
Accurate Direct Illumination Using
Iterative Adaptive Sampling

Michael Donikian, Bruce Walter, Kavita Bala, Member, IEEE,

Sebastian Fernandez, and Donald P. Greenberg, Member, IEEE

Abstract—This paper introduces a new multipass algorithm for efficiently computing direct illumination in scenes with many lights and

complex occlusion. Images are first divided into 8� 8 pixel blocks and for each point to be shaded within a block, a probability density

function (PDF) is constructed over the lights and sampled to estimate illumination using a small number of shadow rays. Information

from these samples is then aggregated at both the pixel and block level and used to optimize the PDFs for the next pass. Over multiple

passes the PDFs and pixel estimates are updated until convergence. Using aggregation and feedback progressively improves the

sampling and automatically exploits both visibility and spatial coherence. We also use novel extensions for efficient antialiasing. Our

adaptive multipass approach computes accurate direct illumination eight times faster than prior approaches in tests on several

complex scenes.

Index Terms—Raytracing, Monte Carlo, shadowing.

�

1 INTRODUCTION

SCENES in the real-world often contain many area lights. In
computer graphics though, rendering shadows from

multiple area lights can be very expensive. This cost is
dominated by determining visibility which is expensive to
compute and difficult to predict. In this paper, we present a
new direct illumination algorithm based on the following
observation. Even if nearly all lights in a scene make
contributions somewhere in the image, typically, only a
small subset of the lights contribute significantly to the
illumination at any particular point. We use an iterative
multipass algorithm for rendering direct illumination in
complex scenes that exhibit these properties. We support
area lights, point lights, and high dynamic range environ-
ment maps as light sources.

We use probability density functions (PDFs) to randomly
choose lights to evaluate using shadow rays. These are
divided into a uniform PDF and two adaptive PDFs based on
feedback data at both the 8� 8 image block level and the pixel
level. The adaptive PDFs are modified between each pass,
using all sample information from previous passes to refine
our sampling. A weighted combination of these PDFs uses

mostly block information to guide sampling in early passes.
As more samples are collected, the pixel PDFs become
increasingly reliable and used for adaptive sampling.

Creating the image block-by-block gives our algorithm a
compact memory footprint and allows easy parallel proces-
sing. Another important aspect for efficiency is the use of
spatially clustered lights to aggregate visibility information
over groups of lights. This grouping also aids in construct-
ing and sampling accurate PDFs.

Our system uses coherence in image space to reduce the
rendering time for scenes with many area lights and
complex occlusion. We achieve speedups of roughly 8x
for scenes with 131 thousand to 1.5 million polygons and
72-832 lights and illumination from environment maps.

Section 2 summarizes previous work in many light direct
illumination. Section 3 is an overview of our iterative
adaptive sampling. Section 4 describes the algorithm in
detail and extensions for antialiasing. Section 5 presents
results and we conclude in Section 6.

2 PREVIOUS WORK

Direct illumination can often be expensive to compute,
particularly when multiple lights or area lights and complex
occlusion are involved. There have been a variety of
techniques proposed to reduce this cost. Covering all this
literature is beyond the scope of this paper. Instead, we will
focus on the subset of direct illumination research that
solves the problem through sampling.

Ward [1] dealt with the problem of many lights by
sorting them by their potential contribution at each point.
Visibility to the lights was evaluated in descending order
until the total potential contribution of the remainder fell
below some threshold. This avoids some visibility checks,
but does not work well when the brightest lights are
occluded or deal explicitly with area lights.

Shirley et al. [2] divided the scene into cells and, for each
cell, classified the lights into important and unimportant
lists based on some threshold level of illumination. The

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006 353

. M. Donikian is with the 53d Test Support Squadron, 1279 Florida Ave.,
Suite 221, Tyndall Air Force Base, FL 32403.
E-mail: mike@graphics.cornell.edu.

. B. Walter is with the Cornell Program of Computer Graphics, Cornell
University, 588 Rhodes Hall, Ithaca, NY 14853.
E-mail: bjw@graphics.cornell.edu.

. K. Bala is with the Computer Science Department and the Program of
Computer Graphics, Cornell University, 5142 Upson Hall, Ithaca, NY
14853. E-mail: kb@cs.cornell.edu.

. S. Fernandez is with Sportvision Inc., 1240 La Avenida, Mountain View,
CA 94043. E-mail: sebastian.fernandez@gmail.com.

. D.P. Greenberg is with the Program of Computer Graphics, Cornell
University, 580 Rhodes Hall, Ithaca, NY 14853.
E-mail: dpg@graphics.cornell.edu.

Manuscript received 15 Dec. 2004; revised 31 Oct. 2005; accepted 1 Nov.
2005; published online 10 Mar. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0255-1204.

1077-2626/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

important lights were sampled densely while the unim-
portant lights were sampled sparsely. Subsampling the
unimportant lights may still cause visible noise as discussed
in [3]. Fernandez et al. [4] extended this approach and
generated a list of occluding geometry at each geometric
cell. This avoids traversing an acceleration structure for
each shadow ray. Such view-independent approaches can
be reused for multiple viewpoints, but use more storage
and have more problems with nondiffuse surfaces than
view-dependent techniques.

Paquette et al. [5] presented a light hierarchy approach to
rendering scenes with many lights. Light sources were
clustered into a light hierarchy and different levels of the
hierarchy were used depending on the point being
rendered. This allowed them to render scenes with
thousands of lights. However since they do not include
shadowing, it has limited applicability.

Hart et al. [6] used an image-plane-based flood-fill to
propagate blocker information from pixel to pixel. With a
list of the blockers affecting each light at each pixel, and
asssuming polygonal geometry, they analytically computed
soft shadows. Although the soft shadow quality is very
good, the approach can be very expensive when there are
many highly tessellated blockers involved. A similar
blocker propagation approach has also been extended to
handle presampled environment maps [7].

Zaninetti et al. [8] adaptively subdivided area lights,
analytically computing unoccluded regions and using point
sampling of visibility for partially visible regions. The
illumination was sparsely sampled and interpolated for
each visible light. However, interpolation may introduce
error by missing small features.

Kok and Jansen [9] and Scheel et al. [10], [11] showed
how to accelerate the gathering phase of a radiosity
algorithm by detecting which lights had to be explicitly
sampled and which could be interpolated. This can
substantially reduce the computational cost of direct light-
ing in a radiosity setting. However, these algorithms do not
fully address the problem of how to efficiently sample those
lights whose illumination cannot be interpolated.

Wald et al. [12] constructed a probability density
function (PDF) of the lights sources for the current image
using small number of random paths. This PDF is used to
sample the lights over the entire image. This approach
assumes that only small number of lights will contribute to
the illumination over an entire image.

Both Kollig and Keller [13] and Agarwal et al. [14]
demonstrated techniques for efficiently sampling environ-
ment maps to model distant lighting. However, they do not
deal with how to efficiently handle such illumination when
there may be significant occlusion (e.g., Fig. 8).

General Monte Carlo optimizations can also be used.
Stratified or quasirandom sequences (e.g., [15]) improve the
theoretical convergence rate, though in practice, are less
effective for complex integrands [16]. Our approach is
closely related to the VEGAS Monte Carlo method [17], [18]
which iteratively adapts a generic PDF using feedback.
However, we have added many domain specific improve-
ments including light clustering, block PDFs, partial
visibility, and antialiasing optimizations.

Monte Carlo noise can be reduced by applying post-

rendering smoothing operators (e.g., [19], [20], [21]) at the

cost of introducing bias (e.g., potentially blurring real

features). The only bias in our method is possible termina-

tion bias [22] (too few samples taken in some cases).

Standard fixes can eliminate termination bias with some

extra cost. We did not implement them because our tests

did not reveal any significant termination bias effects.
The concurrently developed lightcuts method [23] also

builds a light cluster tree, but uses deterministic adaptive

sampling based on a perceptual metric and analytic upper

bounds with conservative visibility assumptions. Conse-

quently, its cost increases with the degree of light source

occlusion. Our Monte Carlo method with iteratively

adaptive PDFs detects and exploits such occlusion to

outperform lightcuts for scenes with high light source

occlusion, such as our Ponderosa example.

3 OVERVIEW

Computing the direct illumination at a point involves

integrating the contributions from all the lights:

Lð~xxÞ ¼
Z
S

V ð~yyÞ frð~yyÞLeð~yyÞ
cos� cos�

j~xx�~yyj2
d~yy; ð1Þ

where Lð~xxÞ is the exitant radiance reflected from a point ~xx

towards the eye due to direct illumination and S is the set of

light sources. We denote a point on a light source as ~yy with

V () being the visibility of ~yy from ~xx, fr() is the BRDF

(Bidirectional Reflectance Distribution Function) at point ~xx

evaluated for the viewing and light direction, and Le() is the

emitted radiance from ~yy in the direction of ~xx. The last term

is purely geometric and depends on the distance between ~xx

and ~yy and the angles with the surface normals at ~xx and ~yy.
In simple cases, (1) can be solved exactly. However, as the

complexity of the scene, lights, and materials increases, the

cost of an exact solution rapidly becomes prohibitive. The

standard solution is to use Monte Carlo estimation of the

direct illumination, by generating N samples f~yy1;~yy2; . . .~yyNg
on the lights according to a probability density function (PDF)

p() to get:

Lð~xxÞ � 1

N

XN
i¼1

V ð~yyiÞ frð~yyiÞLeð~yyiÞ cos�i cos�i
j~xx�~yyij2

pð~yyiÞ
: ð2Þ

The noise in this estimator and, hence, the number of

samples needed for a sufficiently good estimate is strongly

dependent on the probability function p().

3.1 Choosing Probability Density Functions

The ideal probability function would be zero on nonvisible

samples to lights ~yyi and otherwise exactly proportional to

the numerator in (2). In this case, the terms inside the sum

reduce to a constant, and the estimate is exact even if only

one sample is taken. Unfortunately, computing the ideal

probability function is only achievable and cost effective in

the simplest cases. In practice, an approximation to the ideal

probability is used. The farther the actual probability is

from the ideal probability, the more variance or noise will

354 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006

be in the estimator, and the longer it will take for the results
to converge.

Of all the terms, the visibility term is the most difficult to
predict exactly. A typical technique is to sample light sources
according to an estimate of their maximum possible con-
tribution (assuming full visibility). But, this oversamples light
sources that are occluded. Moreover, even when excluding
visibility, exact bounds can be difficult to compute a priori if
the BRDF, geometry, or light’s directional distribution are
complex. Assuming reasonable sampling [2], visibility will
typically be the major contributor of variance within any
single light source and, therefore, we will take partial
visibility conditions into account when constructing our
PDFs.

Our goal is to start with a simple approximation to the
ideal probability function, and iteratively optimize it using
feedback from the lighting samples computed so far. This
process will adapt the probability based on the local
lighting configuration without requiring extensive precom-
putation or detailed knowledge about the scene. Conditions
like occluded lights are automatically detected statistically
and progressively exploited as their reliability increases.
During early phases, feedback data is aggregated over
larger image regions to generate statistically meaningful
information. As more data becomes available, the adapta-
tion shifts toward smaller regions.

To make our task a little simpler, we will only alter the
probability that a particular light (or cluster) is chosen. We
assume that some standard sampling technique is used to
pick the point within a light once it is chosen, such as area
sampling or the techniques of [2]. For simplicity we have
only discussed area lights, but our system also supports
omnidirectional point lights and high dynamic range
environment maps as lights.

3.2 Iterative Adaptive Sampling

An overview of our algorithm is shown in Fig. 1. First, the
image is divided into 8� 8 blocks for processing, where
each block is computed independently. This enables the use
of aggregate information at the block level while keeping
data structures small.

Each block is converted to a set of points in world space
where direct illumination must be computed. In the
simplest case, this involves shooting one viewing ray per
pixel. If an antialiased image is desired then multiple points
are generated per pixel as discussed in Section 4.4. A block
contains multiple pixels and each pixel contains one or
more points. A block is then computed using a variable
number of passes.

For each point a probability density function is com-
puted over the set of lights and this PDF is sampled a
predetermined number of times. Section 4.3 describes how
lights are clustered to increase the efficiency of this
sampling. The first pass uses simple probability functions
that do not use any feedback information. Subsequent
passes use probability functions that blend these simple
probability functions with probability functions constructed
based on the results of prior samples averaged over the
block and pixel (see Section 4.1).

Next, an estimate for the shading value and variance of
each pixel is computed by combining the results from all

the points associated with the pixel. These results are
combined with the results of any prior passes as described
in Section 4.2. If the combined variance for the pixel is less
than a user-specified target noise threshold, then no further
processing of the pixel is required. Otherwise, more
samples are computed in the next pass for the points
associated with this pixel.

The sampling results from this pass are used to update
the pixel and block statistics used to compute our
probability functions. This improves the sampling prob-
abilities in subsequent passes. Once all the pixels in a block
have finished, all the pixel and block data structures are
cleared and we start processing the next image block until
the image is finished.

4 ALGORITHM IMPLEMENTATION

The ideal block size is scene, image, and resolution
dependent. We chose 8� 8 blocks as big enough to
converge faster than the pixel PDFs while small enough to
remain reasonably locally adaptive.

We begin the processing of each block by finding one or
more intersection points for each pixel. These points are
computed by tracing rays from the camera through a pixel
and finding which surface they intersect in the scene. This
set of points, Xp, is cached for each pixel and reused for
each pass. Section 4.4 discusses a novel approach toward
pixel antialiasing that is particularly well-suited to this

DONIKIAN ET AL.: ACCURATE DIRECT ILLUMINATION USING ITERATIVE ADAPTIVE SAMPLING 355

Fig. 1. Overview of iterative adaptive sampling algorithm.

algorithm. For each point in Xp some standard geometric

tests are also performed to immediately remove some

lights. These include lights on the opposite side of the

surface normal or oriented lights that face away from the

intersection point.

4.1 Constructing the PDFs

For each point x 2 Xp we want to define a PDF specific to

that point. This is done by computing PDFs for each pass

(except the first) based on sample data collected from

previous passes. The PDF for a point is a blending of three

different functions based on sample data. The first pass has

no prior results to use and its purpose is primarily to “seed”

the sample data.
Later passes maintain statistics about the results of prior

lighting samples in order to evolve and improve the

sampling PDFs. This allows the PDFs to automatically

adapt to handle conditions such as occluded lights and

lights causing glossy highlights. The idea is to keep track of

the average contribution and visibility of each light over the

block and at each pixel, then adjust the corresponding PDFs

accordingly.
We can express this process as follows. Let RA

‘;j be the set

of all light evaluations from points in the set A to points on

light ‘ up through pass j. We can think of this set as

consisting of pairs of points f~xxi;~yyig that define a shadow

ray (i.e., ~yyi is a point on the light source and ~xxi is a point

being illuminated). Let Lð~xxi;~yyiÞ be the result of the light

evaluation which is the same as evaluating (2) using just

one sample. The estimated contribution of a light ‘ over a

set A for samples through pass j is:

CA
‘;j ¼

1

RA
‘;j

��� ���
X

f~xxi;~yyig2RA
‘;j

Lð~xxi;~yyiÞ: ð3Þ

We want to assign probabilities to lights based on their

contribution. Our intuition is that we need to consider

partial visibility as well as radiance contribution when

assigning probabilities. To find the optimum probability,

we minimize for variance in terms of contribution and

occlusion percentage. Let u be the visible fraction of a light

when viewed from the point we are trying to render. The

appendix proves that the variance minimizing probability is

proportional to Cffiffi
u
p . The

ffiffiffi
u
p

term changes the relative

weighting of lights and beneficially increases the sampling

of those with fractional occlusion.
Let uA‘;j be a fraction where the numerator is the number

of visible light evaluations and the denominator is the total

number of light evaluations sent from all surface points in

the set A to all sample points on the light (or cluster) ‘ up

through pass j. Thus, the PDF for light ‘ in pass j should be

proportional to:

FA
‘;j�1 ¼

CA
‘;j�1ffiffiffiffiffiffiffiffiffiffiffi
uA‘;j�1

q : ð4Þ

A PDF for light ‘ in pass j can be constructed from the

samples from all prior passes as:

pAj ð‘Þ ¼
FA
‘;j�1P

k2S F
A
k;j�1

; ð5Þ

where S is the set of lights and/or clusters for this point.
This equation is used to compute the pixel and block

PDFs for a pass by setting A to be the points associated with
the pixel or block, respectively. Note that we do not actually
need to keep all the individual light sample results, instead,
we can just keep track of the running sums in (3) for the
block and each pixel in it.

Performance is further improved by separating the pixel
and block statistics into different sets based on the surface
normal of the point being shaded. Normals are categorized
into six sets using a cube decomposition of direction space
aligned with the world space axes (i.e., +X, -X, +Y, -Y, +Z, -Z).
When computing the pixel and block PDFs for a point only
data from points with the same normal classification are used.

To construct the PDF for a point during a particular pass,
we combine together three different PDFs: the two feedback
PDFs pBð‘Þ and pP ð‘Þ based on (5), and a uniform PDF pUð‘Þ
where all clusters have the same probability. These are
combined together using the weights shown in Fig. 2 to get:

Pjð‘Þ ¼ cUj pUð‘Þ þ cBj pBj ð‘Þ þ cPj pPj ð‘Þ: ð6Þ

The exact values of these weights are less important than
maintaining a few important properties. The weights must
sum to one. The initial pass can only use the uniform PDF
because no feedback is yet available. Early passes should
weigh the block PDF, pB, most heavily because it is
averaged over the most data and converges faster. As more
data becomes available, the per-pixel PDF pP becomes more
reliable and should be given larger weight, since it is more
locally adaptive. The weights in Fig. 2 were determined
empirically, but the algorithm is not very sensitive to their
exact values.

4.2 Computing and Using the Pixel Estimate

The pixel result at any pass is a combination of pixel results
from previous passes. Each pass computes a pixel estimate
of the exitant radiance and an associated error estimate for
convergence testing. This section describes how to compute
these estimates across multiple passes.

356 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006

Fig. 2. The weights used to combine PDFs. cPj , cBj , and cUj refer to the
weight assigned to the pixel, block, and uniform PDF for pass j,
respectively. Initially, we use just the uniform PDF. In later passes we
weight the block PDF and the pixel PDF more heavily. Toward the end,
we use the pixel PDF almost exclusively.

The error estimate for pixel p in pass j is computed as the
sample variance, s2

p;j, of all the light samples for that
particular pixel. This sample variance is computed numeri-
cally from these samples. Given this sample variance s2

p;j

and the sample variance computed from the previous
passes s2

p;0 � � � s2
p;j�1, the overall sample variance for the

pixel, s2
p, is then computed as:

s2
p ¼

Xj
i¼0

1

s2
p;i

 !�1

: ð7Þ

The pixel value Lp at the end of pass j, is computed using
all the previous passes and their associated sample
variances. Let Lp;i be the pixel estimate from (2) using only
samples from pass i. Our total pixel estimate is:

Lp ¼
Xj
i¼0

Lp;i
s2
p;i

 !
� s2

p: ð8Þ

This combines pixel and error estimates from multiple
passes such that variance is minimized [24].

Our convergence criterion tests if s2
p=L

2
p is less than a

user-defined threshold t. If this inequality is satisfied, then
that pixel is marked as completed and its final value Lp is
computed using (8). If after any pass, all the pixels in a
block are below the threshold variance, the block is finished.

4.3 Light Clusters

In scenes with many lights, the number of samples required
to generate good PDFs for sampling lights could be quite
large. Given NL light sources in a scene, OðNLÞ samples are
needed to build an accurate PDF. Although PDFs from
sparse sampling data can be generated, the lack of data
from unsampled lights is problematic. We use hierarchical
light clusters to aggregate sample data over multiple light
sources. These clusters exploit spatial coherence by cluster-
ing lights that are spatially near each other. Nearby lights
typically have similar visibility, directions, and distance
from the point they illuminate.

In each pass, samples are computed for at least a few
lights in each cluster. These samples are used to estimate
the contribution and hence sampling probability of the
cluster as a whole. When a cluster is chosen for sampling,
we randomly choose one of its constituent lights based on
their relative intensities. As long as all the lights lie within a
small solid angle of each other, they are likely to have
similar visibility [14] and BRDF values and, thus, choosing
among them solely based on intensity is a reasonable
approach. In our system, we only use clusters whose
bounding sphere subtends a sufficiently small solid angle
from the point to be shaded.

4.3.1 Constructing the Cluster Tree

Since the suitability of a cluster depends on its subtended
solid angle from the point being rendered, our clustering
scheme needs to be locally adaptive. Dynamically comput-
ing a new cluster partitioning for each point could be very
expensive. Thus, we use a global cluster hierarchy to
rapidly compute locally adaptive cluster partitions.

The cluster hierarchy is a tree where the leaves are the
individual lights and the interior nodes are light clusters

that contain exactly the lights below them in the tree. A
greedy bottom up algorithm is used to build the cluster
hierarchy by progressively pairing clusters together starting
with the pair that has the smallest bounding sphere. To
avoid clustering dissimilar lights together we separate out
omnidirectional and oriented lights. Thus, omnidirectional
lights have their own hierarchy and oriented lights are only
clustered with other oriented lights if they have a similar
orientation. In the end, we have: one tree for omnidirec-
tional lights, and six trees for oriented lights—one corre-
sponding to each of the six cardinal directions in world
space (i.e., +X, -X, +Y, -Y, +Z, -Z). For static environments,
the cluster hierarchy is computed only once per scene.

Since the solid angle of environment map regions does
not depend on the illuminated point, they do not need a
tree. We use a static partition of environment maps into
300 regions using the technique of [14]. Otherwise, these
regions are treated analogously to other light clusters.

To choose the clusters to use for illuminating a point, we
traverse down through the tree until we find clusters whose
bounding sphere subtends a sufficiently small user-speci-
fied solid angle from the point to be shaded or until we
reach the individual lights (leaves).

4.4 Adaptive Antialiasing

To antialias an image, we use the standard technique of
supersampling by generating multiple eye ray intersections
per pixel. The degree of aliasing varies inversely with the
number of samples (intersection points) used.

Many adaptive antialiasing algorithms for ray tracing
use adaptive progressive refinement [25] where additional
eye rays are traced and shaded until pixel estimates meet a
variance threshold. Since our iterative adaptive approach
assumes all intersection points are known before we start a
pixel, we cannot use this approach.

Instead, we would like to find a small set of representa-
tive points per pixel that still accurately represents the
discontinuities present in the pixel. Our first priority is to
handle the geometric boundaries since they tend to be the
most visually apparent. Also, since area lights create soft
shadows, shadow antialiasing is less important.

4.4.1 Approach

To antialias our images, while keeping the number of
intersection points low for efficiency, we propose the
following solution. We initially find many intersection
points for each pixel and then group similar intersection
points together to create nonuniform sized subpixel regions.
Each region has a representative intersection point near the
center and an estimate of its subpixel area (see Fig. 3). We
will only compute the illumination for these representative
points. Points are grouped based on geometric similarity
and distance.

We limit the size of these regions to a prespecified
maximum radius (in our case, one-quarter of the pixel
radius). In pixels with no geometric boundaries, this will
generate at least four regions per pixel and should be
sufficient for most shadow antialiasing needs. The number
of regions per pixel increases with the number of geometric
boundaries within the pixel.

DONIKIAN ET AL.: ACCURATE DIRECT ILLUMINATION USING ITERATIVE ADAPTIVE SAMPLING 357

4.4.2 Implementation

To find the antialiasing regions, we trace rays from the eye
through each pixel. We group similar intersection points
into regions according to the following criteria. A ray joins
an existing region if its intersection point: 1) lies in the same
plane as an existing region and has the same material
(BRDF) and 2) lies within the region’s radial extent.
Otherwise, it starts a new region where the first intersection
point becomes the representative point for that region.

The area of a subpixel region is proportional to the
number of eye rays in its group. When sampling the
lighting at a pixel, subpixel regions are chosen randomly
according to their relative areas.

5 RESULTS

In this section, we present results for our direct illumination
algorithm (Iterative Adaptive Sampling) and compare it to
reference solutions in speed and quality.

5.1 Reference Solution Implementation

To judge the effectiveness of our method, we have
computed images for each of our models using a standard
Monte-Carlo algorithm and quasirandom numbers.1 The
reference solutions use a fixed PDF over the light sources
for each point; this PDF is proportional to the light’s
unoccluded irradiance at that point. We also tested a
reference solution with a PDF that weights the lights
sources uniformly, but found that approach was slower by
about a factor of two for our scenes.

This standard approach traces eye rays through each
pixel, computes a PDF for the resulting point, then samples
this PDF a fixed number of times, and evaluates the
resulting shadow rays to the chosen light sources. It
achieves both antialiasing and noise reduction by progres-
sively shooting more eye rays through a pixel until its
estimate converges. Because we use same pixel conver-
gence, or stopping criteria, for both the reference solution
and our method, we can perform equal quality compar-
isons. We also perform equal time comparisons to show
how well the reference solution would perform if given an
equal time budget.

One difficulty in implementing the reference solution is
choosing the number of shadow rays to shoot per eye ray.
Using too few shadow rays increases the number of PDFs
that must be created, while using too many shadow rays
increases costs and can cause pixel aliasing from using too
few eye rays. In the end, we hand-tuned this parameter for
each scene to optimize the reference solution times. Our
multipass algorithm does not suffer from this problem since
we compute the degree of pixel antialiasing before we begin
rendering.

5.2 Quantitative Comparison

Our algorithm performs better than the reference solution
for two main reasons. The primary performance benefit is a
result of evaluating fewer shadow rays. This is possible
because of our adaptive PDFs, which yield lower variance
results. The secondary benefit comes from lower overhead
for PDF construction. By using clusters we do not have to
consider each light individually when constructing PDFs
which is far more efficient in scenes with many lights.

We tested our algorithm on three different models. One
of which, the Kitchen, has two different lighting scenarios,
thus providing us with a total of four testing environments.
The Kitchen model is our simplest scene with 72 area lights
and 338,000 triangles. Kitchen 2 is identical to the Kitchen
except that it also contains lighting from an environment
map which is coming in through windows that are behind
the camera. The third model, Ponderosa is geometrically
simple with only 131 thousand triangles, but it contains
138 point light sources as well as direct lighting from an
environment map with very complicated occlusion. Our
final model, Grand Central Terminal is a model of the Grand
Concourse Lobby of the famous train station in New York
City. It is our most complex model with over 1.5 million
triangles and over 800 light sources, of which 219 are
spherical area light sources. We have summarized the basic
statistics for the four models in Table 1. Renderings of the
four environments are shown in Fig. 4.

We rendered our images at 1; 024� 1; 024 resolution with
antialiasing on a dual-processor 1.7 GHz Pentium 4 Xeon
computer with 1024MB of memory. Dividing the environ-
ment maps into regions and sampling for them is
performed using Structured Importance Sampling [14].
For both Iterative Adaptive Sampling and the reference
solution we stratify the environment map with 300 regions
and use jittering and preintegration. Table 2 shows the
reference image times, equal quality image times using our
algorithm, and the speed ups achieved.

We also show statistics for the average number of shadow
rays per pixel needed by each algorithm in Table 3.

358 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006

Fig. 3. Regions for pixel antialiasing. (a) An 8� 8 pixel block. (b) Closeup
of pixel (3,0) after shooting a set of 32 rays. The rays are grouped (and
color-coded) according to our criteria: All rays of one color hit the same
surface and are close to each other. (c) A false-color visualization shows
regions for this pixel.

1. We used low discrepancy Sobol sequences, but only reset the sequence
once per block to avoid the coherent aliasing artifacts often seen if every
pixel uses exactly the same quasirandom numbers.

TABLE 1
Model Statistics

Evaluating the shadow rays is the most expensive part of
computing direct illumination, and the reduction in the
number of shadow rays accounts for most of the speed up
achieved by our approach. We also get additional savings
from our use of light clusters which have several benefits.
Clusters reduce the size and cost of the PDFs which we need
to create and sample, because there are typically many fewer
clusters than lights, and allow us to better stratify our
sampling.

The number of lights correlates only weakly with cost in
our method. The degree and complexity of light source
occlusion as well as how well the lights cluster has greater
influence over the actual rendering cost.

We also show the average number of antialiasing regions
and rendering passes per pixel in Table 4.

5.3 Qualitative Comparison

For the Grand Central model, we show a side-by-side equal
time and equal quality comparison in Fig. 5. Due to the
limited printing resolution, it is hard to notice any
differences in the renderings. We provide closeup shots of
the images to bring attention to quality differences and
similarities. Notice that there is no perceptible difference in
the equal quality comparison even in the closeup of the soft
shadow region. For the remaining scenes (Fig. 6 and Fig. 7)
we only show equal time image comparisons.

5.4 Environment Map Techniques

Environment map lighting is often rendered by approximat-
ing it by a fixed set of point sources [14]. In scenes with
significant occlusion, however, many point sources may be
needed, as in Fig. 8, where even with 15,000 sources, the
undersampling artifacts have not completely disappeared.
Rendering a 1; 024� 1; 024 Ponderosa image took 24,439 sec-
onds when approximating the environment by 15,000 sources
and using Ward’s adaptive method [1], without antialiasing.
While faster than the reference Monte Carlo solution, this is
4:3� slower than our iterative adaptive solution (see Table 2).
Our solution is also higher quality with antialiasing and
without environment undersampling artifacts.

5.5 Visibility and Occlusion

Table 5 provides details on the visibility of the light sources
and environment map regions in the scenes. Note that for
all scenes, a large majority of the lights and environment
map regions contribute somewhere in the viewpoint. On a
per-pixel level, the visibility statistics are quite different.
The Ponderosa model has the largest disparity where
100 percent of the sources are visible from some point in
the image, but on average, only 4 percent are visible from
any individual point. Fig. 9 is a false-color visualization of
the combined per-pixel visibility of light sources and
environment map regions.

5.6 PDF Adaptation

Fig. 10 shows how our PDF adapts to local lighting conditions
at two different intersection points. One point (x1) has more
open visibility while the other point (x2) is mostly in shadow.
This environment has 832 lights, but it has been reduced to
103 clusters for point x1 and 81 clusters for point x2. In this
figure we can see that the PDF for the first feedback-driven
pass, where the block component PDF is weighted heavily,
varies greatly from the initial uniform PDF. With additional
passes we are able to achieve more accurate PDFs due to a
combination of the greater availability of samples and the
heavier weighting of the pixel PDFs which better capture
local lighting configurations.

DONIKIAN ET AL.: ACCURATE DIRECT ILLUMINATION USING ITERATIVE ADAPTIVE SAMPLING 359

Fig. 4. The four models analyzed for our results.

TABLE 2
Same Quality Rendering Time Performance Results

TABLE 3
Same Quality Light Sample Count Performance Results

TABLE 4
Additional per Pixel Statistics

5.7 Clustering

As described in Section 4.3, clustering reduces the effective

number of lights we have to consider. One issue is choosing

the maximum solid angle for our clusters. In [14], the

authors determine that 0.01 steradians is a conservative

metric for the average visibility feature size. We use a

slightly more aggressive value of 0.02 steradians because
we will sample each cluster multiple times. A higher cluster
size maximum reduces the number of clusters, making PDF
construction more efficient, but may reduce spatial coher-
ence within clusters.

360 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006

Fig. 5. Grand Central Terminal Qualitative Comparison. The bottom row contains closeups showing how the two algorithms compare when rendering
soft shadows caused by many lights and many occluders.

Fig. 6. Kitchen qualitative comparison. These images and closeups
show how our algorithm is better able to capture glossy highlights.

Fig. 7. Ponderosa Qualitative Comparison. In this scene, on average
only 4 percent of the lights are visible at any particular point, although all
the lights are visible somewhere. The closeups show our better
rendering of environment lighting in scenes with complex occlusion.

Table 6 provides statistics on the average number of
clusters per point in each of the four test environments.
Remember that in our system we define a cluster as either a
group of lights or an environment map region.

5.8 Shadow Rays per Pass

We sample the PDFs multiple times per pass based on
the number of clusters, NC . For all passes we sample the
PDF 1:5�NC times per pixel appropriately distributed
according to the subpixel area associated with each
pixel’s intersection points. We choose 1:5�NC because
when combined with stratified sampling, it places at least
one sample per cluster in the initial pass. We also set a
minimum of 50 samples per pass to ensure reasonably
good variance estimates within each pass.

As an optimization, at the end of a pass, we further sample
a pixel if its variance is less than twice the desired variance. In
this case, we continue sampling the pixel using the current
PDFs associated with the points in increments of 25 shadow
rays until we achieve our target variance. This eliminates
some overhead in building PDFs and allows us to sample the
pixel in smaller increments when we are close to reaching
convergence.

5.9 Termination Condition

From Fig. 9 and Fig. 11, we can see that the most difficult
pixels to render are those that have the greatest amount of
occlusion. Though it may seem counter-intuitive, rendering
time increases as the number of contributing light sources for
each pixel decreases. The required number of light samples
and shadow ray evaluations needed to reach convergence for
a dark pixel can be unreasonably large, especially if the pixel
is near the black point.2 This is because our metric of relative
sample variance is based on Weber’s Law, which states that
the amount of error the human visual system can perceive in a
pixel is proportional to the base luminance of the pixel. This
error tolerance is far too conservative for very dark pixels
because the limiting factor is actually our display device at
those low luminances.

To prevent unnecessary oversampling, we apply a max-
imum cutoff on the number of shadow ray evaluations for a
pixel. For our algorithm, we set a maximum of 15 passes. We
chose this maximum because we found that the images do not
show any perceptible improvement after this. For the
reference solution we set a maximum of 20,000 shadow rays.
The ideal solution would be to use a more sophisticated
stopping criterion.

On the other hand, it is also important not to prema-
turely label a pixel as black simply because all shadow rays
evaluated so far were occluded. For both our algorithm and
the reference solution, we require a minimum number of
shadow ray evaluations before determining that a pixel is
completely in shadow and therefore black to prevent black
speckling in the images.

Since our adaptive algorithm aggregates sample data
across multiple pixels and multiple light sources, we can
more reliably determine if a pixel is indeed black. In our

DONIKIAN ET AL.: ACCURATE DIRECT ILLUMINATION USING ITERATIVE ADAPTIVE SAMPLING 361

Fig. 8. Comparison with point source approximation of environment map
[14]. The 300 source approximation has severe undersampling artifacts
which can be reduced by using more sources. Even with 15,000 sources,
some undersampling artifacts are still visible.

2. The black point is the pixel intensity below which all values are
mapped to black.

TABLE 5
Visibility Statistics

Fig. 9. Average light source visibility false color visualizations. Blue
represents surfaces where a great majority of the lights are occluded while
red represents surfaces that have a greater number of contributing lights.

algorithm, if we have not sampled a visible light after at least
three passes and 250 shadow rays, we stop sampling the pixel
and set it to black. This works very well in almost all situations
and produced no false-positives. In both the Grand Central
and Ponderosa scenes, the reference solution has difficulty in
reliably detecting a fully occluded surface within a pixel
unless given the much larger minimum threshold of
2,500 shadow rays. The optimum number for the reference
solution is highly scene dependent, but in order to provide a
valid comparison, we performed several renderings and set
the value as low as possible for each scene.

6 CONCLUSIONS

We have presented a new iterative adaptive sampling
technique for computing accurate direct illumination. It

works with virtually any scene even in the presence of
complicated geometry, arbitrary BRDFs, many light sources,
and complex varying occlusion. Because it is based on
feedback, it requires only minimal preprocessing. We have
shown that our approach is roughly eight times faster than the
standard Monte-Carlo approaches for several complex
scenes with significant occlusion when producing images of
equal quality. We have also shown how our feedback
approach can be integrated with a suitable pixel antialiasing
technique and how to best account for partial occlusion in
sampling probabilities. We believe that our approach
provides a significant advance over the state of the art for
computing accurate direct illumination in scenes with
complex occlusion.

APPENDIX

MINIMIZING CLUSTER VARIANCE

In this appendix, we derive how to modify our light sampling
PDFs to minimize variance in cases of partial visibility. We
assume that for each point being shaded the exitant radiance
due to the light source is uniform across the source and that
the visibility is the only source of variance. Note that our
algorithm does not depend on this assumption but, in
practice, visibility is typically the largest source of variance.

Consider a point illuminated by two light sources that if
fully visible would contribute exitant radiances L1 and L2,
respectively. If each light is partially visible by some
amount ui, then exitant radiance due to each light will be
u1L1 and u2L2. We want to find the distribution of samples
between the lights that minimizes variance. Let p be the
probability of sampling the first light and 1� p be the

362 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006

Fig. 10. (a) A rendering of Grand Central Terminal with two points
highlighted. (b), (c), (d), and (e) The adaptation of PDFs for the two
points. We have omitted the initial PDF (pass 0) for both passes since it
is just uniform for all lights. Point x1 requires two additional passes, while
point x2 requires six additional passes.

TABLE 6
Clustering Statistics

Fig. 11. Number of rendering passes performed per pixel.

probability of sampling the second. We derive the following
cases for the contribution M:

. If L1 is picked (probability: p):

- If L1 is visible (probability: u1), M ¼ L1

p .
- If L1 is blocked (probability: 1� u1), M ¼ 0.

. If L2 is picked (probability: 1� p):

- If L2 is visible (probability: u2), M ¼ L2

1�p .
- If L2 is blocked (probability: 1� u2), M ¼ 0.

We can now compute the variance, using the following
formula: �2ðfÞ ¼ hf2i � hfi2. In our case:

hfi ¼ u1p�
L1

p
þ ð1� u1Þp� 0þ

u2ð1� pÞ �
L2

1� pþ ð1� u2Þð1� pÞ � 0

¼ u1L1 þ u2L2

hf2i ¼ u1p�
L1

p

� �2

þð1� u1Þp� ð0Þ2þ

u2ð1� pÞ �
L2

1� p

� �2

þð1� u2Þð1� pÞ � ð0Þ2

¼ u1L
2
1

p
þ u2L

2
2

1� p :

To determine the p that minimizes variance, we differ-
entiate �2 with respect to p and set the result equal to zero.
We find that:

p ¼
ffiffiffiffiffi
u1
p

L1ffiffiffiffiffi
u1
p

L1 þ
ffiffiffiffiffi
u2
p

L2

1� p ¼
ffiffiffiffiffi
u2
p

L2ffiffiffiffiffi
u1
p

L1 þ
ffiffiffiffiffi
u2
p

L2
:

In general, for any number of light sources the probability
pi for light i that minimizes the variance is: pi /

ffiffiffiffiffi
ui
p

Li. IfC is
the contribution of a light source according to our sample data
(which already contains the visibility term) and u is the
unoccluded fraction of the light (also according to sample
data) then,C ¼ uL (assuming the exitant radiance is uniform
across the source). Therefore, our probability of selecting a
light should be proportional to

ffiffiffi
u
p

L ¼ Cffiffi
u
p .

ACKNOWLEDGMENTS

Thanks for the models go to Jeremiah Fairbanks (Kitchen),
Moreno Piccolotto, Yasemin Kologlu, Anne Briggs, Dana
Getman (Grand Central), and Lightscape (Ponderosa). This
work was supported by US National Science Foundation
grant ACI-0205438 and Intel Corporation. The views
expressed in this article are those of the authors and do
not reflect the official policy or position of the US Air Force,
Department of Defense, or the US Government.

REFERENCES

[1] G. Ward, “Adaptive Shadow Testing for Ray Tracing,” Proc.
Second Eurographics Workshop Rendering, pp. 11-20, 1994.

[2] P. Shirley, C. Wang, and K. Zimmermann, “Monte Carlo
Techniques for Direct Lighting Calculations,” ACM Trans.
Graphics, vol. 15, no. 1, Jan. 1996.

[3] K. Zimmerman and P. Shirley, “A Two-Pass Realistic Image
Synthesis Method for Complex Scenes,” Proc. Eurographics
Rendering Workshop, pp. 284-295, June 1995.

[4] S. Fernandez, K. Bala, and D.P. Greenberg, “Local Illumination
Environments for Direct Lighting Acceleration,” Proc. 13th
Eurographics Workshop Rendering, pp. 7-14, June 2002.

[5] E. Paquette, P. Poulin, and G. Drettakis, “A Light Hierarchy for
Fast Rendering of Scenes with Many Lights,” Proc. Eurographics
’98, vol. 17, no. 3, Sept. 1998.

[6] D. Hart, P. Dutré, and D. Greenberg, “Direct Illumination with
Lazy Visibility Evaluation,” Computer Graphics (SIGGRAPH ’99
Proc.), pp. 147-154, Aug. 1999.

[7] A. Ben-Artzi, R. Ramamoorthi, and M. Agrawala, “Efficient
Shadows from Sampled Environment Maps,” Technical Report
CUCS-025-04, Columbia Univ., June 2004.

[8] J. Zaninetti, P. Boy, and B. Peroche, “An Adaptive Method for
Area Light Sources and Daylight in Ray Tracing,” Computer
Graphics Forum, vol. 18, no. 3, pp. 139-150, Sept. 1999.

[9] A.J.F. Kok and F.W. Jansen, “Source Selection for the Direct
Lighting Computation in Global Illumination,” Photorealistic
Rendering in Computer Graphics, P. Brunet and F.W. Jansen, eds.,
pp. 75-82, 1994.

[10] A. Scheel, M. Stamminger, and H.-P. Seidel, “Thrifty Final Gather
for Radiosity,” Rendering Techniques 2001: Proc. 12th Eurographics
Workshop Rendering, pp. 1-12, June 2001.

[11] A. Scheel, M. Stamminger, and H. Seidel, “Grid Based Final
Gather for Radiosity on Complex Clustered Scenes,” Computer
Graphics Forum, vol. 21, no. 3, pp. 547-556, 2002.

[12] I. Wald, C. Benthin, and P. Slusallek, “Interactive Global
Illumination in Complex and Highly Occluded Environments,”
Rendering Techniques 2003: Proc. Eurographics Symp. Rendering,
pp. 74-81, June 2003.

[13] T. Kollig and A. Keller, “Efficient Illumination by High Dynamic
Range Images,” Rendering Techniques 2003: Proc. Eurographics
Symp. Rendering, pp. 45-51, June 2003.

[14] S. Agarwal, R. Ramamoorthi, S. Belongie, and H.W. Jensen,
“Structured Importance Sampling of Environment Maps,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 605-612, July 2003.

[15] T. Kollig and A. Keller, “Efficient Multidimensional Sampling,”
Computer Graphics Forum, vol. 21, no. 3, pp. 557-564, 2002.

[16] D.P. Mitchell, “Consequences of Stratified Sampling in Graphics,”
Computer Graphics (Proc. SIGGRAPH ’96), pp. 277-280, Aug. 1996.

[17] G.P. Lepage, “A New Algorithm for Adaptive Multidimensional
Integration,” J. Computational Physics, vol. 27, pp. 192-203, 1978.

[18] W. Leeson and S. Collins, “Yet Another Rendering Framework,”
Technical Report TCD-CS-1999-41, Trinity College, June 1999.

[19] H.E. Rushmeier and G.J. Ward, “Energy Preserving Non-Linear
Filters,” Computer Graphics (Proc. SIGGRAPH ’94), pp. 131-138, July
1994.

[20] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek,
“Interactive Global Illumination Using Fast Ray Tracing,” Proc.
13th Eurographics Workshop Rendering, pp. 15-24, June 2002.

[21] R. Xu and S.N. Pattanaik, “A Novel Monte Carlo Noise Reduction
Operator,” IEEE Computer Graphics and Applications, vol. 25, no. 2,
pp. 31-35, Mar./Apr. 2005.

[22] D.B. Kirk and J. Arvo, “Unbiased Sampling Techniques for Image
Synthesis,” Computer Graphics (Proc. SIGGRAPH ’91), vol. 25, no. 4,
pp. 153-156, July 1991.

[23] B. Walter, S. Fernandez, A. Arbree, K. Bala, M. Donikian, and D.
Greenberg, “Lightcuts: A Scalable Approach to Illumination,”
ACM Trans. Graphics, vol. 24, no. 3, Aug. 2005.

[24] P. Dutre, P. Bekaert, and K. Bala, Advanced Global Illumination.
Natick, Mass.: AK Peters, 2003.

[25] J. Painter and K. Sloan, “Antialiased Ray Tracing by Adaptive
Progressive Refinement,” Computer Graphics (Proc. SIGGRAPH
’89), vol. 23, no. 3, pp. 281-288, July 1989.

DONIKIAN ET AL.: ACCURATE DIRECT ILLUMINATION USING ITERATIVE ADAPTIVE SAMPLING 363

Michael Donikian received the BS degree in
computer science from Cornell University in
2002. He also received the Master’s degree
from the Cornell University Program of Compu-
ter Graphics under an Air Force Institute of
Technology sponsorship. He currently works at
Tyndall Air Force Base, Florida as a commu-
nications officer for the 53d Test Support
Squadron.

Bruce Walter received the BA degree in
computer science and physics from Williams
College in 1991 and the PhD degree in computer
science from Cornell University in 1998. He is a
research associate in the Cornell Program of
Computer Graphics. His research focus is
realistic rendering in complex environments
and interactive techniques. He was previously
a postdoctorate with the iMagis group in
Grenoble, France and the lead developer for

the initial versions of the trueSpace product at Caligari Corp.

Kavita Bala received the BTech degree from the
Indian Institute of Technology (IIT, Bombay),
and the SM and PhD degrees from the
Massachusetts Institute of Technology (MIT).
She is an assistant professor in the Computer
Science Department and Program of Computer
Graphics at Cornell University. She specializes
in interactive computer graphics, leading several
research projects in interactive rendering, global
illumination, and image-based modeling and

texturing. In 2005, she cochaired the Eurographics Symposium on
Rendering (EGSR); she has also served on numerous program
committees including SIGGRAPH, the Point-Based Symposium, and
Graphics Interface. She is a coauthor of the graduate textbook
Advanced Global Illumination. She is a member of the IEEE and the
IEEE Computer Society.

Sebastian Fernandez received the PhD degree
in computer science from Cornell University in
2004. Previously, he received the BS degree in
electrical engineering and computer science
from the University of California at Berkeley in
1994. His research interests include the model-
ing and rendering of complex environments. He
is currently working at Sportvision Inc. on real-
time sports data visualization.

Donald P. Greenberg is the Jacob Gould
Shurman Professor of Computer Graphics and
the Director of the Program of Computer
Graphics at Cornell University. He has been a
pioneering researcher in computer graphics
since 1965 and a recipient of the ACM Steven
Coons Award. He was the founding director of
the US National Science Foundation Science
and Technology Center for Computer Graphics
and Scientific Visualization and the originator

and former director of the Computer Aided Design Instructional Facility
at Cornell University. His specialties include real time realistic image
generation, geometric modeling, and color science. He presently
teaches the computer graphics courses in computer science, compu-
ter-aided design in architecture, computer animation in art, and
technology strategy in the Business School. He is a member of the
IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

364 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

