Graphics Hardware (cont'd) Geometry Capture Motion Capture

Visual Imaging in the Electronic Age Lecture # 18 November 5, 2020 Donald P. Greenberg

Ford Assembly Line

Graphics Pipeline Hardware

"Moore's Law is for wimps."

Interesting Trends

• Moore's Law is approximately 1.7x increase in speed a year; graphics accelerators are improving at 2x to 4x a year

Moore's Law – GPU Transistor Counts

Processor	Transistor count	Date of introduction	Manufacturer	Process	Area
R520	321,000,000	2005	AMD	90 nm	288 mm²
R580	384,000,000	2006	AMD	90 nm	352 mm²
G80	681,000,000	2006	NVIDIA	90 nm	480 mm²
R600 Pele	700,000,000	2007	AMD	80 nm	420 mm²
G92	754,000,000	2007	NVIDIA	65 nm	324 mm²
RV790XT Spartan	959,000,000	2008	AMD	55 nm	282 mm²
GT200 Tesla	1,400,000,000	2008	NVIDIA	65 nm	576 mm²
Cypress RV870	2,154,000,000	2009	AMD	40 nm	334 mm²
Cayman RV970	2,640,000,000	2010	AMD	40 nm	389 mm²
GF100 Fermi	3,200,000,000	Mar 2010	NVIDIA	40 nm	526 mm²
GF110 Fermi	3,000,000,000	Nov 2010	NVIDIA	40 nm	520 mm²
GK104 Kepler	3,540,000,000	2012	NVIDIA	28 nm	294 mm²
Tahiti RV1070	4,312,711,873	2011	AMD	28 nm	365 mm²
GK110 Kepler	7,080,000,000	2012	NVIDIA	28 nm	561 mm²
RV1090 Hawaii	6,300,000,000	2013	AMD	28 nm	438 mm²
GM204 Maxwell	5,200,000,000	2014	NVIDIA	28 nm	398 mm²
GM200 Maxwell	8,100,000,000	2015	NVIDIA	28 nm	601 mm²
Fiji	8,900,000,000	2015 http://en.wikipedia.org/wiki/Transis	to AMD	28 nm	596 mm²

GPU Transistor Counts

Processor	Transistor count	Date of introduction	Manufacturer	Process	Area
GP102 Pascal	12,000,000,000	2016	Nvidia	16 nm	471 mm ²
GP100 Pascal	15,300,000,000	2016	Nvidia	16 nm	610 mm ²
GV100 Volta	21,100,000,000	2017	Nvidia	12 nm	815 mm ²

GV100 Volta

http://en.wikipedia.org/wiki/Transistor_count

Nomenclature

- FLOPS- floating point operations per second.
- MIPS- millions of instructions per second
- MEGAFLOPS- million floating point instructions per second
- GIGAFLOPS- billion floating points per second
- TERAFLOPS- trillions of floating point instructions per second.

Instructions Per Second (IPS)

- IPS = No. of cores x (No. of cycles/sec.) x (Instructions/cycle)
- Example: Digital Equipment Corporation
 - VAX 11/780, 5Mhz
 - Cost \$250,000 → 1977

- IPS = 1x5x10⁶(cycles/sec)x0.2(Instructions/cycle)
 - $=1x10^{6}$ (Instructions)
 - \Box The first 1.0 MIPS machine

Instructions Per Clock-cycle per second (IPS) (Microprocessor CPU'S)

Processor / System	MIPS and Frequency	(IPS / clock cycles per second)	(IPS / clock cycles per second / cores)	Year
<u>Intel 4004</u>	0.092 MIPS at 0.740 MHz	0.124	0.124	1971
<u>VAX-11/780</u>	1.000 MIPS at 5.000 MHz	0.2	0.2	1977
Motorola 68030	9 MIPS at 25 MHz	0.36	0.36	1987
Intel Pentium	188 MIPS at 100 MHz	1.88	1.88	1994
Graphics Processor / System	MIPS and Frequency	(IPS / clock cycles per second)	(IPS / clock cycles per second / cores)	Year*
ARM Cortex A7	2,850 MIPS at 1.5 GHz	1.9	1.9	2011
Nvidia Tegra 3	13,800 MIPS at 1.5 GHz	9.2	2.5	2011
ARM Cortex A73 (4-core)	71,120 MIPS at 2.8 GHz	25.4	6.35	2016
Graphics Boards/ System	MIPS and Frequency	(IPS / clock cycles per second)	(IPS / clock cycles per second / cores)	Year*
*Nvidia Ge-Force RTX-2080T.I	76,000,000 MIPs at 1.5 GHz	50,666.7	11.6	2019
*Nvidia Quadro RTX-2080T.I	78,000,000 MIPS at 1.6 GHz	48750.0	11.2	2019
Graphics Servers/ System	MIPS and Frequency	(IPS / clock cycles per second)	(IPS / clock cycles per second / cores)	Year*
AMD Ryzen 71800X	304,510 MIPS at 3.6 GHz	84.6	10.6	2017
*Nvidia DGX -1	500,000,000 MFLOPs at 1.46 GHz	357142.9	17.4	2017

These measurements are now a mix of various types of standard operations

Ford

Nvidia Titan Xp

August 2017

3840 CUDA Cores12,000,000 transistors224 texture mapping units16 nm process technology

Nvidia RTX 2080 Ti

Nvidia DGX

4X Tesla V100 500 TFLOPS 20,480 CUDA Cores 256 GB memory

AMD Threadripper

64 Cores, 4.35 GHz, 8.46 Inst/cycle= 2,356,000 MIPS

Interesting Trends

• Moore's Law is approximately 1.7x increase in speed a year; graphics accelerators are improving at 2x to 4x a year

Is reducing energy (watts) is more important than increasing processing speed (flops)?

Nvidia tries to buy ARM

Nvidia Ampere RTX 3090

NVIDIA AMPERE ARCHITECTURE

2ND GENERATION RT CORES 2X THROUGHPUT

3RD GENERATION TENSOR CORES UP TO 2X THROUGHPUT

NEW SM 2X FP32 THROUGHPUT

Digital Geometry Capture

- Photographic methods (cont'd)
- Laser scanning
- Time of Flight Sensors

ReMake

Autodesk

Cornell Campus, McGraw Hall - Noah Snavely

Colosseum

The Colosseum (Rome)

Reconstructed dense 3D point models. For places with many available images, reconstruction quality is very high.

Sameer Agarwal, Yasutaka Furukawa, Naoh Snavely, Brian Curless, Steve M. Seitz, Richard Szeliski. "Reconstructing Rome", IEEE Computer, June 2010.

Kinect for xBox 360

The original Kinect used pattern projection and machine learning

• Inferring body position is a two-stage process: First Compute a depth map (using projected pattern), then infer body position (using machine learning)

Kinect speckle pattern

- Near region (0.8 1.2m)
 Small dots
- Middle region (1.2 2.0m)
- Far region (2.0 3.5 m) Large dots

Structured Light Imaging (Kinect One)

 Kinect uses a spatial pseudo random neighborhood pattern with unique coding with different sized dots.

Point Cloud Drawn from the Kinect's 3D data

Kinect: Depth Image and Real Image

Digital Geometry Capture

- Photographic methods
- Laser scanning
- Time of Flight Sensors

Cyberware Scanner

Cyberware Scanner Diagram

Cyberware Scanner

Uncle Don

Cyberware vs. 123 Catch

Digital Geometry Capture

- Photographic methods
- Laser scanning
- Time of Flight Sensors
Time of Flight Limitations

Limited by distance Limited by duration of pulse Ability to maximize reflection

Measurement Metrics

- Speed of light (300 meters x10⁸/sec)
- Number of samples/sec ~200 Thz
- Thz = 200×10^{12} cycles/sec

Pulsed Modulation

- Measure distance to a 3D object by measuring the absolute time a light pulse needs to travel from a source into the 3D scene and back, after reflection
- Speed of light is constant and known, $c = 3.10^8$ m/s

Matterport

Seeing Behind Walls

2019

Wetzstein

Stanford

Confocal Non-Line-of-Sight Imaging

Nature, March 2018

C-NLOS Reconstruction and True Geometry

Nature, March 2018

Digital Geometry and Motion Capture

- Photographic methods
- Laser scanning
- Sonar
- Time of Flight
- All of the Above

Johansson mo cap video

Motion Capture Markers

Motion Capture

Kinect for xBox 360

Step 1: Compute a Depth Map

31 fps

Extracted Skeleton

Kinect

Step 2: Infer a Body Position

Skeleton Manipulation

Tracking

Markerless Motion Capture

The Curious Case Of BENJAMIN BUTTON

DIGITALDOMAIN®

CHANGING THE FACE OF CINEMA

DIGITALDOMAIN.COM PARAMOUNTGUILDS.COM

Cinefex 116, January 2009

Cinefex 116, January 2009

Ed Ulbrich: How Benjamin Button got his face

BenButton2.wmv http://www.ted.com/index.php/talks/ed_ulbrich_shows_how_benjamin_button_got_his_face.html

Can we detect emotions?

Six Universal Expressions of Emotion

• Paul Ekman

Ekman's Emotion

Inside Out

Affidex Software

- Scan the image for a face(s) and isolate one.
- Using feature detection algorithms, identify the face's main regions (mouth, nose, eyes, eyebrows, etc.) and ascribe dots to each.
- Separate the dots into "deformable" and "non-deformable" points.
- Deformable points serve as anchors to estimate the magnitude of movement.

Affectiva Computing

- "I think that, ten years down the line, we won't remember what it was like when we couldn't just frown at our device, and our device would say, "Oh, you didn't like that, did you?"
 - Rana el Kaliouby
 Affectiva

- "The Art of Studying Moods" (for military strategy)
 - Sun Tzu, *The Art of War*, 600 BC
- "Emotions are physiological and universal in nature"
 - The Expression of the Emotions in Men and Animals, Charles Darwin, 1872

Mona Lisa

Lidar System

The LIDAR system uses the time of flight a reflection of a of light beam (pulsed or continuous) to sense the surroundings

https://www.microcontrollertips.com/lidar-and-time-of-flightpart-2-operation/

Multiple Sensing Technologies for ADV

Fully autonomous vehicle will need surrounding- and ambientsensing and imaging based on multiple technologies

https://www.microcontrollertips.com/lidar-and-time-of-flight-part-1-introduction-faq/

Inside Out

References

- "A basis for deconstructing affect in facial expressions"
 - Facial Action Coding System, Paul Eckman, 1978
- "Competitors are beginning to acquire the ability to express and recognize affect."
 - Affective Computing, Rosalind Picard, 1995

Can we compute fast enough for Virtual Reality?

Examples of Computations

Motorola 68030

Intel Pentium