatively unlikely event can have a dispro-
portionately large e�ect on the estimate. Fortunately in our framework, the maximum
contribution due to any single event (i.e. a particle hit point) is strictly limited and our
variance estimates are generally reliable.
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Figure 6.2: Small polygons in a scene may not contain enough particle hits for the

density estimation to su�ciently reduce the local variance (left). One way to alleviate

this problem is to share hit information between neighboring polygons that share

vertices (right). The problem could be further reduced by sharing hit point information

even more widely.

the color or chromatic aspect of noise typically being the most objectionable.

One way to reduce this problem is the increase the size of the density estimation

domains and allow smoothing over multiple polygons. Nearby polygons and their hit

points can be temporarily mapped into the local 2D space of the current polygon to

form a larger domain. Smoothing over this larger region further reduces the variance,

but may also increase the bias depending on similarity or disimilarity of the irradiance

of the irradiance on the other polygons. Polygons which are similar in both location and

orientation (e.g., polygons groups ones arising from polygonizing a curved surface4) tend

to have the most similar illumination. Di�ering material properties among the surfaces

is not a problem because we store incident particle information.

4In this case, an even better option would be working directly on the curved surface.
Though we have not yet attempted this, we believe the local polynomial density esti-
mation formulation of Chapter 4 provides a nice mathematical framework for such an
extension.
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If the polygons have signi�cantly di�erent orientations or surface normals, there are

likely to be signi�cant discontinuities in illumination between the polygons. Because of

this, we may want to locally disable some density estimation features when sharing data

between such polygons. For example, the local linear boundary bias correction method

is only better than the local constant method when the function is locally smooth; thus

we may prefer to use the local constant method in these cases. Also the bias detection

algorithm in our bandwidth selector will sometimes detect and attempt to preserve these

discontinuities. Since this would defeat the variance reduction we are trying to achieve,

we generally disable the bias detection on these polygons.

The variance can also be reduced by introducing other types of bias than the usual

smoothing bias of the density estimation. For instance, we could assume some default

spectrum to use when there is a lack of better information. When the chromatic noise

cannot be su�ciently reduced just by increasing the kernel size, light of the default

spectrum can be added until the chromatic variance target is met. The result is a

chromatic bias toward the hue of the default spectrum, but this may be less objectionable

than the iridescent e�ect of visible chromatic noise.

6.3 Some Notes on Meshing

Computing the kernel density estimates is expensive and requires access to the voluminous

particle data. It is not practical to evaluate them at display time. Instead we precompute

the density estimates at a discrete set of vertices, and then interpolate values as needed

during the interactive walkthroughs of our solutions. To keep our interpolation errors

small, we want to ensure that the distance between vertices is su�ciently small. On the

other hand, each vertex incurs computational, storage, and display costs, so we want to

use as few as possible in meeting this goal.

In creating the solution mesh, we need to decide two issues: where to place the vertices

and how to interpolate from them. For the latter, we use a triangulation and linear in-
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Figure 6.3: A polygon with some additional vertices (left) and its Delaunay triangulation

(right). The circumcircle about any triangle (e.g., dashed circle) is guaranteed to not

contain any other vertices.

terpolation within each triangle. This has the advantages of simplicity and rapid display

using Gouraud shading which is supported by most 3D graphics display hardware. For

any given set of vertices there are many di�erent possible triangulations and, in general,

we will not have enough information to choose the optimal one. Intuitively, we would like

to always interpolate from the nearest set of surrounding vertices. We use Delaunay tri-

angulations [19] because they have a property that roughly corresponds to this intuitive

notion. They guarantee that the circumcircle about any triangle will not contain any

other vertices in its interior (Figure 6.3). Technically we actually use constrained Delau-

nay triangulations because our triangulation must respect the boundaries of the original

polygon. See [6] for a brief survey of some alternative possible meshing strategies.

To accurately capture a reconstructed feature, we need to ensure that the spacing

between our vertices is smaller than the scale of the feature. In creating our mesh,

we take advantage of the fact that the kernel density estimation process strongly blurs

features that are smaller than the local bandwidth. Since only features at the bandwidth

scale or larger will be accurately reconstructed anyway, we need only make our mesh

spacing dense enough to capture features at these scales. We ensure this by putting

constraints on the allowable edge lengths in our mesh based on the local bandwidth and

adding vertices as necessary to enforce these constraints.
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Figure 6.4: The table top from Figure 6.2 is shown here with both its estimated il-

lumination function (left) and its underlying mesh (right). The mesh spacing (and

bandwidth) are smaller in bright regions and near areas of rapid change.

Our initial implementation used a �xed bandwidth per surface. Thus we could con-

struct the complete mesh before density estimation began. These meshes were generated

using publicly available meshing code [46]5.

The adaptive bandwidth selector of Chapter 5, however, necessitated a more adaptive

meshing approach. Currently we use a custom Delaunay triangulator. Once density

estimation has been performed at a vertex and its local bandwidth chosen, we impose

the constraint that no edge involving this vertex can be more than half its bandwidth

in length. Vertices are added as needed to ensure that this constraint is both met and

will continue to be met regardless of future vertex additions, and the triangulation is

iteratively updated [35].

To try to minimize the total number of vertices added, we try to ensure that each

new vertex is at least some minimum distance (e.g., 1/3 of the bandwidth) away from all

existing vertices. Since the cost of constructing the mesh is neglible compared to the cost

of performing the density estimation, it is worthwhile trying to optimize the placement

5Jonathan Shewchuk's Triangle meshing package is available at
http://www.cs.cmu.edu/�quake/triangle.html which also provides some nice ex-
planatory information about meshing and Delaunay triangulations.
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of new vertices. The �nal result is an adaptive mesh that adapts to the bandwidth

variations over a surface (e.g., Figure 6.4).

Note that we have been discussing meshing here speci�cally in relation to the density

estimation phase. The decimation phase has somewhat di�erent meshing requirements.

In the density estimation phase the mesh needs to be dense enough to capture any de-

tectable features that might exist. In the decimation phase, the mesh need only represent

those features that were actually found, which is quite a di�erent requirement. For exam-

ple, the decimation phase performs signi�cantly better if it is not restricted to Delaunay

triangulations [56] and in some regions would bene�t signi�cantly from using higher order

interpolation (e.g., [24]).



Chapter 7

Results

We have used the density estimation framework to generate solutions for a variety of

environments. In this chapter, we will present some results using our current implemen-

tation. High quality solutions for four di�erent models are used to show how performance

is a�ected by model complexity. Next we demonstrate how the solution quality scales

with computation time and the amount of particle data generated. Finally we show a

comparision between measurements from a simple real environment and its simulation.

The computational components in our current implementation are:

� Particle Tracing: This program implements the governing equations given in

Section 3.2. It is spectrally based with each particle carrying only a single wave-

length of light. The power carried by each particle is determined using the wave-

length importance spectrum shown in Figure 6.1. The particle tracing is the most

expensive part of the computations. It is entirely computation bound with ray

casting accounting for the majority of the time. We use a simple uniform spatial

subdivision as our ray casting acceleration structure [3].

� Sorting: Our sorting code implements the two stage statistical sort described in

Section 3.3. This part of the computation is largely I/O bound. It typically spends
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more than half its execution time waiting for particle information to be read from

or written to disk.

� Density Estimation: This program implements the local polynomial kernel

density estimation method described in Chapter 4. For these results, we use the

local linear method and the uniform kernel. The bandwidths are chosen by the

automatic selector described in Chapter 5 including the separation of luminance

and chromaticity bandwidths and the use of our bias detection procedure to reduce

the luminance bandwidths near illumination features. As discussed in Section 6.2.1,

hit point information can be shared between neighboring polygons. Initially this

is true for polygons who share a vertex and whose normal di�er by less than 15

degrees. This limit is raised to 40 degrees if our noise targets are not met.

� Decimation: The results in this chapter do not include the decimation phase.

A major focus of this thesis is the density estimation phase, and hence we have

chosen to directly show the results it produces. Decimation is the fastest of our

computational phases and has little e�ect on overall solution time. It is, however,

essential when we want to display our solutions at interactive rates. Decimation

performance results were previously reported in [56].

7.1 Performance and Sample Timings

The machine used for these timings is a 400 MHz Pentium II machine running Windows

NT with 256 megabytes of main memory and two four gigabyte hard drives. Our imple-

mentation has been ported to several platforms and we frequently use parallel processing

to speed up the solution process1. However for ease of comparison, all the reported tim-

1One of our design goals was to make it easy to get near linear parallel speedups at
least for small numbers of processors. Our limited experience indicates that this is true
although we have not fully parallelized our current implementation.
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Table 7.1: Performance statistics for density estimation solutions of four environments.

Listed is the original number of polygons in each environment, the time in hours to

execute each phase and the number of triangles produced by the density estimation.

No decimation phase was performed in these results. Each of these solutions used ap-

proximately 300 million particle hit points. Some images captured from these solutions

are shown in Figures 7.1 to 7.4.

model Particle Tracing Sorting Density Estimation Total

Name # Polygons Time Time # Triangles Time Time

Science Center 3,780 5.3 hrs 0.8 hrs 1,705,582 1.6 hrs 7.6 hrs

Kidosaki 3,976 9.7 hrs 0.7 hrs 3,522,555 2.4 hrs 12.8 hrs

Library 13,729 18.6 hrs 0.7 hrs 3,441,944 2.6 hrs 21.9 hrs

Fallingwater 140,094 19.4 hrs 0.8 hrs 3,382,452 2.6 hrs 22.8 hrs

ings are for execution on a single processor. We con�gured our programs to use only about

100 megabytes of the memory and used one of the four gigabyte drives for temporary

storage of particle data.

Timings for high quality solution of four architectural environments are shown in

Table 7.1. Notice that although the complexity of the later models increased considerably,

the solution times increased much more modestly. Approximately 300 million particle hit

points were generated for each of these solutions. Solutions can be generated using more

or less data as we will demonstrate in Section 7.1.1, but larger solutions would require

more than the four gigabytes of disk space we allocated to hold temporary particle data.

Images from these solutions are shown in Figures 7.1 to 7.4.

The models we used are:

� Science Center: This is a model of a computer room in the Science Center Mu-

seum in Ithaca, NY. Shown in Figure 7.1, it is the simplest of the four models and

the fastest to solve. It is lit by two area luminaires near the ceiling, yet this is
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Figure 7.1: Two views of the Science Center solution listed in Table 7.1.
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Figure 7.2: Two views of the Kidosaki solution listed in Table 7.1.
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Figure 7.3: Two views of the Library solution listed in Table 7.1.
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Figure 7.4: Two views of the Fallingwater solution listed in Table 7.1.
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su�cient to create many interesting illumination details especially in the shadows

on the oor.

� Kidosaki: Shown in Figure 7.2 is a model of the sunlit exterior of the Kidosaki

house designed by Tadao Ando. The light is provided by a single distant spotlight.

Unfortunately this is a somewhat ine�cient way to simulate sunlight. A much

better way would be to include an explicit sun/sky model in the particle tracer.

One feature to notice is the caustics on several of the patios caused by light reecting

o� the glass in the windows.

� Library: This is a model of the Villa Mairea Library which is a room in a private

house designed by Alvar Aalto. This model is more geometrically complex, contains

numerous texture maps, and more complex lighting as shown in Figure 7.3. It is lit

by two suspended globe luminaires and several spotlights set near the ceiling. The

black strips near the ceiling are actually mirrors. These images were captured as

they would be displayed during an interactive walkthrough and without the more

expensive display techniques needed to display non-di�use surfaces correctly (See

Figure 2.13). However, we do see their e�ects on other surfaces such as the caustic

clearly visible in the upper left.

� Fallingwater: Figure 7.4 shows a model of one oor of the Fallingwater house

designed by Frank Llyod Wright. This is a night time simulation with the light

being provided by two large area luminaires set into the ceiling. Notice that while

this is by far the most geometrically complex of our models, the computation time

increased only modestly. This bolsters our claim that our framework scales well to

complex environments.
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Table 7.2: Times to produce solutions of Library model using varying amounts of particle

data. Images of these solutions are shown in Figure 7.5.

Relative Particle Tracing Sorting Density Estimation Total

Quality # Hit Points Time Time # Triangles Time Time

1

64
4.7 million 0.29 hrs 0.01 hrs 173,474 0.08 hrs 0.38 hrs

1

16
18.8 million 1.16 hrs 0.04 hrs 442,277 0.23 hrs 1.42 hrs

1

4
75 million 4.64 hrs 0.16 hrs 1,185,667 0.79 hrs 5.59 hrs

1 300 million 18.59 hrs 0.71 hrs 3,441,944 2.60 hrs 21.90 hrs

7.1.1 Time vs. Quality Tradeo�

Depending on time and quality constraints, we can generate solutions using di�erent

amounts of particle data. Solutions using fewer particles can be generated more quickly

but have decreased resolution of illumination features and more problems with noise on

small surfaces. To illustrate this tradeo� we have generated some smaller solutions of the

Library model from the previous section using a fourth, a sixteenth, and a sixty-fourth

as much particle data. The timings in Table 7.2 show that execution time varies roughly

linearly with the amount of particle data. Figure 7.5 shows how the quality varies with

the amount particle data generated.

Note how the broad patterns of illumination are evident even in the coarsest solution.

Details such as shadow boundaries smoothly re�ne as more particle data is used. If

the user is aware of this behavior, then coarse solutions can be very valuable for rapid

approximate feedback on the illumination in a model.

7.1.2 Scalability

One of the important characteristics of any global illumination algorithm is how well it

scales to handle more complex environments. Unfortunately scaling is a rather compli-
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Figure 7.5: Solutions of the Libary model of varying quality as listed in Table 7.2. The

right column shows a closeup of a shadow detail in one of the bookcases.
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cated subject. There are many di�erent ways in which models can become more complex

and each is likely to have di�erent e�ects on any particular algorithm. Below we list a

few possibilities and discuss how they would individually a�ect our framework.

1. Total surface area: To achieve the same solution resolution, we would need to

maintain the same average density of particle hit points. To achieve this, the

amount of particle data generated would need to increase roughly linearly with the

total surface area in the model. This should cause a roughly linear increase in the

solution time.

2. Number of surfaces: Excluding small polygon problems, the amount of particle

data needed does not depend on the number of surfaces. The particle tracing and

density estimation times will increase somewhat due to visibility and initialization

operations, but as indicated in Table 7.1, this is not a very strong e�ect.

3. Average illumination level This has no e�ect. The amount of power carried per

particle simply scales up or down without a need for more particles.

4. Illumination constrast This is perhaps the most di�cult case for the density

estimation framework. Since particle density is directly related to the relative il-

lumination intensity, increasing the illumination contrast will require many more

particles to maintain a su�cient hit point density in the darker regions. Spatial

importance sampling strategies will be very important future enhancements in re-

ducing this problem.

5. Material or scattering properties (BSDF): Adding more complex scattering

functions would have little e�ect, though particle tracing would become slightly

more expensive due to the need to sample these more complex distributions. How-

ever, the irradiance and radiant exitance functions that we are computing become

less useful as the BSDFs become less di�use.
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7.2 Comparison to a Measured Environment

In order to test the validity of our assumptions and our implementation, we would like

to compare the results of one of our simulations against measurements from a real envi-

ronment. Unfortunately this is a rather challenging and involved task. It requires precise

measurements of both the input functions and a way to compare the results. Each of

the relevant functions, geometry, scattering, emission, and radiance are typically complex

and di�cult to measure adequately.

Although the models in the previous sections were created based on real environments,

they are inadequate for such a comparision. They are also greatly simpli�ed as compared

to the real environments. Many of their attributes, especially their material properties,

were set \by eye" relying on the non-physical lighting models provided by the modeling

system in which they were built. When comparing simulation results of such models, it is

not possible to di�erentiate between errors due to erroneous input from simulation error.

To overcome this lack of calibrated input, the Cornell's Program of Computer Graph-

ics created a simple environment known as the Cornell Box which was designed to be

relatively easy to characterize and measure. The geometry consists of two cubes inside a

larger cube. The walls were painted with at latex paint which has a nearly Lambertian

scattering function and their spectral reectances were measured. The light source was

designed to emit a nearly di�use pattern of light and its spectrum was also measured.

Images of the box were captured using a calibrated CCD camera and several narrow band

spectral �lters. The position of this camera was also measured so that simulated images

could be generated from the same viewpoint and compared against the captured images.

All of this data was made available at http://www.graphics.cornell.edu/online/box as a

public service to allow researchers such as ourselves to check the quality of their rendering

simulations.

Using this information, we simulated the lighting inside the Cornell Box and the

comparison is shown in Figure 7.6. We believe that our simulated results match the real
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Figure 7.6: Measured and simulated images of the Cornell Box. Also shown is a di�er-

ence image magni�ed by a factor of �ve.

results quite well and may be within the precision of the measured data in most places.

The errors along object boundaries are due to some slight misalignment of the geometry.

Some error is also visible along some shadow boundaries due to inadequate resolution

in our simulation. The di�erences on the upper walls are likely due to some variation

between the true and measured emission functions at oblique angles. Aside from these

errors, our results agree extremely well with the measured images.

We did need to make one change to the framework as described to make this com-

parison. Normally we transform from spectral to XYZ space to simulate the response of

a human observer, but in this case we needed to simulate the response of the camera in-

stead. We simulated the response of the camera with each of the three �lters individually

and then composited the resulting three grayscale images to form the color image shown.

To produce the grayscale images, we eliminated the chromatic estimation step and using

the combined camera and �lter reponse curves instead of the luminous e�ciency curve

we normally use. There is also an overall scaling factor in the measured data that is not

known very precisely, hence each image was scaled to match the average intensity of the

measured images.



Chapter 8

Conclusion

8.1 Summary

We have presented a new framework for producing view-independent global illumination

solutions. There are three principal contributions in this work: the framework's sepa-

ration of the transport and reconstruction computations, its ability to produce accurate

solutions with precisely known error charateristics, and the techniques we have developed

to improve its accuracy and e�ciency.

The global illumination problem is usually formulated as a balance equation (e.g.,

Equation 2.28) in terms of the spectral radiance. Most previous approaches have tried to

explicitly solve this equation. Unfortunately in realistic complex environments, the spec-

tral radiance is an extremely complicated and detailed function. Except in special cases

it is not practical to assume that we can �nd or represent the spectral radiance very accu-

rately. Thus view-independent methods typically solve for some simpli�ed illumination

function such as the radiant exitance. Explicitly solving the governing equation would

in general require us to �rst solve for the complete spectral radiance, a computationally

di�cult if not impossible task.

Particle tracing, on the other hand, is capable of simulating the light transport without
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ever explicitly solving for the spectral radiance. Moreover it is unbiased and uses a

relatively complete physical model of light transport for increased accuracy. Although

the conventional wisdom has been that particle tracing is simply too expensive to be used

exclusively to handle all light transport in a large environment, our work has shown that

this is not the case.

We begin by separating the global illumination simulation into separate stages for the

computation of the global light transport via particle tracing and the reconstruction of

local illumination functions via density estimation. Previous researchers have avoided this

approach because of the large amount of particle data that must be stored, but we have

shown that this limitation can be overcome and that our procedure has many advantages.

By separating global and local computations, we reduce the computational complexity of

each stage, improve our scalability to handle complex environments, and expose abundant

easily exploited parallelism. Furthermore delaying the density estimation decisions until

all particle data is available allows us to use a non-parametric and data-driven approach

to extract better solutions from the expensive particle data.

Particle tracing's generality also allows us to eliminate or delay most of our simplifying

assumptions, increases our accuracy and streamlines the error analysis. The density

estimation then directly estimates the desired simpli�ed functions from the particle data.

It does introduce some bias and simplifying assumptions, but it does so in a controlled

and purely local fashion that makes its error characteristics easily understood. Such

precise error information is unique among current view-independent global illumination

techniques.

The density estimation phase recovers radiant exitance values and stores them at the

vertices of a conservatively dense mesh. We introduce a further decimation phase to

optimize this mesh for compactness and speed which allows us to display our solutions

at interactive frame rates. The major features of the framework are summarized in

Table 8.1.

Particle tracing is by far the most expensive part of our computations. In principle,
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Table 8.1: Bene�ts of the density estimation framework.

Features Advantages

Separation of transport and Reduces computational complexity

representation computations Simulates the full spectral radiance function.

Reconstructs simpli�ed illumination functions.

Error is easily characterized.

Easy to parallelize.

Particle tracing phase Simulates general physical model of light transport.

Scales well with model complexity.

Density estimation phase Allows a non-parametric, data-driven approach to

extract more information from the particle data.

Decimation phase Optimizes mesh for speed and compactness.

even a straight-forward, naively implemented version of the density estimation frame-

work would be capable of producing accurate solutions; however the number of particles

required would be prohibitively large. To make high quality solutions feasible, we have

introduced a number of techniques to improve the accuracy and e�ciency of the frame-

work and reduce the number of particles required. The most important of these are the

components of our adaptive bandwidth selector: separation of luminance and chromatic-

ity bandwidth, perceptually-motivated noise visibility predictors, and our statistical bias

detection procedure. These techniques are listed in Table 8.2.

Using these techniques we have shown that we can generate high quality solutions

of complex environments. We have also validated our simulation by comparing it to

measured data for a real environment. The framework can be used to produce quick

coarse solutions, but the real contribution of this work is the ability to produce accurate

solutions with precisely known error charateristics. The density estimation framework

can simulate a wider variety of lighting e�ects, with fewer simplifying assumptions, and a

more precise error analysis than current view-independent global illumination methods.

There are many potential applications for such high quality solutions. One is as bench-
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Table 8.2: Accuracy and e�ciency enhancements.

Enhancements Advantages

Separation of luminance and Separately optimizes their bias vs. noise tradeo�s.

chromaticity bandwidths Reduces color noise while sharpening luminance.

Perceptually-based noise Finds bandwidths that eliminate visual noise.

visibility predictors Sets upper bound on range of useful bandwidths.

Statistical bias detection Finds underresolved illumination features.

Spatially adapts bandwidths to reveal such features.

Independent of the underlying physical cause.

Local polynomial density Reduces or eliminates boundary bias.

estimation techniques Implemented for arbitrary polygonal domains.

Wavelength importance Reduces wavelength related noise in particle data.

sampling Increases average information content per hit point.

Hit point sharing Reduces noise problem on small polygons.

Adaptive mesh generation Optimizes placement of density estimation locations.

Reduces the number of kernel evaluations required.

mark, or reference solution, for judging the quality and e�ectiveness of more approximate

but faster rendering methods. Another is in enabling applications where predictive re-

sults are required, for example, in helping a lighting engineer evaluate potential workspace

designs.

8.2 Future Work

Although we have greatly improved the e�ciency of our simulations, there are still many

possibilities for further improvements. The current implementation is restricted to ker-

nels with circular supports, but elliptical kernels can be more spatially adaptive and

e�ective. They would require a better bandwidth selector to choose the required ad-

ditional bandwidth parameters. Bias detection procedures speci�cally tuned to detect

boundaries such as shadow or caustic edges could better resolve such features. The local
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polynomial density estimation method could be extended to work directly with curved

surfaces to reduce the small polygon problems.

A wide variation in illumination levels can be problematic for the current implemen-

tation such as when simultaneously simulating both the sunlit exterior of a building and

its dimly lit interior. In this case some form of guidance such as a global importance

function could ensure that enough particles reach all locations.

Another limitation is that we currently only reconstruct directionless quantities such

as radiant exitance. These only provide complete lighting information at di�use surfaces.

It is possible to reconstruct functions that capture directional as well as spatial variations

of the radiance on the non-di�use surfaces, but it will necessitate a tradeo� between

spatial and directional resolutions. New methods would be needed to choose this tradeo�

intelligently.

While our simulations can be highly accurate, they can only be as accurate as the

input provided. Exploring how input errors in the input a�ect the simulation would

provide valuable information for researchers and designers.

As presented the density estimation framework is already a state of the art system for

producing accurate view-independent solutions, and with future enhancements we expect

it to become an important tool in many global illumination applications.
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