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Abstract

This paper presents the density estimation framework for generating
view-independent global illumination solutions. It works by probabilis-
ticly simulating the light ow in an environment with light particles that
trace random walks originating at luminaires and then using statistical
density estimation techniques to reconstruct the lighting on each surface.
By splitting the computation into separate transport and reconstruction
stages, we gain many advantages including reduced memory usage, the
ability to simulate non-di�use transport, and natural parallelism.

This paper also describes how several theoretical and practical di�cul-
ties can be overcome in implementing this framework. Light sources that
vary spectrally and directionally are integrated into a spectral particle
tracer using non-uniform rejection. A new local linear density estimation
technique eliminates boundary bias and extends to arbitrary polygons. A
mesh decimation algorithm with perceptual calibration is introduced to
simplify the Gouraud-shaded representation of the solution for interactive
display.

CR Categories and Subject Descriptors: I.3.0 [Computer Graphics]:
General; I.3.6 [Computer Graphics]: Methodology and Techniques.

Additional Key Words and Phrases: realistic image synthesis, density
estimation, regression, decimation, particle tracing.

�[bjw,pmh,shirley,dpg]@graphics.cornell.edu Program of Computer Graphics 580 Rhodes
Hall Cornell University Ithaca, NY 14853

ycurrent address: pmh@cs.wustl.edu Department of Computer Science Campus Box 1045
Washington University One Brookings Drive St. Louis, MO 63130-4899 pmh@cs.wustl.edu
http://www.cs.wustl.edu/~pmh/

zcurrent address: shirley@cs.utah.edu Department of Computer Science 3190 Merrill En-
gineering Building University of Utah Salt Lake City, UT 84112
1997Permission to make digital/hard copy of part or all of this work for personal or classroom
use is granted without fee provided that the copies are not made or distributed for pro�t or
commercial advantage, the copyright notice, the title of the pulication, and its date appear
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior speci�c permission
and/or a fee.
c1997 ACM 0730/0301/97/0700-0217 $03.50

1



2 Uno�cial version with modi�ed formatting.

1 Introduction

View-independent global illumination is a di�cult problem that requires solving
for detailed lighting information on each of many interacting surfaces. Tradi-
tional methods have tried to attack the entire problem at once, and the resulting
complexity has limited the maximum problem size and solution quality that can
be handled. This paper shows how this complexity can be reduced by splitting
the computation into distinct transport and reconstruction stages. We call this
approach the density estimation framework because statistical density estima-
tion techniques play a crucial role. The framework consists of three phases:
particle tracing, which simulates the global transport of light; density estima-
tion, which reconstructs the lighting on each surface; and decimation, which
reduces these estimates to a more compact and e�cient form. The input is a
geometric description of an environment along with its associated radiometric
material properties, and the outputs are illumination meshes which represent
the lighting on each surface. This framework has several advantages including
greatly reduced memory usage, non-di�use light transport, software modularity,
and natural parallelism.

We also show how this framework can be implemented in a reasonably gen-
eral and robust manner and detail the design decisions and techniques that
we use in our current implementation, which is a signi�cant advance over our
initial work [29]. We can handle arbitrary polygonal models, including very gen-
eral material properties, and produce piecewise-linear estimates of the luminous
and chromatic exitance on all di�use surfaces for fast hardware display. The
particle tracing phase is spectrally based for improved physical accuracy and
includes techniques to sample complicated emission and scattering functions.
The density estimation is based on a new local linear technique which elimi-
nates boundary bias and can handle arbitrary polygons. The decimation draws
on simple perceptual principles to reduce the artifacts it creates as it simpli�es
the illumination meshes.

In Section 2 we discuss why we think the density estimation framework is a
good idea. A overview of our implementation is given in Section 3 followed by
a description of each of our three phases: particle tracing in Section 4, density
estimation in Section 5, and mesh decimation in Section 6. Some results are
presented in Section 7 and the conclusion in Section 8. We have also included
some appendices for readers and potential implementers who want more detail.
Appendix A describes the non-uniform rejection for particle tracing, Appendix B
develops the local linear density estimation technique, and Appendix C describes
the user study that calibrated the mesh decimation.

2 Motivation

Computing view-independent global illumination solutions involves solving for
the lighting on the surfaces in a model by simulating the physics of light. Con-
ceptually we can think of this process as consisting of two parts: light transport
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and lighting function representation. Light transport is the ow of light be-
tween surfaces. Since light from each surface potentially interacts with every
other surface, we say that the transport has a high inter-surface or global com-

plexity. Representation is the process of constructing an estimate of the lighting
function on each surface. For view-independent solutions we would like these
estimates to be su�ciently detailed for direct display. The lighting may be quite
complex with detailed features such as shadows and caustics. Thus, whatever
representation we choose (e.g., piecewise linear or wavelet), it must be complex
enough to capture these features if they exist.1 The lighting representation has
a high intra-surface or local complexity.2

2.1 Finite Element Methods

Traditionally, view-independent global illumination solutions have been com-
puted by �nite element methods. These methods work by interleaving the com-
putation of the global light transport and the local lighting representation. They
iteratively compute a portion of the global transport and update local repre-
sentations until some convergence criteria are reached. This combination of
operations involving high global and high local complexity causes an explosion
in resource consumption in terms of both memory and time.

Much research has gone into improving the basic �nite element method.
Several techniques (e.g., hierarchical radiosity [12] and clustering [31]) greatly
reduce the time required at the expense of additional data structures and greater
memory usage. Consequently, it is usually memory that limits the maximum
input size and solution quality. To overcome this problem, researchers have
tried various ways to reduce global or local complexity. Discontinuity mesh-
ing [19] attempts to precompute the potential locations of shadows to allow
for a more compact local representation. This can produce dramatically better
shadows, but it does not handle other lighting features, such as caustics and
shadows from secondary sources, and does not scale well to large environments.
Teller et al. [32] try to partition the environment into small, weakly interacting
subsets to lower the e�ective global complexity. If such a partitioning can be
found then the computation can be ordered to use virtual memory e�ciently,
however such a partitioning may not exist (e.g., a hotel atrium). Others (e.g.,
[26, 31] reduce the local complexity by abandoning the idea of displaying the
solution directly. Instead, the solution is computed at low resolution and a
computationally expensive local-gather display pass is required to display the
solution. This puts them in the realm of multi-pass methods rather than the
view-independent methods that are our primary focus here. Multi-pass methods
are further discussed in Section 2.3.

1Note that it is often possible to �nd a very compact representation after the estimate is
computed, but it is extremely di�cult to �nd an appropiate one beforehand.

2Our de�nition of the terms local and global complexity is di�erent than that used by
Teller et al. [32].
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2.2 Density Estimation Framework

The density estimation framework avoids this combination of high local and
global complexity by splitting light transport and lighting representation into
separate computational stages. In the transport stage we compute the ow
of light between surfaces without ever explicitly reconstructing the lighting on
surfaces. Particle tracing is a natural and robust way to simulate this light
ow. The representation stage then uses information from the transport stage
to explicitly reconstruct the lighting on each surface. Since the intensity of the
lighting is proportional to the density of light particles, the reconstruction is a
density estimation3 problem.

Particle tracing has been used by many other researchers [1, 2, 22] to com-
pute illumination and Heckbert [14] �rst noted that reconstructing lighting from
particles is a density estimation problem. Since then a variety of di�erent den-
sity estimation techniques have been applied, including histograms [14], kernel
methods [3, 6], and splines [24]. Our density estimation technique is new, but
the fundamental di�erence between our framework and previous work is the
separation of the transport and reconstruction stages.

The particle tracing stage computes a statistical simulation of global light
transport. Since light particles do not interact there is no need to explicitly
reconstruct the lighting function, and instead we simply record some informa-
tion about the particle histories. Thus the particle tracing can work directly
with the raw input geometry and has high global complexity but minimal local
complexity.

The lighting reconstruction stage uses the recorded particle histories to esti-
mate the lighting function on each surface. Because all of the global transport
was handled in the previous phase, we can reconstruct the lighting on each sur-
face independently. Reconstruction on a surface has high local complexity but
no global complexity.

Because each stage has only high global or high local complexity but not
both, the individual stages require fewer resources than �nite element meth-
ods, especially in terms of memory. But we have not completely escaped the
complexity problem. The combined high global and high local complexity is
contained in the voluminous particle history data. Thus, careful attention must
be paid to how the particle histories are stored and accessed. The particle trac-
ing only writes particle data and the density estimation only needs the particle
data associated with one surface at a time. The only operation we ever need
to perform on the entire particle data set is a sort by surface; otherwise, the
computation can be structured so that the particle data is processed in a pre-
dictable and largely sequential order. This means that we can e�ciently store
the particle data using secondary storage such as a hard disk, which is typically
100 times cheaper than physical memory (RAM). The e�cient use of secondary
storage is the key that makes our framework feasible.

3Density estimation is the problem of estimating a unknown density function from a set of
discrete samples drawn according to the density function [30].
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2.3 Multi-pass Methods

Global illumination calculations and methods can roughly be divided into view-
independent computations, which are valid regardless of viewpoint, and view-
dependent computations which are needed to produce a particular view or im-
age. Purely view-dependent methods compute only the information needed to
produce a desired image, but must start over the beginning to compute the next
image. Also they generally compute each pixel independently which results in
redundant computation of low spatial frequency components. On the other ex-
treme, view-independent methods try to precompute as much view-independent
lighting information as possible so that only a minimal amount of subsequent
work is required to produce each image. This precomputation can be problem-
atic though as appearance aspects that have a high spatial frequency or are
angularly dependent are expensive both to compute and to store.

Multi-pass methods (e.g., [3, 26, 17]) combine both approaches. They split
the lighting into various components, some of which are precomputed by a view-
independent phase while others are computed anew for each image. Generally
they try to divide the lighting into low and high frequency components by
using distinctions such as direct vs. indirect lighting and specular vs. di�use
reection. Each component is computed by the method which seems best suited
to its expected characteristics.

The work of Jensen [17] is particular relevant here as he makes use of a
particle tracing phase similiar to ours. He uses two particle tracing phases to
estimate two lighting components: di�usely reected indirect light and spec-
ularly reected indirect light. A view-dependent phase then performs density
estimation to query these components, �lters the results through a local-gather
operation, and combines them with estimates of other lighting components.
This method often works quite well. When the distinctions between di�erent
lighting components are clear and when only a small number of images need to
be generated, then Jensen's method is much faster than the density estimation
framework presented here.

While the methods presented in this paper can be used as part of a multi-pass
method (e.g. in Plate I) similiar to Jensen's work, we have chosen to emphasize
its use as a view-independent method. One reason is that we are interested
in interactive walkthroughs. Multi-pass methods are not currently useful for
interactive walkthroughs as their display computations are simply too slow to
achieve the required display rates. We also believe that the kinds of distinctions
used in multi-pass methods are sometimes di�cult to make. For example, if we
move away from "bare bulb" lights and direct sunlight toward complex lighting
�xtures and areas light by reected sunlight, the distinction between direct and
indirect light becomes unclear and unhelpful. Thus it is interesting to explore
methods that do not rely on such distinctions. Lastly we think that because
all lighting is computed by a simple statistical particle tracing, our method is
better suited for a relatively simple and precise error analysis than other current
methods. This aspect though will not be emphasized here.

A few other di�erence between our work and Jensen's are worth mentioning.
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Jensen does not ever explicitly reconstruct the illumination function on a surface
in our sense. Instead a new density estimation calculation is performed each
time he wants to query information computed by a particle tracing. To make
this feasible, he needs to be able to keep all his particle data in memory, which
puts a strict limit on the number of particles. He also uses a very simplistic
density estimation technique, which su�ers from errors due to boundary e�ects,
surface curvature, and nearby surfaces, but the resultant artifacts are mostly
�ltered out by his local-gather display computations. In our work we need to
be more careful since our density estimation results are directly displayed.

2.4 Di�use vs. Non-di�use

The extent to which we can handle non-di�use materials is a common point of
confusion because it di�ers from most other methods. We do properly handle the
scattering of light by non-di�use materials in our transport stage. This means
that the e�ect of light scattered from a non-di�use object onto another surface
is correctly handled. However the recontruction phase computes quantities like
spectral irradiance and luminous exitance that do not depend on viewing direc-
tion. These are only su�cient to completely describe the appearance of di�use
surfaces. This means that the appearance of the non-di�use surfaces them-
selves will not be correct when using our method as a view-independent one. If
a ray tracing display phase is used, then it can �ll in this missing information
at non-di�use surfaces and display them correctly, but the method becomes a
multi-pass method.

An example of this can be seen in Plates I and J. The ground plane in Plate
J is displayed exactly as it was computed by the density estimation process
including the complex lighting e�ects caused by the very non-di�use glass plates.
Computing the appearance of the glass plates themselves, however, required
some extra work which was performed by a ray tracing display computation.
The object at the right is Plate J is actually a glass prism, but its appearance
is not correct because a ray tracing display phase was not used for this image.
Notice that we still capture the dispersion rainbox it causes onto the di�use
screen at the left. This distinction can also be seen in the bottom two rows of
Plate E if one ignores the overlayed meshing. The left images were displayed
using a ray tracing pass and the right using a direct hardware rendering.

3 Overview

Our implementation is composed of three phases:

1. Particle-tracing phase: Power-carrying particles, each with a speci�c
wavelength, are emitted from each luminaire using an appropriate spec-
tral radiant intensity distribution. They are then tracked as they travel
through the environment until they are absorbed. Each time a particle
hits a surface it is probabilistically absorbed or scattered in a new direction
according to the BRDF (Bidirectional Reectance Distribution Function)
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of the surface. A list of all particle \hit points" where particles hit surfaces
is generated and saved.

2. Density-estimation phase: The stored hit points are used to construct
approximate lighting functions on each surface. The illumination on a
surface is proportional to the density of the hit points; therefore this is
a density estimation problem. In order to reconstruct luminous and tris-
timulus exitance4, the hits are weighted by the surface reectance and the
CIE XYZ response functions and local linear density estimation is applied.
The result is a Gouraud-shaded, or piecewise linear, mesh of triangles with
three color channels suitable for direct display.

3. Mesh decimation phase: The initial mesh is generated conservatively
and in most places it is much denser than is actually required. This mesh
is decimated by progressively removing vertices as long as the resulting
change is below a perceptually-based threshold. The simpli�ed mesh re-
quires less storage and can be displayed more quickly. For best results
the decimation can be tuned for the characteristics of a particular display
device.

An illustration of the three phases is shown in Figure 1. The �nal result
is a view-independent illumination solution such as that shown in color plate
A. The solution quality depends signi�cantly on the number of particles, as
illustrated in color plate K. Each particle hit point consists of a surface identi�er,
the collision location, and a wavelength, encoded using twelve bytes per hit.
After particle tracing, these hit points are sorted by the surface identi�er for
e�cient access by the density estimation phase. The sorting is performed using
standard techniques and reduces the storage requirements to eight bytes per hit
point. The basic dataow for the density estimation framework is illustrated in
Figure 2.

3.1 Other Bene�ts

Besides the reduction in complexity, this framework has several other bene�ts.
It naturally divides the software into three modular pieces corresponding to the
three phases. Once the format for data owing between the phases is chosen,
they can be implemented, debugged, and maintained independently. In our case
each phase was implemented by a di�erent person with very little coordination
required.

4There is a di�cult terminology issue that arises when simulating sensor response to radio-
metric quantities for cases other than the \photometric" sensor. An example of this di�culty
is that the weighted integral of spectral radiant exitance is called \luminance" if and only
if the weighting function is the human luminace response curve. If it some other weighting
function, such as the response of a human color channel, there is no standard term for the
result of the weighted integral. When using the triple of standard CIE chromatic weighting
functions, �x(�), �y(�), and �z(�), we substitute the term \tristimulus" in place of \luminous"
to construct an analog of a photometric quantity. Although this terminology is not standard,
it smooths our discussion considerably.
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Figure 1: Overview of the density estimation algorithm.
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This modularity also makes it much easier to optimize each phase for partic-
ular sub-goals in pursuit of the overall design goals. In our case we can optimize
the particle tracing for physical accuracy of the light tranport, the density esti-
mation for perceptual accuracy within the bounds of our chosen representation,
and decimation for high compression rates while maintaining perceptual quality.

Another bene�t is that this framework naturally contains easily exploited
coarse-grain parallelism. Finite element methods are di�cult to parallelize be-
cause they mix local and global operations. In our framework, it is easy to
trace particles in parallel since particles do not interact. After sorting, lighting
reconstruction on di�erent surfaces can also be done in parallel since surfaces
do not interact in that phase. As shown in Figure 2 communication is only
required during the sorting. Zareski et al. [38] demonstrated this parallelism on
a cluster of workstations.

3.2 Design Trade-o�s

In the process of turning the general framework into a working implementation,
we have had to make numerous design decisions and trade-o�s. To help us make
rational choices, we use architectural walkthroughs as our driving application.
Our goal is to produce a view-independent global illumination solution which
is perceptually accurate for a given input model and which can be displayed at
interactive rates on current graphics hardware.

One of the �rst design decisions is what range of physical phenomena to
model. We want to include all phenomena that are likely to be important in the
input model with its potentially detailed material speci�cations. Fortunately,
particle tracing is well suited to simulating a geometric optics approximation
that includes nearly all the important lighting phenomena for architectural en-
vironments. We currently handle phonomena such as complicated emission
functions, non-di�use scattering, and dispersion; others, such as participating
media and polarization, could be added, but long-range wave e�ects such as
interference would be very di�cult.

We currently restrict our input models to polygonal geometry only. Polygons
are a simple and common geometry format that works well for many architec-
tural models. There would be several advantages to being able to work directly
with curved surfaces, but that is left as problem for future research.

As an output format we use Gouraud-shaded triangles, since this is the
most widely supported format for interactive shaded display. Because Gouraud-
shaded triangles' colors do not depend on viewing angle, they correspond to
directionless lighting quantities such as irradiance or luminous exitance which
completely specify the lighting only on purely di�use surfaces. Di�use-only
output is a reasonable approximation if most of the surfaces are matte, or nearly
di�use, which is often true for architectural models. When display time is not
critical, ray tracing can be used to display the solution and �ll in some of
this missing lighting information on non-di�use surfaces. In principle, it is
possible to solve for the directional lighting quantities needed for non-di�use
surfaces. But this would double the dimensionality of the density estimation
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problem and necessitate �nding good representations and decimation techniques
for directional quantities. This is another area left for future research.

It is important to note that this di�use-only approximation is introduced
during the density estimation phase and does not a�ect the accuracy of the
transport phase. For example, consider a metal reector in a lamp �xture. The
solution �le will not have enough information to directly display the metal reec-
tor correctly, but it will correctly contain the reector's e�ect on the lighting at
other surfaces. See color plate H for an example comparing di�use and specular
reectors in a recessed light �xture. Another example of important non-di�use
transport is glass (e.g., windows). Color plate I illustrates that the e�ects of
glass can be complex; it is not su�cient to simply remove the glass, which is a
common practice.

For the particle tracing phase we have chosen to use particles that carry
constant power and have a single wavelength. Ideally, we would like to have
low power particles in regions that are dark or contain important features, such
as shadow boundaries, and higher power particles elsewhere. However, in the
absence of considerable a priori knowledge about the solution, using equal power
particles is a reasonable compromise. In many cases, carrying a spectrum around
with each particle would reduce the noise in solution for a �xed number of
particles. We believe that this is o�set by the advantages of a simpler particle
tracer and reduced storage required per particle. It also makes it easy to simulate
phenomena like the dispersion rainbow in color Plate J.

At each surface we could record either all incident particles or only reected
particles. Recording the reected particles would most closely correspond to
the luminous exitance and chromaticity5 that we are solving for and would
avoid storing large amounts of data on dark surfaces. We use the incident
particles instead for two reasons: the incident particles are a superset of the
reected particles giving us more particle data for a given amount of work; and
incident particles also allow us to reconstruct illuminance instead of luminous
exitance on textured surfaces and thus avoid having to include the texture in
the illumination mesh [4, 9] which would preclude e�ective decimation. We will
still reconstruct the luminous exitance on untextured surfaces.

3.3 Improvements over Prior Implementation

The basic three-phase framework is similiar to the one we proposed earlier [29];
however that system was a proof-of-concept implementation and too limited
for general use. In this paper we present several improvements that make the
system more general and useful.

� The particle tracing has been changed from an RGB color space to spectral
radiometry for better physical accuracy.

� We show how to sample non-trivial BRDFs and emission functions using
rejection techniques with reasonable e�ciency.

5Together these are equivalent to the tristimulus exitance used elsewhere in this paper. We
switch terminology here due to a lack of appropiate standard terminology.
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� A new density estimation technique based on locally-weighted linear least-
squares regression handles boundary bias problems.

� This new local linear technique has been extended to arbitrary polygons,
removing the previous restriction to rectangles only.

� The number of perceptible artifacts created during decimation have been
reduced by algorithmic improvements.

� Perceptually-based heuristics and user studies provide a systematic way
to choose decimation parameters.

4 Particle Tracing

The particle tracing phase operates much like the classic particle tracers of
the heat transfer literature [33]. It takes as input the geometry, reectance
information, and emission information for each surface, and produces a �le with
a list of particle-surface interactions.

The particle tracing program processes n particle paths, where n is either set
by the user, or is determined a posteriori by some termination criterion such as
a minimum number of particle-surface interactions. For each particle, we choose
a random position, direction, and wavelength according to the properties of the
luminaires in the scene. At a surface it is either absorbed or scattered according
to the BRDF of the surface. If scattered, the particle continues in a straight
line in a new direction until it strikes the next surface. This process is repeated
until the particle is probabilistically absorbed.

4.1 Choosing particle positions and directions

The emissive properties of the luminaires in the scene are described by the
emitted spectral radiance de�ned over positions, directions, and wavelengths:
Le(x; !; �), where x is a point on a surface, ! is a direction, and � is a wave-
length.

First we choose a particle position, direction, and wavelength with a prob-
ability density function pe(x; !; �). Because pe need not be related to Le, the
power of outgoing particles must be adjusted to maintain correct overall emissive
power distribution. The expression for the power � carried by a particle that is
randomly generated with density pe from point x, direction !, and wavelength
� is:

� =
Le(x; !; �) cos �

npe(x; !; �)
;

where � is the angle between the direction ! and the surface normal at x. As
stated earlier, in our implementation we force all particles to carry the same
power, which is guaranteed if we choose the appropriate pe:

pe(x; !; �) =
Le(x; !; �) cos �

�
;
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where � is the total emitted power from all luminaires given by:

� =

Z
X

Z



Z
�

Le(x; !; �) cos �d� d! dx;

where � is the range of relevant wavelengths (we use 400 to 700 nanometers), 

is the hemisphere of exitant directions, and X is the set of points on all surfaces.

When a particle strikes a surface, it is scattered with some probability s or
absorbed with probability 1 � s. If scattered, the outgoing direction is chosen
randomly with probability density function pr(!). If the incoming particle has
power �, the power �r of the scattered particle is:

�r = �
fr(!i; !; �) cos �

spr(!)
; (1)

where !i is the incident direction of the particle before it hits the surface, and
fr is the spectral bidirectional reectance distribution function (BRDF). To
ensure that �r = �, we can choose s and pe such that their product is equal the
numerator in Equation 1. The most straightforward way to do this is to choose
s = R and

pr(!) =
fr(!i; !; �) cos �

R
;

where R is the integrated hemispherical reectance associated with the incident
direction and fr:

R =

Z



fr(!i; !; �) cos � d!:

In our implementation we must choose positions, directions, and wavelengths
for emitted particles according to pe, and directions for scattered particles ac-
cording to pr. Because the particle tracing is providing samples in a high-
dimensional space, the potential bene�ts of strati�cation are modest and we
have chosen to use unstrati�ed random sampling. The general strategies for
generating non-uniform random variables are covered in Appendix A. Our job
is made easier by the fact that in our current models the spatial, directional, and
spectral emission properties are separable on any single luminaire. For opaque
specular surfaces, we have the special case where fr is a delta function [5], so
the scattered direction is deterministic and is generated as a special case. For
dielectrics, we probabilistically choose between a reected and refracted ray;
the probability of reection varies with incident angle and wavelength accord-
ing to Fresnel's equations [11]. The angle of refraction depends on wavelength
to include dispersion.

We do not take polarization e�ects into account, although it is straightfor-
ward to do so [20]. Other phenomena such as uorescence could also be added
provided that they are linear with respect to the incident light [10]. Nothing in
the density estimation or mesh decimation phases would need to be changed if
polarization or uorescence were to be added.
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5 Density Estimation

After completing the particle tracing phase, we have a long list of locations
where light particles hit surfaces. The particle tracing is designed so that the
density of hit points is proportional to the amount of light striking the surface.
What we need is a way to recover the density function from the hit points.
This type of problem is called density estimation and is common enough that
there is an entire �eld in statistics devoted to it [30, 35]. In this section we
will discuss the kernel density estimation method, some heuristics for choosing
appropriate parameters for this method, and a new modi�cation to this method
that eliminates the problem of boundary bias in a clean way.

5.1 Kernel Density Estimation

The histogram is the oldest and most widely known density estimation tech-
nique. It consists simply of dividing the domain of the problem into regions, or
bins. We then form a piecewise constant approximation by counting the number
of data points in each bin and dividing by the size of the bin. The simplicity
of histograms is appealing, but there are other methods that generally produce
better approximations to the real density function.

In the statistics literature, kernel density estimation seems to be the most
widely used and recommended density estimation technique. The density func-
tion at a point is estimated by taking a weighted sum of nearby points and
then dividing by the area under the weighting (or kernel) function. Usually the
kernel is normalized to have unit area so that the division is unnecessary.

It is traditional to split the choice of a kernel function into the general shape
of the kernel (in a canonical form, written as K) and a kernel width parameter
h, which is usually called the bandwidth. The kernel scaled by the width h is
written as Kh and de�ned as:

Kh(x) =
1

hd
K
�x
h

�
(2)

where d is the dimension of domain. It is also traditional to assume the density
function has unit volume, though this can easily be generalized to other densities
by a scaling factor6. Given n data locations fX1 : : :Xng the estimated function
~f is:

~f(x) =
1

n

nX
i=1

Kh(x�Xi) (3)

We can think of this expression as a kernel centered at the estimation point
used to weight nearby data points, or alternatively we can think of it as the

6This scaling factor is independent of the spatial distribution of data points and must be
known from some additional information. In our case we can �nd the scaling factor because
we know the amount of spectral power carried by each particle.
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Figure 3: Kernel Density Estimation: data points (x's) are distributed according
to a density function (dashed) and kernels (gray) centered on the data points
are summed to form an estimate (solid) of the density function.

sum of n kernels centered on the data points7 as shown in Figure 3. Thus
our function estimate is simply a sum of suitably translated kernel functions.
Essentially we are blurring the data points to produce a smooth estimate where
the bandwidth parameter controls the amount of blurring.

Once a kernel function and bandwidth are chosen, it is quite straightforward
to implement Equation 3. Unfortunately, there is a fundamental problem with
kernel density estimation called boundary bias.

5.2 Boundary Bias

The cause of boundary bias is that the kernel method does not di�erentiate
between regions that have no data points because the density function is near
zero, and regions which have no data points because they lie outside the domain
where we have information about the function. E�ectively it assumes that the
function goes to zero everywhere outside of the domain; consequently, there is a
strong bias toward zero in regions that are within a bandwidth of the boundary
of the domain. In our application this would show up as a noticable darkening
near the edges of surfaces (see Figure 4).

This might not seem like a big problem because it only a�ects boundary
regions, but in applications like ours, the boundary region can be a large fraction
of the total domain. This is especially true for complex scenes, which often
consist of many small polygons. A variety of techniques have been used to reduce
boundary bias. One simple technique is to create \phantom" data outside the
domain by reecting data across the boundary [29]. Unfortunately, this only
partially corrects for the boundary bias and is only easy to implement for shapes
which can tile the plane (e.g., rectangles). In the statistics literature, when the
boundary bias problem is dealt with at all it is usually by using modi�ed kernels

7We will break this symmetry when we introduce the local linear method, but the intuition
built here is still useful.
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Figure 4: Illumination contours on a polygon with a hole. Reconstructed from
� 23,000 hit points using kernel density estimation (top left), local constant
(top right), and local linear density estimation (bottom left), along with a path
traced reference image (bottom right). The constant and linear methods are
examples of local polynomial methods introduced in this paper. The reection
method of [29] is roughly similiar to the local constant method.

called boundary kernels (e.g., [35, p. 47]). The di�culty with boundary kernels
is that they are derived in an ad hoc manner, and there is no general agreement
as to which are the best.

We have developed a new method of eliminating boundary bias8 (demon-
strated in Figure 4) by adapting the locally-weighted polynomial least-squares
regression method described below. The biggest advantage of this new method
is that it has a clean conceptual basis. It also helps to build intuition about the
behavior of kernel density estimation.

8Note that eliminating the boundary bias does not mean eliminating all bias in the bound-
ary regions. Rather it means that the boundary regions are no more biased than the interior
(non-boundary) regions.
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5.3 Local-Weighted Polynomial Least-Squares Regression

Regression is the problem of reconstructing a function given noisy function es-
timates at a discrete set of points. It is closely related to density estimation
and also su�ers from boundary bias problems. In the regression literature, the
locally-weighted polynomial least-squares regression technique has recently be-
come very popular, in part because it eliminates boundary bias in a natural
way [13]. At each point where we want to estimate the function we �t a poly-
nomial to the function estimates using weighted least-squares. We use a kernel
function to give large weight to nearby data and little or no weight to more dis-
tant data. We then use the value of the polynomial at that point as our estimate
for the function value. Note that we �t a di�erent polynomial at every point
at which we estimate the function. This method is di�erent from the kernel
method in that it uses a weighted least-squares �t rather than a weighted sum.

In applying this method we are free to choose what degree polynomial to
use for our local least-square �ts. For density estimation problems, it turns
out that odd-order polynomials do not have boundary bias, and that low order
polynomials are usually better at �ltering out noise. For these reasons we use
linear, or �rst-order, polynomial �ts.

From basic calculus, any smooth function appears linear or straight if you
look at a small enough piece of the function. Thus, if we can use �ts that
are local enough, we should be able to �t any smooth function accurately. In
practice this is not always achieved and the estimates will be biased to the extent
that the function does not look like a straight line, or linear, over the region of
a local linear �t. The bias will be greatest in regions of high curvature and at
discontinuities in the function. In boundary regions we simply have less nearby
data for our linear least-squares �ts, which makes the results noisier but does
not introduce any additional bias.

In order to apply this technique to our problem we need to transform this
regression method into a density estimation method. We can turn a density
estimation problem into a regression problem by performing a histogram on the
data. Each histogram value is then an estimate of the density function at the bin
center, and we can apply the locally-weighted linear regression method. This
process is illustrated in Figure 5. This would still leave us with the problem of
how to form the histogram bins and how many to use. Instead we eliminate the
histogramming step by taking the limit as the number of histogram bins goes
to in�nity. We call this method local linear density estimation and the details
are presented in Appendix B. One surprising result is that local linear density
estimation is identical to kernel density estimation in the interior, and thus
we can still use the intuition we have gained about kernel density estimation.
However in boundary regions this new method automatically adapts to eliminate
boundary bias.
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Figure 5: Density estimation performed using locally-weighted linear regression
with a �nite number of bins. Samples from a density function (top left) are
histogrammed (top right),and then local linear regression is applied (bottom
right) to produce the estimated density function (bottom left).

5.4 Choosing a bandwidth

In order to use local linear density estimation we need to choose a kernel and
decide how to set the bandwidth parameter. Since this method is so closely
related to kernel density estimation, which is easier to analyze, we will use some
theoretical results about the kernel method to motivate our choices.

The conventional wisdom in the statistics literature [30, p. 43] which is borne
out by our own experience [34], is that the exact shape of the kernel makes very
little di�erence in the quality of the density estimation. However, we can reduce
the computational costs by choosing a kernel that has compact support and is
simple to calculate. For these reasons we have chosen a standard kernel known
as the 2-D Epanechnikov kernel [30, p. 76]:

K(x) =

�
2
� (1� jxj2) if jxj � 1
0 otherwise

(4)

Choosing a good bandwidth is much more di�cult. To do this intelligently
we need to understand the trade o� between bias and variance. It is a well
known result [35, p. 97] that the expected value of kernel density estimation is
given by:

E ~f(x) =

Z
Kh(x � y)f(y)dy (5)
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In other words, our estimate ~f converges, not to the correct function f , but
rather to the correct function convolved with the kernel. This results in bias if
the kernel width is greater than zero and implies that we want our bandwidth
to be as small as possible.

Since we use a �nite amount of data, our solution will also have variance, or
noise. The variance is given by:

Var ~f(x) =
V

n

�Z
Kh(x� y)2f(y)dy

�
� 1

n

�Z
Kh(x � y)f(y)dy

�2

(6)

where V =
R
f(y)dy integrated over all surfaces. We can get the leading term

in the variance by neglecting the second term above, using the Taylor expansion,
f(y) � f(x)+(y�x)f 0(x), using Equation 2, and assuming a symmetric kernel
so that K(x) = K(�x) to �nd:

Var ~f(x) � V
R
K(y)2dy

nh2
f(x) (7)

From this we can see that to reduce the noise we want to use a large bandwidth.
The bandwidth controlled tradeo� between bias and variance is illustrated in
color plate B.

Our heuristic solution to this dilemma is to choose a bandwidth just large
enough to reduce the noise to a imperceptible (or at least tolerable) level. Visual
noise perception corresponds roughly to contrast or relative error 9, therefore
we could achieve a roughly constant level of noise everywhere by making the
variance proportional to f(x)

2
. This would require a continuously changing

bandwidth, but our implementation is currently limited to using a constant
bandwidth over a single surface10. Instead we will make the variance propor-
tional to �fif(x) where �fi is the average value of f over the ith surface. Thus
our heuristic for setting the bandwidth on the ith surface is:

h =

r
CAi

ni�
=

s
CV

n �fi�
(8)

where Ai is the area of the ith surface, ni is the total number of hit points on
this surface, and C is our user settable parameter for adjusting the noise level
which corresponds to the average number of data points within the support of
a kernel. We typically use values for C in the range of four thousand to sixteen
thousand.

5.5 Reconstructing perceptual functions

We have now presented all of the machinery necessary to apply density estima-
tion to the hit points from the particle tracing phase. Recall that each hit point

9This fact is also used in choosing parameters for the decimation phase.
10This bandwidth restriction makes the implementation easier and the computation faster,

but it does not achieve the best solution quality.
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consists of a location Xi and a wavelength �i, and represents a �xed amount of
power �. We could apply density estimation directly to these hit points, ignor-
ing their wavelengths, and reconstruct the incident power density (irradiance),
but this is not the function we want.

Our goal is to display the lighting solution for human observers. Thus we
want to reconstruct the values which most closely correspond to what a human
observer would perceive. First we weight the particles by the surface reectance
to get the reected power (spectral radiant exitance). Since our visual system
perceives luminance and color rather than power, we further weight the parti-
cles to account for this. The standard for human color vision is the CIE 1931
Standard Colormetric Observer [18], which describes color vision in terms of the
XYZ tristimulus values. We can calculate the X, Y, and Z values by weighting
particles by the spectral response functions, �x(�), �y(�), and �z(�) respectively.

We have noticed that the most signi�cant lighting features are usually shad-
ows and highlights, which are largely luminance features. Thus it makes sense
to use a smaller bandwidth for the luminous, or Y, channel and accept some
additional luminance noise in exchange for better resolution of these important
features, but changing the bandwidth also changes the bias. If we simply com-
pute the X, Y, and Z channels at di�erent bandwidths, this changing bias shows
up as distracting color shifts at these features. Instead we compute all three
channels at a larger bandwidth to estimate the color chromaticities [18], x and
y. These chromaticities are then combined with an additional luminous channel
computed at a smaller bandwidth to �nd the XYZ tristimulus values. This al-
lows us to enhance the luminous resolution without introducing unwanted color
artifacts. This technique was used in Color Plates A, F, and G.

We also need to decide how to represent the solution. Since our goal is to
display the solution, we sample the reconstructed function at a mesh of points
and use a piecewise linear approximation. This has the advantage that the
elements can be rendered in hardware as Gouraud-shaded triangles. By the
nature of the density estimation, any features which are much smaller than the
bandwidth will be strongly �ltered or blurred out in the reconstruction. Thus
we can create a mesh of points which is dense enough to capture the features
which are reconstructed. We are not especially worried about generating too
�ne a mesh in this phase since the mesh will be decimated in the next phase. For
textured surfaces we do not want to include the texturing in the illumination
mesh as this would preclude e�ective decimation. Instead we compute these
surfaces as if they were white, or perfect di�use reectors, and then multiply
by the texture at display time [4, 9]. This is an reasonable approximation since
our textures are currently RGB and not spectral.

Once we have chosen the bandwidth and generated the illumination mesh,
we can perform the density estimation at all of the mesh vertices simultaneously
using a single pass through the hit point data. Since we cannot assume that we
can �t the hit point data into physical memory, using only a single pass makes
the implementation simpler and faster. The drawback is that we can only use,
at most, a few bandwidths per surface. We believe that in many cases using
greater bandwidth variation would be worth the additional implementational
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complexity, but this is left as future work.

6 Mesh Decimation

The mesh created by the density estimation phase captures the details in the
solution, but it may be prohibitively large for most applications. An interactive
walkthrough of the solution requires a mesh with few enough triangles to be
rendered in real-time. To meet this requirement, the decimation phase provides
various levels of reduction in the number of triangles while maintaining as much
accuracy and detail as possible. These qualities are de�ned in perceptual terms,
because the goal of a walkthrough is display. The decimation phase therefore
exploits a simple, perceptually motivated calibration technique to minimize the
artifacts introduced as the mesh is reduced.

This perceptual component of the decimation phase augments an approach
based on geometric simpli�cation. Each surface in the scene is planar, so the
mesh that represents the solution on this surface is two dimensional. We call
this 2-D mesh the surface's illumination mesh, MI . For each vertex of this
mesh, the decimation phase adds a third coordinate, z(L), corresponding to the
luminance, L, of the illumination at that vertex. This process transforms MI

into a 3-D geometric mesh,MG. To each suchMG, the decimation phase applies
an algorithm that simpli�es 3-D geometry. The e�ect of such an algorithm is the
removal of vertices whose luminances can be approximated by interpolation from
nearby vertices. Removing the third coordinate of the simpli�edMG transforms
it back into a simpli�ed illumination mesh, M 0

I . Color plate C illustrates this
process. Hughes et al. [16] describe an alternative approach that does not build
a 3-D geometric mesh. We believe, however, that the use of this mesh has
the advantages of aiding intuition and allowing the reuse of previous work in
geometric simpli�cation.

As part of our earlier work [29], we developed a basic implementation of
this approach, which simpli�es MG with an extended version of the Schroeder
et al. geometric simpli�cation algorithm [27]. In its basic form, this algorithm
estimates the cost of each vertex, V , in terms of how much V 's removal would
change the mesh; if the cost is below a threshold, the algorithm removes V
and re-triangulates the resulting hole. Our earlier work extends this algorithm
in two ways. The �rst extension prohibits changes to MG that would produce
overlapping triangles when MG is transformed back into M 0

I . To avoid this
problem, the algorithm removes a vertex only when it can re-triangulate the
resulting hole without creating overhanging ledges (i.e., triangles whose normal
vectors have negative z components). The second extension reorganizes the
algorithm to remove vertices in order of increasing cost. The algorithm uses a
priority queue to maintain this ordering e�ciently. The remainder of this section
describes additional extensions that we have subsequently found important for
reducing perceptible artifacts in M 0

I .

Perceptual issues are signi�cant in our revised approach to computing the
cost of removing a vertex, V . Using the standard Schroeder et al. approach [27],
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the cost is the length of the 3-D vector from V to an approximation for the
new mesh without V . In our context, however, this length mixes the spatial
units of MI 's two dimensions with the luminance units of the added dimension,
z. Our earlier approach [29] requires a user-speci�ed parameter to scale these
units relative to each other, but in general, there is no good way to choose this
parameter. Our current approach avoids the scaling problem by using only the
z component of the vector.

With this approach, the cost measures the change in luminance. It is well
known that people respond to luminance changes in a nonlinear manner. There
are many models for this nonlinear response, as summarized by Sezan et al. [28],
but the accuracy of these models depends on the task and visual conditions. In
our earlier work [29] we tried a standard model, the cube root function, but we
have subsequently obtained better results using our own empirical model tai-
lored to our speci�c application. We conducted informal user studies, described
in Appendix C, to determine conservative and liberal estimates of the percep-
tible change in luminance, �(L), for a baseline luminance, L. The goal is then
to make the added dimension, z, meet the following constraint:

z(L+�(L))� z(L) = 1 (9)

With this constraint, removing a vertex with cost below 1 should produce a
change below the empirical perceptual threshold. The decimation phase is thus
automatically calibrated, freeing the user from guessing cost thresholds at run
time.

The data on perceptible luminance changes from our user studies roughly
�ts a linear model,

�(L) = aL+ b (10)

A problem with this data is that it is in the units of the display monitor, as
opposed to the units of the simulated luminances known to the decimation
phase. The relationship between these units depends on the \white point,"
Lw, which is the simulated luminance that will be displayed at the monitor's
brightest level. Since Lw is a parameter that the user may adjust when the
decimated mesh is displayed, we use a two-pass approach to decimation. The
�rst pass is conservative enough that its results should look acceptable at any
Lw. It uses a lower bound on �(L) that does not change with the scaling
produced by Lw. The simplest way to derive this lower bound is to set b = 0.
In this case, a solution to Equation 9 is

z(L) =
1

log(1 + a)
log(max(L;Lb)) (11)

where Lb is the \black point," the lowest possible luminance; we use Lb =
10�7candelas=m2, which is below the luminance for a moonless overcast night
as quoted by Glassner [11]. We use a = 0:063, the value determined by the
conservative user study with our display conditions, as described in Appendix C.
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Figure 6: The plane that averages the faces adjoining V , and that plane pushed
to the furthest neighboring vertex.

The second pass, which can be run once Lw has been chosen, performs a more
liberal decimation of the results from the conservative pass. The solution to
Equation 9 for this case is

z(L) =
1

log(1 + a)
log(amin(L=Lw; 1) + b) (12)

with our liberal user study indicating a = 0:13 and b = 0:0017 for our viewing
conditions. The decimation phase can take a user-speci�ed parameter, �, and
remove vertices with costs below �. For � > 1, this extension allows additional
passes that further simplify the results of the liberal decimation, for situations
in which simpli�cation is more important than perceptual accuracy.

Once MG is built with the appropriate z, measuring the cost of a vertex,
V , requires approximating what the mesh will be after the removal of V . The
standard Schroeder et al. algorithm uses a local, planar approximation, with
the plane being the area-weighted average of the faces adjoining V . We obtain
better cost estimates by pushing this plane away from V along its normal vector
until it reaches V 's furthest neighboring vertex, as shown in Figure 6. This
extension tends to make the cost more conservative in regions containing shadow
boundaries, thus reducing artifacts in those regions.

The �nal step in the removal of V is triangulation of the hole opened by the
removal. Schroeder et al. [27] describe a simple greedy algorithm that chooses
triangulation edges to maximize triangle aspect ratios. In our experience, fewer
artifacts result if the greedy algorithm instead chooses edges that minimize dif-
ferences between the old and new meshes. To measure the di�erence, we project
each candidate edge, E, onto the triangles from the old mesh and measure the
change in luminance along E, as illustrated in Figure 7.

Each of these new features of the decimation phase improves the quality
of the results, but it is di�cult to rank their relative importance in isolation.
Their advantages are most apparent when they are used together. Color plate D
shows the oor of a small room in three forms: undecimated (55129 vertices,
108710 triangles); decimated with our old approach [29] (265 vertices, 470 tri-
angles); and decimated with the new approach (265 vertices, 457 triangles). We
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V

z

E

Figure 7: The dark region indicates the change in luminance along a candidate
edge, E, projected onto the old mesh for a vertex, V .

constrained the old approach to remove the same number of vertices as the new
approach. Even so, the new approach shows fewer artifacts and looks signi�-
cantly more like the undecimated image. Section 7 shows the results of the new
algorithm on larger, more complicated scenes.

These images are not completely free of artifacts. Some artifacts are due to
the output media; to calibrate the decimation phase, we conducted a user study
on video monitors instead of the printer that produced these images. Other
artifacts are evidence that further work could improve the decimation phase.
Currently, the cost estimate for the removal of a vertex considers e�ects on the
mesh's luminance but not its color. Humans are more responsive to changes
in luminance than to changes in color, so this approach is appropriate in most
cases, but there can be situations in which it would produce visible artifacts.
One solution would be to add a mechanism that detects these artifacts and then
cancels the vertex removal that caused them. The decimation phase would also
bene�t from mechanisms that consider perceptual issues beyond luminance and
color. An important issue is discontinuities in shading that produce perceptible
artifacts, such as Mach bands. Removing a vertex from an illumination mesh
may increase these artifacts, so the decimation phase needs a way to predict
this increase when computing a vertex's removal cost. These improvements in
cost estimation might also work better in conjunction with a more advanced
geometric decimation algorithm such as Hoppe [15].

7 Results

We have implemented all three phases of the algorithm including small-scale
parallel versions of particle tracing and density estimation. Timings are ap-
proximated for an equivalent serial execution on Hewlett-Packard 9000 735/755
workstations (SPECint95 3.27 SPECfp95 3.98).

In order to test the accuracy of our solutions, we have rendered a simple
scene (color plate E) using an undecimated density estimation solution, a path
tracing implementation, andWard's Radiance [36] system. Note that the density
estimation solution was ray traced in order to display the specular surfaces
correctly. It is reassuring that all three methods produce very similiar results.
Also shown are two decimated versions of the density estimation which are
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nearly identical to the undecimated image but which use far fewer triangles.
We have also included solutions for three architectural models displayed

using hardware scan conversion: the Science Center (color plate F), the Alto
Library (color plate A), and Falling Water (color plate G). Surface and trian-
gle counts have been rounded to two signi�cant digits. To choose bandwidths
we used C = 16; 000 for the chromaticities and C = 8; 000 for the additional
luminance channel.

The Science Center consists of about 4,000 initial surfaces. The particle
tracing took 17 hours to produce 200 million particle hits. The density estima-
tion took 11 hours and produced one million triangles. Conservative decimation
reduced this to 150,000 triangles in 30 minutes, and liberal decimation further
reduced this to 33,000 triangles in an additional 8 minutes.

The Alto Library consists of 13,000 initial surfaces. Particle tracing produced
200 million hit points in 47 hours. Density estimation took 10 hours to produce
1.5 million triangles. Conservative decimation reduced this to 330,000 triangles
in 32 minutes and liberal decimation further reduced it to 100,000 triangles in
10 minutes.

The Falling Water model consists of 140,000 initial surfaces. Particle tracing
took 47 hours to produce 225 million hits. Density estimation produced 1.7
million triangles in 11 hours. Conservative decimation reduced this to 490,000
triangles in 47 minutes. Liberal decimation reduced this to 180,000 triangles
in an additional 20 minutes. This is the largest model we have tried, and it
required only sixty megabytes of RAM. Conventional wisdom suggests that this
is an order of magnitude less memory than is required by conventional view-
independent global illumination techniques.

8 Conclusions

The density estimation framework has many advantages which make it a nat-
ural tool for computing view-independent global illumination. By separating
the global transport from the local lighting representation, this framework de-
composes the problem into distinct phases with greatly reduced complexity.
Other bene�ts include non-di�use transport, software modularity, and natural
parallelism.

There are several di�culties in turning the potential of this framework into
a real working system. In this paper we have presented techniques which allow
each of the three phases to be implemented for general polygonal models.

In particle tracing, we have implemented a faithful simulation of geomet-
ric optics including spectral e�ects and non-trivial BRDFs. In density esti-
mation, we have shown how boundary bias can be eliminated using the local
linear method and how this method can be e�ciently implemented on arbitrar-
ily shaped polygons. The density estimation phase translates from the physical
to the perceptual domain and we have derived perceptually motivated heuris-
tics for setting the density estimation parameters. Finally, we have shown how
mesh decimation can be used to produce output which is small enough to be dis-
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played at interactive rates, and we have found perceptually informed heuristics
which make the decimation e�ective while preserving perceived image quality.
We believe that our system as presented is a very appealing way to produce
view-independent global illumination solutions.

8.1 Problems and Future Work

While the present work represents a signi�cant step toward making the den-
sity estimation framework a practical method for computing view-independent
global illumination solutions, it still su�ers from a number of problems and lim-
itations. It is our belief that there is still a lot of opportunity to improve each
phase of the method and that such improvements will greatly reduce many of
these problems. The following is a partial list of current problems.

� Large computational requirements. While we believe that our method
is at least competitive with other view-independent methods, it may be
too expensive for people who are not used to or do not require view-
independent methods.

� Appearance of non-di�use surfaces. An expensive display computation
is required to get the appearance of non-di�use surfaces right, and such
computations are currently too slow for use in interactive walkthroughs.

� Curved surfaces. The method is currently limited to polygonal models.

� Small and/or narrow polygons. The method relies on the ability to collect
and smooth lighting information over nearby surface regions in order to
reduce the noise. If a polygon is too small to permit this then its solution
will contain an unacceptable amount of noise.

� Large variation in illumination over a surface. The bandwidth controls
bias/noise tradeo�, and its proper value varies with illumination level.
We are currently limited to a single bandwidth per surface even if the
illumination level varies considerably over a surface. This can result in
excessive blurring in brighter areas and excessive noise in darker areas of
a polygon.

� Large variation in illumination over the scene. The spatial resolution of
the method varies with illumination level. If some important regions are
much darker than others, we may exhaust our space for storing particle
hits before we get enough particle hits in the dark regions.

� Large surfaces. In parallelizing the density estimation, we currently assign
each surface only one processor. If one surface receives a large proportion
of the total particle hits, it causes a load balancing problem in the parallel
implentation.

Some of the future improvements that we expect are:
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� Weighted particles. By allowing particles to carry di�erent amounts of
power, it becomes possible to use importance sampling techniques in the
particle tracing. The computation could then be steered to use more
particles in important regions and fewer in unimportant regions.

� Error analysis. We believe that a simple but precise error analysis is
feasible for this method. This would not only tell us how good our solution
is, but could also be used to set parameters and steer the computations
to produce better results.

� Continuously varying bandwidths. This would give �ner control over the
noise in the solution and allow a more aggressive reduction of the bias
without introducing visible noise.

� Curved surfaces. We believe that the local polynomial density estimation
methods will provide a nice mathematical basis for extending the density
estimation technique to curved surfaces.

� Reconstructing non-di�use appearance. It is possible to include some
angularly dependent quantities in the density estimation reconstruction,
though it is probably infeasible to reconstruct (or store) complete non-
di�use information for surfaces such as mirrors or glass. Exploring these
trade-o�s is a wide open area for future research.

� Better perceptual model. The decimation still produces some visual arti-
facts. A more complete model of perceptual error could help avoid this
artifacts and achieve greater levels of decimation. The density estimation
could also bene�t from an improved perceptual model.

A Generating nonuniform random variables

Given a one-dimensional probability density function p(x) with domain [a; b),
and a canonical random number � that is uniformly distributed on [0; 1), a
random number x0 with density p is given by:

x0 = P�1(�);

where P is the cumulative probability distribution function associated with p:

P (x) =

Z x

a

p(z)dz:

We call this method the integration-inversion method. This method extends to
multidimensional random variables as described in Glassner [11].

Unfortunately, it is not always possible to �nd analytic forms for P or P�1.
To avoid CPU-intensive numerical integration and function inversion, rejection
techniques can be used. The simplest rejection technique uses an upper bound
C for p such that p(x) � C everywhere.
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p(x)

x=a x=b
y=0

y=C

p(x)

x=a x=b
y=0

y=Cb

ξi+1C

x’=a+ξi(b−1) x’=Pb
−1(ξi)

Cbpb(x’)

ξi+1Cbpb(x’)

Figure 8: The same random seed is used for left: (a) uniform rejection, where the
transformed point is in the grey region and is rejected, and right: (b) nonuniform
rejection, where the transformed point is in the white region and is accepted.
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A random number with density p can be generated from a series of canonical
random pairs (�i; �i+1) by taking x

0 = a+(b�a)�i if C �i+1 < p(x0), and rejecting

this pair otherwise. This process is repeated until a pair is not rejected. This
process is illustrated in Figure 8(a), where (�i; �i+1) are scaled to form a random
point in a rectangle with width b�a and height C. If this point is above p then
it is rejected. If it is below p then its x coordinate is used as the random variable
having density p.

There are two problems with this simple rejection method. The �rst is
that it is hard to stratify the samples, which is why the integration-inversion
technique is usually used. The second is that it will take an expected (C � 1)
rejections before a random number is successfully generated. Strati�cation is
not an important issue for high-dimensional problems, and the ine�ciency of
rejection can be addressed with non-uniform rejection. Non-uniform rejection
uses a bounding probability density function pb(x) and constant Cb such that
p(x) � Cbpb(x) everywhere.

The rejection process �rst generates a random number x0 with density pb
using integration-inversion. This number is accepted if �i+1Cpb(x

0) < p(x0). By
choosing an appropriate pb the number of rejections can be dramatically reduced
over simple inversion for p that have high peaks. This process is illustrated in
Figure 8(b), where �i is used to generate an x coordinate with density pb, and
�i+1 is used to assign a y coordinate such that the (x; y) pair is a uniform random
2D point in the area under the curve y = pb(x). If the point is below p then its
x coordinate is used as the random variable having density p.

B Local Linear Density Estimation

In this appendix we describe how to turn the locally-weighted linear least-
squares regression method into a density estimation method. Regression prob-
lems can be stated as follows: given a set of points fXig and corresponding
(possibly noisy) estimates fYig of an unknown function at these points, try to
reconstruct the function. This is similiar to density estimation except that in
density estimation we only have the points fXig, not the estimates, and we
have to try to reconstruct the function from the density of the points. We can
transform a density estimation problem into a regression problem by chopping
the domain up into a large number of small bins and performing a histogram
on the data. We can then use the bin centers as our points fXig and the his-
togram values give us our fYig estimates of the density function. The histogram
value Yi is just the number of data points in bin i divided by its area, Ai, and
divided by the total number of data points, n. In itself this is not a very good
approximation for the function, but we can use this as input for a regression
method such as locally-weighted linear least-squares regression. This process is
illustrated in Figure 5 for one dimension.

We will work in two dimensions, denoting 2D points in boldface and their
two spatial coordinates by the subscripts u and v. Let xi be the center of the
ith histogram bin, with area Ai and histogram value Yi. Let m be the number
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of bins, and Kh(y) be the kernel function scaled for our choice of bandwidth.
Then we can write the local least squares �t at point x as a matrix equation
using the following matrices. Let B be the matrix whose columns are the basis
functions for a polynomial �t, given in our case by:

B =

2
64
1 [x1 � x]u [x1 � x]v
...

...
...

1 [xm � x]u [xm � x]v

3
75 (13)

W be a diagonal matrix of weights:

W =

2
64
Kh(x1 � x)A1 0 0

0
. . . 0

0 0 Kh(xm � x)Am

3
75 (14)

and � be the vector of coe�cients for the linear polynomial:

� =

2
4�0�u
�v

3
5 (15)

where the �tted polynomial is �0 + �u[y � x]u + �v [y � x]v. Note that our
function estimate at this point, x, will just be the value of �0. Finally, let Y be
the vector of computed histogram values:

Y =

2
64
Y1
...
Ym

3
75 (16)

If the histogram values happened to lie exactly on a plane, we could solve for
� using the equation B� = Y , but in general this equation will have no solution.
We could instead �nd the closest solution in the least squares sense by using the
normal equation BTB� = BTY . However this would be a global least squares
�t. We turn this into a local least squares �t by using a weighting matrix to give
more inuence to nearby values. The locally-weighted least squares �t which
minimizes kW 1=2B� �W 1=2Y k is given by:

BTWB� = BTWY (17)

We can multiply these matrices to �nd:

BTWB =

2
4Q0;0 Q1;0 Q0;1

Q1;0 Q2;0 Q1;1

Q0;1 Q1;1 Q0;2

3
5

Qi;j =

mX
k

Kh(xk � x)Ai([xk � x]u)
i
([xk � x]v)

j
(18)
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and:

BTWY =

2
4

Pm
i Kh(xi � x)AiYiPm

i Kh(xi � x)AiYi[xi � x]uPm
i Kh(xi � x)AiYi[xi � x]v

3
5 (19)

All of these values could be calculated and the matrix equation solved by
standard techniques, and indeed this procedure is often used in the statistics
literature [25]. The di�culty with this is in choosing the number of histogram
bins, m, to use. If we use too few bins, we will have thrown away too much
spatial information, adding a complicated bias to our estimate. If we use too
many bins, the computation becomes too expensive. Analyzing these trade o�s
is di�cult and we know of no reliable automatic way to set this parameter.

Fortunately, there is a way to avoid this whole issue: take the limit as the
number of bins goes to in�nity. In the process, our sums turn into integrals and
our histogram bins become delta functions if they lie exactly on a hit point or
are equal to zero otherwise.

The matrices now become:

BTWB =

2
4M0;0 M1;0 M0;1

M1;0 M2;0 M1;1

M0;1 M1;1 M0;2

3
5

Mi;j =

Z
D

Kh(y � x)([y � x]u)
i
([y � x]v)

j
dy (20)

and:

BTWY =

2
4 1

n

Pn
j Kh(Xj � x)

1
n

Pn
j Kh(Xj � x)[Xj � x]u

1
n

Pn
j Kh(Xj � x)[Xj � x]v

3
5 (21)

where n is the number of hit points, Xj are the hit points, and D is the inter-
section of the support of the kernel and the domain (which is a polygon in our
case).

One extremely important case is when the support of the kernel lies entirely
within the domain. Since we use symmetric kernels, we can easily show that
the o�-diagonal elements of the matrix (20) are zero in this case. Recalling that
kernels are normalized such that

R
Kh(y)dy = 1, our estimate reduces to the

simple form:

~f(x) = �0 =
1

n

nX
j

Kh(Xj � x) (22)

This is exactly equivalent to Equation 3 for standard kernel density estimation.
When we are in a boundary region then the matrix BTWB will generally

not be diagonal and we will need solve it using Equations 17, 20, and 21. Thus
by taking the limit, we have transformed a regression method into a density
estimation method which turns out to be identical to the standard kernel method
in non-boundary regions, but automatically adapts to eliminate boundary bias
in boundary regions.
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Figure 9: Dark shaded areas are the part of a kernel's support a�ected by an
edge (left) and a vertex (right).

B.1 Computing Kernel Moments

There is one large di�culty with the local linear density estimation method
derived above. Solving the integrals in Equation 20, which we will call kernel
moments, is a non-trivial problem in boundary regions. We can take advantage
of the fact that our surfaces are polygons to �nd analytic formulas for these in-
tegrals. We accomplish this by breaking the computation up into three classes:
kernel moments when the support of the kernel lies completely within the poly-
gon, modi�cations to those moments when an edge of the polygon crosses the
support of the kernel, and modi�cations to the edge e�ects when two edges meet
at a vertex within the support of the kernel (see Figure 9). It can be shown that
these three pieces are complete in that when summed they su�ce to calculate
the kernel moments on any arbitrary polygon. Interestingly this construction is
somewhat similiar to the polygon anti-aliasing �lters used in [8].

The entire kernel, edge, and vertex formulas could be solved by a symbolic
math package, such as Mathematica [37]. However the results turn out to be
too complicated, so we will simplify the integrals before solving them. The �rst
simpli�cation is to notice how Equation 20 changes under rotations about the
evaluation point, x. We de�ne three quantities M0, M1, and M2 by:

BTWB =

2
4 M0;0 M1;0 M0;1

M1;0 M2;0 M1;1

M0;1 M1;1 M0;2

3
5 =

�M0 M1

M1
T M2

�
(23)

We could work out the rotation equations directly from the integrals, but
its easier to notice that M0, M1, and M2 are zeroth, �rst, and second order
tensors [7] respectively. Given a coordinate frame and an angle �, we can express
a point, y, in coordinate frame rotated by � as y0 = Ry where:

R =

�
cos � � sin �
sin � cos �

�
(24)

We can express the tensor moments in the rotated coordinate frame by the
following formulas:

M0 =M0
0

M1 =M0
1R

M2 = R�1M0
2R (25)
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Figure 10: To simplify the computation vertex kernels are split into four regions:
two right triangles (T1 and T2) and two half-edges (H1 and H2).
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Figure 11: The three standard shapes for computing kernel moments: edges
(E), right triangles (T), and half-edges (H).

Thus we can compute the edge and vertex moments in a canonical orientation
and then transform them using the above equations. The second simpli�cation
we will use is to split the vertex moments into four pieces as shown in Figure 10.
Now we only need to compute the moments for four simple shapes: the whole
kernel, a vertical edge, a vertical half-edge, and an axis-aligned right triangle.
The last three are shown in canonical position with their relevant parameters
in Figure 11. Note that a, b, c, and d are all signed quantities. As shown they
are all positive, but some care is required to get the signs correct in other cases.
Let us de�ne the following integrals for these pieces of the kernel moments:

MW
i;j =

Z h

�h

Z p
h2�u2

�
p
h2�u2

Kh(u; v)u
ivj dv du (26)

ME
i;j =

Z h

d

Z p
h2�u2

�
p
h2�u2

Kh(u; v)u
ivj dv du (27)

MH
i;j =

Z h

c

Z b
q

h2�u2

b2

0

Kh(u; v)u
ivj dv du (28)
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MT
i;j =

Z c

a

Z bu�a
c�a

0

Kh(u; v)u
ivj dv du (29)

Below are listed the results of solving these integrals for the Epanechnikov
kernel (Equation 4) using Mathematica [37].

MW
0;0 = 1

MW
1;0 = MW

0;1 =MW
1;1 = 0

MW
2;0 = M0;2 =

h2

6

ME
0;0 =

2d3e�5deh2+3h4 arccos( d
h
)

3h4�

ME
1;0 =

8e5

15h4�

ME
0;1 = ME

1;1 = 0

ME
2;0 =

8d5e�14d3eh2+3deh4+3h6 arccos( d
h
)

18h4�

ME
0;2 =

�8d5e+26d3eh2�33deh4+15h6 arccos( d
h
)

90h4�

e =
p
h2 � d2

MH
0;0 =

2c3b�5cbh2+3h4 b

jbj
arccos( c

h
)

6h4�

MH
1;0 =

4b5

15h4�

MH
0;1 =

(h�c)3(3c2+9ch+8h2)
30h4�

MH
2;0 =

8c5b�14c3bh2+3cbh4+3h6 b

jbj
arccos( c

h
)

36h4�

MH
1;1 =

b6

12h4�

MH
0;2 =

�8c5b+26c3bh2�33cbh4+15h6 b

jbj
arccos( c

h
)

180h4�

MT
0;0 =

b(c�a)(�a2�2ac�2c2+5h2)
6h4�

MT
1;0 =

b(c�a)(�3a3�6a2c�8ac�8c3+9ah2+16ch2)
30h4�

MT
0;1 =

b2(c�a)(�a2�3ac�3c2+7h2)
30h4�

MT
2;0 =

b(c�a)(�6a2�12a3c�17a2c2�20ac3�20c4+14a2h2+24ach2+35c2h2)
90h4�

MT
1;1 =

b2(c�a)(�a3�3a2c�5ac2�5c3+4ah2+10ch2)
60h4�

MT
0;2 =

b3(c�a)(�a2�4ac�4c2+9h2)
90h4�



Appeared in ACM Transactions on Graphics, Vol _16, No _3, July 1997, Pages 217-259. 35

::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::
::::::::::::::::::

555555555555555555
555555555555555555
555555555555555555
555555555555555555
555555555555555555
555555555555555555
555555555555555555
555555555555555555
555555555555555555
555555555555555555
555555555555555555

888888888888888888
888888888888888888
888888888888888888
888888888888888888
888888888888888888
888888888888888888
888888888888888888
888888888888888888

Figure 12: The shaded region on the left is a region that is outside the domain,
or polygon, but inside the support of the kernel. When we naively include the
e�ects of these edges we get the �gure on the right, where the singly shaded
regions have been subtracted once and the double shaded region have been
subtracted twice. We can get back to the correct con�guration on the left by
simply adding back the entire area of support for the kernel once.

Assembling these pieces into complete kernel moments is an exacting task,
and a careful case analysis is required to get the various signs correct. We
used a simple Monte Carlo integrator to check against while debugging our
implementation and strongly recommend this practice. Also in some cases it
is necessary to add whole kernel moments in order to get the correct result.
An example is shown in Figure 12. These cases are easily detected since when
�nished, M0;0 should always be non-negative.

Implementing an analytic kernel moment calculator is quite complicated,
but the runtime costs are minimal, because the the complex cases rarely occur
in practice. In our implementation the moment calculations take a negligible
fraction of the total run time.

Other local polynomial methods such as local constant and local quadratic
can easily be derived in a similiar manner. Local quadratic and higher orders
would improve convergence in relatively smooth regions, but the kernel moments
become harder to compute and the artifacts at discontinuities would get worse.
Local constant is simpler to derive and to compute, thus it might be preferable
in some cases such as when exploring extensions to curved surfaces or when the
local linear computations are considered too expensive.

C Mesh Decimation User Study

The decimation phase, described in Section 6, estimates the cost of removing a
vertex from an illumination mesh in terms of a change in luminance. To help
it determine the perceptual importance of a luminance change, the decimation
phase uses a function, �, of luminance, L, with the property that the di�erence
between luminances L +�(L) and L is just perceptible. We derived �(L) by
conducting informal user studies. Users participating in the studies determined
the just-perceptible change in luminance, �i(Li), for a baseline luminance, Li,
drawn from a set of sample luminances. Given the data points, �i(Li), we
constructed the function �(L) by linear regression.
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A session of the user study proceeds as follows. The user sits at a worksta-
tion whose monitor is black except for a window roughly four inches square. The
window displays a gray-scale noise pattern whose lowest luminance is Li. The
pattern of the noise comes from Perlin and Ho�ert's turbulence function [23],
which contains a broad band of spatial frequency components. The height of
the noise above its lowest luminance, Li, is a parameter controlled by the user.
When the user �rst sees the pattern, the height is zero, making the pattern
a uniform gray of luminance Li. The user can increment the height by one
displayable gray-level by pressing a mouse button. We instruct the user to in-
crement the height until the noise just reaches a termination threshold of no
longer looking like \a wall with di�use reectance under uniform illumination;"
at this point, the height is the experimental value of �i(Li). If the user inadver-
tently passes this threshold, he or she has no option of decrementing the height,
but he or she may reset it zero and begin again; this approach ensures that
the user's visual system is adapted to the baseline luminance, Li, which should
encourage conservative estimates of �i(Li). When the user is satis�ed that he
or she has reached the termination threshold, he or she presses a mouse button
to record �i(Li). The study then progresses to the next Li, chosen randomly.
Our study involved a total of 20 values for Li.

In this study, we intentionally describe a conservative termination threshold
when instructing the user. This study therefore produces data points, �i(Li),
that lead to a conservative version of the function �(L), and thus to a con-
servative simpli�cation of the illumination mesh in the decimation phase. As
Section 6 describes, it is also useful to have a more liberal version of �(L) which
allows the decimation phase to further simplify the illumination mesh. To derive
this liberal �(L), we repeat the user study with di�erent instructions for the
termination threshold. In the second study, we instruct the user to consider the
noise to have reached the termination threshold when it looks like \an annoying
deviation from a wall with di�use reectance under uniform illumination."

We conducted our user studies in a room with low ambient lighting, making
the workstation monitor the main source of illumination. To calibrate the radio-
metric transfer function of the monitor, we used the gamma-correction model
proposed by Motta [21]. This model involves two parameters whose values are
chosen by users in two simple visual tests conducted before the user studies
begin. The �rst test allows the user to choose the lowest monitor luminance
that is distinguishable from black, and the second test asks the user to match
gray levels to three dither patterns that approximate shades of gray.

The participating users in our studies were three of this paper's authors.
For each version of the study, we compared the data from the three users and
chose the most conservative �(L). Given this limited participation, and the
informal nature of our experimental procedure in general, our studies should be
interpreted as pilot studies that give useful information but not �nal conclusions.
More rigorous versions of these studies are an important topic for future work.
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