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Introduction

The question of how the color of a substrate is changed by the application of a
coat of paint of specified composition and thickness, and especially the ques-
tion of what thickness of paint is needed to obscure the substrate, has, in view
of its great practical importance, already been the subject of several experimen-
tal studies. Theoretical studies of this question, on the other hand, have been
lacking.1 The recently published computations of light scattering of opaque
glasses etc.2, despite the apparent degree of analogy, cannot be applied to the
case of paint coatings without further work. This is because these calculations
consider only the quantity of light passing through the scattering layer; this has
no direct relation to the quantity of light thrown back by a scattering layer over
a reflective substrate, which is the only quantity of interest when considering
coatings.

The present article presents a first attempt at a theoretical treatment of the
optics of coatings. Equations are derived from a general differential relation of
the distribution of light within the coating that presents the optical behavior
of a coating in detail and allow it to be quantified. The explanations relate
primarily to matte, uncolored coatings — and among these preferably to white
and light gray opaque coatings — and only touch on the general case of colored
coatings. Glossy coatings are not considered.

1 The fundamental differential equations

Consider an achromatic (gray or white), matte, planar parallel coating of thick-
ness X , which is illuminated by diffuse light. The light incident on the sur-
face of the coating has intensity I , of which the portion HI = J is reflected
[H = Helligkeit (albedo) of the coating]. At an arbitrary point inside the coat-
ing layer, x length units from the substrate, call the intensity of the light going

1Regarding the approach of Ostwald, see note 6.
2M. Gurevič, Physik. Zeitschr. 31 (1930), 753.
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downward i, the intensity of the light going upward (through reflection, re-
fraction, and diffraction) j.3 An infinitesimal layer of the coating now absorbs
and scatters a certain constant portion sdx+rdx of all the light passing through
it, where s, the absorption constant and r, the scattering constant, are specific
constants of the coating under consideration. In passing through the layer dx,
i thus will decrease by

(r + s)i dx,

and j (since the upward-going, already scattered light now will be scattered
downward) analogously will decrease by

(r + s)j dx.

If one considers that lost intensity due to scattering (not, though, that lost to
absorption!) of the downward-going light adds to the upward-going light and
vice versa, the following differential equations result:

−di = −(r + s)i dx + r j dx (1)
dj = −(r + s)j dx + r i dx

(The sign of di is negative because the direction in which it decreases is oppo-
site to the direction in which x is computed.) To solve, it is useful to divide the
differential equations by i and j and then add them:

−di

i
= −(r + s)dx + r

j

i
dx,

dj

j
= −(r + s)dx + r

i

j
dx,

dj

j
− di

i
= d ln

j

i
= −2(r + s)dx +

(
i

j
+

j

i

)
r dx

or, if one defines j
i = h (analogous to J

I = H):

d lnh =
dh

h
= −2(r + s)dx +

(
1
h

+ h

)
r dx,

dh = [rh2 − 2(r + s)h + r]dx;∫
dh

h2 − 2 r+s
r h + 1

= −r

∫
dx.

The integral can be solved directly by partial fraction decomposition; it is ex-
pedient to integrate over the entire thickness of the layer. The corresponding
limits are:

x = X . . . h = H [albedo of the top coating surface]

x = 0 . . . h = H ′ [albedo of the substrate].
3Only two spatial directions are considered here, to avoid complicating the calculation hope-

lessly. In fact, reflection in all directions results. The resultant error is reduced the closer the
illumination approaches an ideal diffuse and the smaller the differences of the distribution of light
shows over the different spatial directions from coating layer to coating layer: i.e. the more matte
the coating is. Gurevič, loc. cit., uses the same simplification.
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The integration, if one substitutes

r + s

r
= 1 +

s

r
= a, (2)

results in the following equation:

ln

(
H − a −√

a2 − 1
) (

H ′ − a +
√

a2 − 1
)

(
H ′ − a −√

a2 − 1
) (

H − a +
√

a2 − 1
) =

2rX
√

a2 − 1. (3)

2 The albedo of an infinitely thick coating

The albedo H∞ of an infinitely thick coating layer, or, practically speaking, a
layer thicker than the covering coat, is found by setting X = ∞ in Equation 3
above and solving for H :

H∞ = [H ]X=∞ = a −
√

a2 − 1

= 1 +
s

r
−

√
s2

r2
+ 2

s

r
(4)

H∞ is therefore solely a function of s/r. The appearance of an achromatic
covering layer consequently depends only on the ratio between absorption and
scattering constants, but not in any way on the absolute numerical values of
these constants.

Equation 4 also illustrates at the same time the effect of adding a strongly
colored pigment — e.g. lampblack — to a white or light-colored paint. Since
the specific absorption of the paint must increase proportionally to the amount
of lampblack etc., but the scattering characteristics are practically unaltered (as
long as we consider strongly coloring additives in such small quantities that the
structure of the paint is not influenced), s/r is a directly proportional measure
of the amount of lampblack added.

The relationship of Equation 4 is shown graphically in Figure 1. To make
the H∞ axis correspond to the steps of physiological sensation, it is drawn
in logarithmic scale according to Fechner’s Law. The figure beautifully illus-
trates the qualitatively familiar fact that a pure white paint is extraordinarily
sensitive to minimal traces of coloring additives or impurities. The trend of
the curve shows that this sensitivity becomes considerably less as the albedo
decreases from that of a technical white (0.8) to that of a light gray (0.5), but
that it becomes many times greater if one goes from technical to ideal white
(H∞ = 1.0). This is the source of the difficulty of realizing a white surface that
more or less approaches ideal white.
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Figure 1: Albedo of a very thick coating as it depends on amount of added
lampblack. s = absorption, r = scattering

3 The albedo of a coating of finite thickness

By transforming Equation 4 the following expressions result, as a simple con-
sideration shows:

a =
1
2

(
1

H∞
+ H∞

)

and √
a2 − 1 =

1
2

(
1

H∞
− H∞

)
.

By substituting these relations in Equation 3, which was obtained by solving
the differential equations, and so eliminating a, one obtains

ln
(H − 1

H∞
)(H ′ − H∞)

(H ′ − 1
H∞ )(H − H∞)

= rX(
1

H∞
− H∞)

and, solving for H :

H =
1

H∞
(H ′ − H∞) − H∞

(
H ′ − 1

H∞

)
erX( 1

H∞ −H∞)

(H ′ − H∞) − (H ′ − 1
H∞

)erX( 1
H∞ −H∞)

. (5)

This is now the general equation for the albedo of a finitely thick — or practi-
cally speaking: non-covering — achromatic coating on a substrate of arbitrary
albedo. One discerns that the albedo of the coating depends on the intrinsic
albedo H∞, the reflection constant r of the coating material, and the coating
thickness X as well as on the albedo H ′ of the substrate. r and X nevertheless
appear only together as a product, so the coating (apart from the substrate) is
characterized by two parameters, H∞ and rX .
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Figure 2: Albedo of a coating on black substrate as a function of the optical
thickness of the coating, at various limiting values H∞ for very great thickness

The fact that r and X appear only as their product in Equation 5 and s does
not appear directly, but only in the form of the magnitude of H∞, correlates
with the practical experience that a paint can, within certain limits4, be thinned
with a colorless and non-scattering binder without altering the albedo of the
coating, provided that the thinned paint is applied to the same surface as the
unthinned paint. Specifically, the thinning changes s and r in inverse propor-
tion to the volume4, and X in direct proportion to the volume; since s and r
decrease in the same sense, s/r and thus H∞ remain constant, since r and X
change in opposite sense, rX also remains unchanged and with them also the
albedo H of the paint.

For the case of a black substrate (H ′ = 0), Equation 5 simplifies to the fol-
lowing:

H =
erX( 1

H∞ −H∞) − 1
1

H∞
erX( 1

H∞ −H∞) − H∞
(6)

The curves in Figure 2, computed from this equation, show H (again in log-
arithmic scale) as a function of rX for the especially characteristic case of light

4As long as the specific structure of the coating is not thus influenced.
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gray, practically white paints. The diagram shows that the curves all climb ex-
traordinarily steeply initially with increasing coating thickness X (or with in-
creasing scattering constant r). The curves branch off from this common steep
part of the curve, beginning with the darker and then, in order, the lighter
paints; they turn sharply and asymptotically approach the final values H∞.
The darker paints very rapidly approach this limit extraordinarily closely; with
increasing intrinsic albedo H∞ the asymptotic approach takes place more and
more slowly, especially as H∞ exceeds the value 0.9 or even reaches 1. These
differences in curve characteristics have, as will be shown, a great influence on
the covering power of the paint.

Because of the steep slope of the curves, the simplified Equation 6, which
was derived for an absolutely black substrate, also holds practically for a sub-
strate that deviates considerably from black: even for a relatively light sub-
strate, as long as H and H ′ differ considerably. For example, to produce a coat-
ing of albedo H = 0.75 on a black substrate with a paint having an intrinsic
albedo H∞ = 0.8 requires a coating only 1.03 times as thick as on a medium-
gray substrate of H ′ = 0.1. The error that results from using Equation 6 instead
of the rigorous Equation 5 thus amounts to only 3%. The error naturally be-
comes much smaller still if H′ does not deviate so strongly from absolute black
and if, as is the case with the covering power measurement described later, H
and H∞ differ only very little (approximately around 1%).

4 The special case s = 0 (ideal white paint)

For the limiting case of an ideal white paint (s = 0, H∞ = 1), the equations
5 and 6 lead to an indeterminate form. It is therefore useful to return to the
differential equations 1, which read as follows for s = 0 :

−di = −ridx + rjdx, (7)
dj = −rjdx + ridx

The integration is very simple here and leads to the expression

H =
(1 − H ′)rX + H ′

(1 − H ′)rX + 1
. (8)

When we set H ′ = 0 in this equation (black substrate), it takes the following
particularly simple form:

H =
rX

rX + 1
. 5) (9)

5 The special case r = 0 (glaze coating)

For the second limiting case, that of a pure glazing (non-scattering) coating, it
is also useful to start directly from the differential equations, which simplify

5The curve for H∞ = 1 was computed with Equation 9.
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here, by setting r = 0, to

−di = −sidx, (10)
dj = −sjdx.

The integration results, as is expected for this case, in the exponential function

H = H ′e−2sX . 6) (11)

For the infinitely thick coating, Equation 11 yields the plausible value

H∞ = 0.

An infinitely thick, completely transparent coating presents, by the way, the
only opportunity to generate an absolutely black surface by painting. One is is
easily convinced of this by setting H∞ = 0 in Equation 4. The equation is sat-
isfied only if s = ∞ or r = 0. Since the absorption cannot be increased without
limit, r = 0 is really the requirement for H∞ = 0. Practically, the production
of a coating that even approaches absolute black runs, as is known, unto insu-
perable difficulties. Besides the fact that it is already difficult to prevent every
scattering of light within the coating, the black of the painted surface will be
immediately very heavily degraded by the smallest (unavoidable) amount of
brighter dust. The previously mentioned very steep initial slope of the curves
in Figure 2 (Section 3) teaches that a black surface is extraordinarily sensitive in
this way, and that this sensitivity continues to climb the closer the approach to
absolute black. It can be seen from a comparison of Figures 2 and 1 that — as
supported by experience — realizing an absolute black is even more difficult
than realizing an absolute white. (compare Section 2).7

6 Covering power: definitions

Various definitions are in use for the covering power of white and light gray
paints (which will primarily be considered here)8; only the two most important
and really the only rational of these definitions are considered here. These
signify the covering power as that area of black substrate covered by a unit
quantity of paint, if the coating cannot be distinguished by the eye

a) from an infinitely thick layer produced of the same material,

b) from an equally thick layer of the same material produced on a white sub-
strate.

6Wilhelm Ostwald (Sammelschrift “Die Farbe” Number 19 (1921)) also uses an exponential
function for opaque paints, because he does not distinguish between absorption and scattering.
Only in a later paper [“Die Farbe” Number 31 (1922)] does Ostwald distinguish “covering” and
“coloring”, but without revisiting the relation of coating thickness to albedo.

7Keep in mind that the lower edge of Figure 2 represents not absolute black, which lies at
infinity on the logarithmic scale, but a medium gray (H∞ = 0.1).

8The covering power of darker paints is always so high that it almost never can be practically
exploited. Because of this, it plays a subordinate role in the evaluation of these paints.
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The very common “Kryptometer” covering-power instrument from Pfund re-
lies on definition a). All those methods of measuring covering power in which
a contrasting substrate (checkerboard pattern etc.) is made to vanish depend
on definition b).

The unit quantity of paint in these definitions can be either the weight or
volume unit of paint itself or the weight unit of binder-free pigment. Which
form is the most rational depends on the circumstances and will not be dis-
cussed here; since the composition of the paint is not otherwise touched in the
current treatment, the the covering power will subsequently calculated simply
on the basis of the paint volume. This type of expression also has the advan-
tage of simplicity, because the covering power is given here directly by the
reciprocal thickness of the covering coating:

Covering Power =
F

VD
=

F

FXD
=

1
XD

. (12)

(F = area covered, VD = volume, XD = thickness of the coating required for
covering.)

7 “Kryptometer” covering power

The definition a) in the previous section requires that, in the covering case, the
albedo of the coating on a black substrate9 is just indistinguishable by eye from
that of an infinitely thick coating. The following relationship must therefore
hold, if HD is the albedo of the covering layer and S is the threshold of the eye:

ln
H∞
HD

= S.

Since S is very small compared to 1, one can replace the equation above with
the following, with sufficient accuracy:

H∞ − HD

HD
= S. (13)

By combining this equation with Equation 5, setting H = HD and X = XD we
obtain, after suitable transformation, the following equation for the covering
power (according to Equation 12, is identical to the reciprocal thickness of the
covering layer):

1
XD

=
r
(

1
H∞ − H∞

)

ln
[

1−(1−S)H2∞
S

] . (14)

9The impossibility of realizing an absolutely black substrate in the experimental measurement
of covering power plays no role, in view of the explanations of the last paragraph of Section 3. A
substrate that is only approximately black has just the same effect as one that is ideally black.
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For the special case of an ideal white paint, one finds the covering power,
by combining Equation 13 with Equation 9:

1
XD

= rS. (15)

For the second limiting case, that of a pure glazing coating, the definition of
covering power directly yields

1
XD

= ∞, (16)

because the infinitely thick layer of a completely transparent coating is black10

and therefore of the same albedo as the uncoated black substrate (XD = 0).
This paradoxical value of covering power follows from the definition of cov-
ering power chosen here, for which it signifies a fundamental deficiency. One
will therefore only be able to use this definition with coatings that are as far as
possible removed from the limiting case of a transparent coating, that is with
white and light opaque paints.11

In Diagrams 3 and 4 the covering power is shown graphically as a function
of the intrinsic albedo H∞ and the threshold S. The third independent variable
of Equation 14, the reflection constant r, was taken as 1 to compute the curves.
It is superfluous to study or consider its influence separately, since r appears
as a pure constant of proportionality of covering power.

Figure 3 shows that the covering power depends very strongly on the in-
trinsic albedo. The cause for this lies in the strongly altered path of the curve of
albedo vs. coating thickness with changing intrinsic albedo (cf. Section 3).
This dependence of covering power on H∞ becomes enormous as H∞ ap-
proaches 1 (ideal white). For example, from the curve for the threshold value
S = 0.01 (which approximately agrees with actual practice) a covering power
of 1000

rXD
= 10 is conceivable. If one reduces the intrinsic albedo from 1.00 to 0.97

without altering any other properties of the paint (perhaps by adding lamp-
black), the covering power immediately climbs to 32; for an intrinsic albedo
of 0.90 even to 74, for an intrinsic albedo of 0.80 to 124. Keep in mind that a
paint with H∞ = 0.80 will still definitely be perceived by the eye as white.12

This example clearly shows how ill-advised it would be, from a technical and
economic standpoint, to increase the albedo of ordinary commercial paints sig-
nificantly. The increase in albedo, little noticeable physiologically, would bear
no relation to the increased consumption of material needed to complete the
coating due to the reduced covering power.13

10cf. Section 5.
11In fact, the Pfund Kryptometer is primarily intended for investigation of white paints. A Kryp-

tometer with white instead of black substrate is suggested for dark paints. With this, one accord-
ingly finds the covering power 0 for glaze requirements, but paradoxically high values for white
paints, in the extreme case ∞.

12An ordinary zinc white paint has approximately H∞ = 0.75.
13Completely aside from the fact that, because of the great sensitivity of very light white paints to

contamination (cf. Section 3), the technical difficulties of production would be very considerable.
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Figure 3: The covering power as a function of intrinsic albedo for various visual
thresholds

The strong dependence of covering power of white paints on the intrinsic
albedo must also be considered in the experimental determination of covering
power. Painstaking care must be taken to prevent any impurities from reduc-
ing the intrinsic albedo. This care is even more necessary because, as is shown
in Section 3, white paints are very sensitive to colorative impurities.14

Figure 4 shows the dependence of the covering power on the visual thresh-
old S. The influence here is quite large with the light coatings considered here
and makes it understandable that the Pfund Kryptometer, and all other meth-
ods of measuring covering power that observe the disappearance of a contrast
with the naked eye, are limited by a significant error scatter. The influence of
the threshold becomes especially great as the intrinsic albedo approaches ideal
white; for H∞ = 1 the covering power and threshold are proportional (cf. also
Equation 15). It would therefore be totally impossible to test an ideal white
paint in the Kryptometer; for example an increase of 50% in the threshold,
which can occur even with slight eye fatigue, would result in an equal increase
of the resulting covering power.

14The authors once found, in testing a certain sort of white paint, poorly reproducible and unex-
pectedly high values for covering power. It turned out that the steel spatula (of course painstak-
ingly cleaned) used, as usual, to knead the paint left minimal traces of iron in the paint due to
the hardness of the pigment, which was significant in this case, and thus had somewhat reduced
its lightness. After replacing the steel spatula with a glass one, the disturbance disappeared and
reproducible values of covering power, around half as great, were obtained.
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Figure 4: The covering power as a function of visual threshold at various lim-
iting albedo values for very large thickness

11



8 “Contrast Background” Covering Power

The definition b) given in Section 6 for covering power requires that the cov-
ering layer XD can no longer be distinguished on a white and on a black sub-
strate. Thus, if H ′

s denotes the albedo over a black substrate and Hw denotes
the albedo over a white substrate, and S again denotes the visual threshold:

Hw − Hs

Hw
= S. (17)

The deviation of the black substrate (albedo . . .Hs) from absolute black can
again be neglected, but not, as will be shown, the deviation of the white sub-
strate from ideal white. If the derived equation of covering power is to have
a practical meaning, a realizable white substrate of a albedo H ′

w < 1 must be
dealt with. If one thus substitutes Hs from Equation 6 and Hw from Equa-
tion 5 into Equation 17 and solves for the coating thickness XD, the following
equation for the covering power results:

1
XD

=
r
(

1
H∞ − H∞

)

ln
(

AC+B+
√

(AC+B)2−4S2A

2S

) (18)

in which A, B, C have the following meaning:

A =
H ′

w − H∞
H ′

w − 1
H∞

B = 1 − (1 − S)H2
∞

C = 1 − (1 − S)
1

H2∞
.

For the special case H ′
w = H∞ (albedo of the white substrate equal to the

intrinsic albedo of the coating), A becomes zero and all terms of Equation 18
containing A vanish. One thus comes to the equation

1
XD

=
r
(

1
H∞ − H∞

)
ln

(
B
S

) ,

which is identical to the equation for the “Kryptometer” covering power (Equa-
tion 14), as required by both definitions a) and b) of covering power.

To derive the covering power of an ideal white coating, one combines Equa-
tion 17 with Equations 9 (Hs) and 8 (Hw) and obtains:

1
XD

= − 2r(1 − H ′
w)√

1 + 4H′
w−H′2

w

S − 1
. (19)
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Figure 5: Dependence of covering power on the albedo of the substrate

For the second limiting case, that of a transparent coating, the contrast be-
tween the albedoes over the black and white substrate results from Equation 11
as

Hs

Hw
=

H ′
se

−2sXD

H ′
we−2sXD

=
H ′

s

H ′
w

. (20)

The contrast is therefore independent from the coating thickness and so
can not reach the value 1−S required by Equation 17. The transparent coating
therefore has, as expected, no covering power15 The definition b) of covering
power used here has the advantage over definition a) that it is usable for all
types of coatings, including the limiting cases s = 0 and r = 0, without leading
to practically nonsensical values.

Figure 5 shows, in curve form, several numerical examples computed ac-
cording to Equations 18 and 19. The diagram teaches that the covering power
is strongly influenced by the albedo of the white substrate. The influence is
greater, the brighter the coating and the brighter the substrate is, especially if
one notes the percentage changes in covering power. This strong dependence
signifies a significant defect for all methods of measuring covering power that
rely on the contrast-substrate method, because it is practically hardly possi-
ble to reproduce the albedo of the white substrate so that different individual
covering-power devices always show the same covering power value. This
deficiency is, however, only detectable with white or very light paints because

15Practically, one can also achieve apparent covering with a transparent coating, by making it
sufficiently dark. The reason is that with very dark coatings the quantity of light reaching the eye
is so slight that Fechner’s law no longer applies and the threshold S no longer remains constant.
The fact that this is only an apparent covering can be discerned in that it — in contrast to real
covering — is a function of the absolute value of the light intensity. One can always recognize the
substrate under a “covering” transparent coating if one illuminates the coating strongly enough
and also protects the eye from glare by a suitable arrangement.
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the influence of the white substrate rapidly declines with decreasing intrinsic
albedo and soon becomes insignificant.

The relationship between the covering power defined by the “Kryptome-
ter” principle and that defined by the “contrast substrate” principle is shown
by the numerical examples in the following table:

Intrinsic
Albedo

H∞
Relative covering power 1000

rXD

(for S = 1)
Kryptometer Contrast-substrate Principle

Principle H ′
w = 0.8 H ′

w = 1
0.6 258 229 208
0.8 124 124 103
1 10 56 10

The table shows that the “Kryptometer” covering power depends more
strongly on the intrinsic albedo than does the contrast-substrate covering power.
This is understandable, because with the “Kryptometer” covering power the
substrate albedo decreases as the intrinsic albedo decreases, so the two effects
superimpose.

9 Colored coatings

The previous remarks deal only with achromatic (white, gray, black) coat-
ings on achromatic substrate. One can nonetheless also transfer the relations
derived in Figures 1-5 to colored coatings on colored substrate, if one treats the
individual wavelengths as such. Each wavelength has its specific value of H ,
which according to Equation 5 is a function of the corresponding values of H∞
and H ′, which are valid only for the relevant wavelength, as well as the size of
r (independent of wavelength, to a first approximation)16 and the layer thick-
ness X . If one therefore knows the scattering spectrum of the infinitely thick
layer and the substrate, then by pointwise conversion one can determine the
corresponding scattering spectrum for every arbitrary value of rX — or, if the
constant r is obtained by a special experiment, for every layer thickness X. In
view of the smooth shape of the scattering spectrum, it will generally suffice to
carry through the calculation for 5 to 7 wavelengths.

16The scattering constant r is (so far as the paint contains the pigment in the technically custom-
ary particle size) primarily a function of the relative refractive index of the pigment and binder,
which determines its dependence on wavelength. If one neglects dispersion, r can be treated as
independent of wavelength.
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The calculation is therefore rather complicated for colored paints. One will
be able to simplify it in special cases, however, in that one combines spe-
cific wavelength groups. For example, for colored paints on an achromatic
substrate, all scattering spectra follow from that of the infinitely thick paint
through superimposition of white (additional general scattering) and black
(proportional attenuation of scattering), so that one gets by with two values
each for H, H∞, and H ′, one for colored and one for white light.

In particular cases, the case of colored paints still requires a thorough work-
ing through; in particular the question of quantitative covering power is still
open.

Conclusion

1. We derive the following equation for the albedo H of an achromatic (white,
gray, black) paint as a function of the albedo H ′ of the substrate and the coating
thickness X.

H =
1

H∞
(H ′ − H∞) − H∞

(
H ′ − 1

H∞

)
erX( 1

H∞ −H∞)

(H ′ − H∞) − (H ′ − 1
H∞

)erX( 1
H∞ −H∞)

(6)

We start from differential equations of the distribution of light within the coat-
ing, expressed in the specific coating constants H∞ and r. H∞, the “intrinsic
albedo”, is defined as the albedo of an infinitely thick coating. r, the “scatter-
ing constant”, is a measure of the ability of the coating to scatter back light by
reflection, refraction, and diffraction.

2. Equation 5 is discussed in detail. Among others, the limiting cases of
a non-absorbing (ideal white) and a non-scattering (glazing) coating are dis-
cussed and the difficulties of producing an ideal white and an absolutely black
surface by coating are explained.

3. With the help of Equation 5, equations for the covering power of a paint
— in fact on the basis of two different definitions of covering power — are
derived and discussed.

4. It is briefly shown how the relations derived for achromatic coatings can
be applied to colored paints.

The authors thank Professor A. Reis for a series of valuable suggestions that
aided this work.

(Submitted August 4, 1931)

Translator’s notes

Since my German is limited, so is the quality of this translation. Please contact
me at westin@graphics.cornell.edu with any corrections or improvements.
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Figures were reproduced in MATLAB, except for Figure 5, which I haven’t
been able to reproduce; this was scanned from my photocopy of the paper.

This translation deviates intentionally from the original in three ways. In
Section 1, on the last line before the words “or, if if one defines. . . ”, the original
is missing a factor of r from the last term. This has been corrected. Also in
Section 1, the last equation before the line “The integral can be solved. . . ” was
missing a factor of -2 in the term r+s

r h in the original. The footnote numbers
also differ beginning with our footnote number 10, since the original has two
footnotes numbered 9.

Many thanks to Uwe Behrens, who read the translation and corrected a
number of errors, and Bill Stoner, who found one error of the original and one
of mine.

Revised March 12, 2004.
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