# NBAY 6120: Disruptive Technologies

# Display Technology and Human-Computer Interfaces

Lecture #5 March 15, 2017 Donald P. Greenberg

# **Required Reading**

• J.C.R. Licklider, "Man-Computer Symbiosis." IRE Transactions on Human Factors in Electronics. March 1960. <u>IRE Transactions</u>.

### The persistence of vision

"And when a coal of fire is moved nimbly in the circumference of a circle makes the whole circumference appear like a circle of fire; is it not because the Motions excited in the bottom of the Eye by the Rays of Light are of a lasting nature..." (Newton, 1730)





# A Pixel Consists of Approximately 2 2/3 Triads



# A Pixel Consists of Approximately 2 2/3 Triads



# **Update Rate**

- The update rate is the number of changed images which are displayed per second.
- For the average human observer if changed images are shown at greater than 12 frames per second one can perceive motion .

# Zoetrope



# **Flicker Fusion Frequency**

- The flicker fusion frequency of the average human observer is approximately 60 cycles per second.
- If the refresh rate is greater than this threshold, the observer sees a constant intensity.

#### Phosphor Decay Behavior



# **Temporal Properties of NTSC**

#### REFRESH



- Iow refresh rate -> flicker
- high refresh rate -> too much bandwidth
- solution: interlacing
- provides 60 Hz refresh rate with only 30 Hz update rate

frame 2

#### **Update Rate vs. Refresh Rate**



Film: 24fps update rate, 3 blade shutter, 72Hz refresh rate



Video: 30fps update rate, 2:1 interlacing, 60 Hz refresh rate

• interlacing: matches flicker limits of vision, minimizes bandwidth

# **Mapping the Frequency Spectrum**



### **Important Properties of Liquid Crystals**

- Crystals are transparent
- Can alter the orientation of polarized light passing through them
- Polarization properties can be changed by applying electrical field
- Switching can be done fast

# **Different Pixel Configurations**



# **Polarization of Liquid Crystal**



Scientific American, November 1997

# Liquid Crystal Color Display

Scientific American, November 1997



# LCD Advantages & Disadvantages

- Can have high resolution. (Corning & Samsung)
- Requires very flat glass panels which are now being produced relatively cheaply.

# Plasma Display Technology



# Plasma Display: Advantages & Disadvantages

• The advantage is that they can have high brightness (at the expense of watts). Thus can be used in brightly lit areas.

• The difficulty with plasma displays is that the cell size (pixel) is large relative to a liquid crystal. Thus for a given resolution, the screens must be large.

# **Digital Micromirror Devices (DMD)**

- Pioneered by Texas Instruments. The research on these micromechanical (MEMs) devices started in 1977.
- The first digital light valve projection systems (DLPs) had mirrors measuring 17 microns per side. At 1280 x 1028 resolution (HDTV) this resulted in a rather large chip in 1996.

# **DMD Structure**





#### DMD<sup>™</sup> Optical Switching Principle



### DMD<sup>™</sup> Switching Example (All Off)



### DMD<sup>™</sup> Switching Example (1 On)



#### DMD<sup>™</sup> Grayscale Projection Pulsewidth Modulation



#### How Grayscale is Created DMD<sup>™</sup> Binary Pulsewidth Modulation



# **Example: Lenna Original**











### 3-Chip DLP Optical System



# **Digital Micromirror Devices (DMD)**

- Pioneered by Texas Instruments. The research on these micromechanical (MEMs) devices started in 1977.
- The first digital light valve projection systems (DLPs) had mirrors measuring 17 microns per side. At 1280 x 1028 resolution (HDTV) this resulted in a rather large chip in 1996.
- Today this technology is used in almost all digital theaters and some home televisions.
- Most theaters now use DLP with 4K resolution (4096 x 2160)

# **Cost of HDTV Displays**



Diagonal Inches
### **Cost of HDTV Displays**



**Diagonal Inches** 

#### **Modifications to Existing Technology**

- The quest for size
- The quest for brightness

#### **Cornell Panoramic Projection System**



#### **NASA Ames Control Room**



# **Stonybrook's Reality Deck**



# Samsung 110-inch 4K UHD TV 2014



# **Visual Adaptation**



- poor contrast
- no color
- low acuity

- good contrast
- good color
- high acuity

#### Sunnybrook Display Technology



High resolution colour LCD

High Dynamic Range Display Low resolution Individually Modulated LED array

# The XO and One Laptop Per Child



The custom XO display contains a reflective layer between it's backlight and the specially formatted LCD layer, allowing it to turn high ambient lighting conditions to it's advantage.

The display is not only inexpensive (\$30/unit), but is also much easier on the eyes.



# **Images Through Screen Doors**



#### **Pixel Qi**



#### **Pixel Qi**



### **OLPC XO-4 Touch**

#### **August 2013**



# **Organic LEDs (OLEDs)**

#### <u>SOFT LIGHT</u>: Junji Kido of Yamagata University shows off his bright and smooth prototype OLED system.



# **Organic LEDs (OLEDs)**

- Composed of a thin film of organic compounds and conductive layers sandwiched between two electrodes
- When the charges recombine in the organic layer, energy is released in the form of photons
- Can be made with fluorescent-based or phosphorescent material

## **Organic LEDs (OLEDs) Advantages**

- In theory, the energy of this conversion could reach 100%
- Thickness can be measured in nanometers (extremely thin and lightweight) excluding the substrate
- Can be manufactured in sheet form
- Can be put on a variety of substrates including flexible plastic
- Material is environmentally friendly (no harmful elements)

#### **Potential Uses**

- Could be applied as wallpaper for illumination purposes
- Very bright and can replace light bulbs already 4x more efficient than light bulbs in terms of lumens/watt
- With ability to produce red, green, and blue (new), can be used for displays

## **OLED** Explanation

A. A voltage is applied across the OLED such that the anode is positive with respect to the cathode. Electrons flow from cathode to anode.

**B.** Thus the cathode gives electrons to the emissive layer and the anode withdraws electrons from the conductive layer (causing electron holes).



# **OLED** Explanation

C. Electrostatic forces bring the electrons and holes together and they recombine.

- **D**. In organic semiconductors, holes are more mobile than electrons. This happens closer to the emissive layer.
- E. The recombination causes an emission of radiation whose frequency is in the visible region.



# Sony 11-inch OLED Panel





# Samsung Curved OLED TV



#### LG press-on 'wallpaper' TV under 1mm thick



# Sony's 2098 ppi



#### Highest Resolution Mobile Displays PPI Smackdown!



# **Electronic Paper**

2005 Verizon Advertisement

#### How E-Paper Works





Flexible Tablet-Sized Display From L.G. Philips LCD and E Ink Corporation

#### Kindle 2





# **Retinal Displays**



#### This schematic diagram illustrates the functional components of a laserscanned display system.



# HMD information must have sufficient luminance to be seen when overlayed on realworld views.



# Nomad for Commercial, Industrial and Automotive Applications







NOMAD FOR COMMERCIAL, INDUSTRIAL AND AUTOMOTIVE APPLICATIONS

# Sergey Brin with Google Glass



#### **Google Glass Projection System**



#### **Ultra-Miniature Projection Display Prototype** 1/9/07



"Ultra-Miniature Projection Display for Mobile Devices" http://www.gizmag.com/go/6685/

# Ultra-Miniature Projection Display Prototype 1/9/07



"Ultra-Miniature Projection Display for Mobile Devices" http://www.gizmag.com/go/6685/

## Human Computer Interfaces
# Impedance-matching our Senses: Limitations of WIMP GUI

Limited Vision (Flat, 2D)

No Speech

No Gestures



#### Limited Audio

#### One Hand Tied Behind Back

#### Limited Tactile

## Ivan Sutherland with Sketchpad







k

0



#### **Dr. Douglas C. Englebart**

#### Computer Mouse



The first computer mouse held by Engelbart showing the wheels that directly contact the working surface.

http://en.wikipedia.org/wiki/Douglas\_Engelbart

# Bill Buxton, University of Toronto Multi-Touch Tablet 1985



- A touch tablet capable of sensing an arbitrary number of simultaneous touch inputs, reporting both location and degree of touch for each.
- This work was done in 1984, the same year the first Macintosh computer was introduced.
- Used capacitance, rather than optical sensing and thus was thinner and much simpler than camera-based systems.

## **Capacitive Systems**

- In the capacitive system, a layer that stores electrical charge is placed on the glass panel of the monitor
- When the user touches the monitor with his/her finger, some of the charge is transferred to the user
- The decrease is measured by circuits located at the corners of the display and the coordinate of the touch event are calculated
- Advantage Transmits 90% of light from the monitor

#### **Projected Capacitance Touch (PCT) Techology**

- PCT touch screens are composed of a matrix of rows and columns of conductive material, layered on sheets of glass
- Capacitance can be measured at every individual grid point
- The top layer is glass providing a cheap and stable solution

# **Multi- Touch Sensing**



"Multi-Touch Sensing through Frustrated Total Internal Reflection" http://cs.nyu.edu/~jhan/ftirsense/

## iPhone



## Apple's iPhone

- Uses a capacitive technology on an LCD manufactured by Balda (a German company)
- Users tap soft buttons on this display
- Eliminates the WIMP interface (Windows, Icons, Menus, Pointing)
- Uses accelerometers, similar to Nintendo's Wii game console interface
- Everything else is standard

#### Wacom Cintiq 22HD 1080p

### **Stylus**



#### **Microsoft Surface Studio**

#### 2016





# J.C.R. Licklider, "Man-Computer Symbiosis." IRE Transactions on Human Factors in Electronics. March 1960. <u>IRE Transactions</u>.

#### **Digital Drafting Board**

#### **Cornell & MSFT**



# Goodbye



#### Voice





#### A System for 3D Conceptual Modeling for Architectural Design, 2002



# **Gehry Model and Microscribe**



#### Frank Gehry's Walt Disney Concert Hall



#### **Richard Meier's Jubilee Church**



# Utzen's Sydney Opera House



# **Early Design Studios**



## **Tracing Paper and Early Design Tools**



Use of multiple sketches on trace during preliminary design.



