Porter's Laws and Disruptive Technologies

NBAY 1620 February 29, 2016 Donald P. Greenberg Lecture 1

Course Website

• http://www.graphics.cornell.edu/academic/nba6120/

Required Reading

- Michael E. Porter. How Competitive Forces Shape Strategy, Harvard Business Review, March-April 1979, pp. 137-145.(Search <u>http://erms.library.cornell.edu/</u>
- Joseph L. Bower and Clayton M. Christensen. Disruptive Technologies: Catching the Wave, Harvard Business Review, January-February 1995, pp. 43-53. (Search <u>http://erms.library.cornell.edu/</u>)

Optional Reading

 Jill Lepore. "The Disruption Machine," The New Yorker, June 23, 2014. <u>http://www.newyorker.com/reporting/2014/06/23/140623fa_fact_lepore?curr_entPage=all</u>

NBA 6120 DISRUPTIVE TECHNOLOGIES

"The essence of strategy formulation is coping with competition"

Professor Michael Porter <u>Harvard Business Review</u> March/April 1979

Technology Threats (Opportunities?)

- New substitutes with different attributes
- New substitutes based on technology changes:
- Exponentially increasing price/performance ratio
- Relative rates of change
- Knowledge of where the system bottlenecks exist

Stack Fallacy

Anshu Sharma

Porter's Suggestions:

- 1. Position company to provide best defense
- 2. Influence balance of forces through strategic moves
- 3. Anticipating shifts in the underlying forces and responding

Examples

- Oracle buying Sun
- Intel buying McAfee (security) and SySDSoft (wireless software firm)
- Qualcomm buying chip manufacturer, Atheros
- Google adding fiber around selected cities

Google Fiber Plans

Smart Cities

Examples

- Facebook buying Instagram and Oculus
- Dish trying to acquire Sprint Networks
- Google buying Motorola Mobility
- Amazon buying The Washington Post
- Comcast buying NBC

What Do You Do With The Unexpected?

- Unionization of Uber Drivers?
- Legislation Barring Uber
- Instantaneous Price Changes Based on Demand Which Create Unethical Cancellations

Moore's Law

The number of transistors that the industry would be able to place on a computer chip would double every year.

> — Gordon Moore 1965

Moore's Law

"Chip density doubles every 18 months." Processing Power (P) in 15 years:

$$P = P_{today}(2)^{\frac{15 \text{ years}}{18 \text{ months}}} = P_t(2)^{\frac{15}{1.5}}$$
$$= P_t(2)^{10} = 1000P_t$$

Understanding Exponential Growth

Understanding Exponential Growth

 $y = 2^{t}$

$$\frac{dy}{dt} = \frac{d}{dt}(2^t) = 2^t \log 2$$

y = Performance (transistor density, bandwidth, etc.) t = in measured doubling time periods dy/dt = slope = rate of

change

Understanding Moore's Law

Understanding Moore's Law

- In 2014 Semiconductor production facilities made approximately 250 billion billion (250 x 10¹⁸) transistors.
- More transistors were made in 2014 than in all the years prior to 2011.

Transistors, by the Numbers – Dan Hutcheson IEEE SPECTRUM, ISSN 0018-9235, 04/2015, Volume 52, Issue 4, p. 33

Growth In Computer Power (2x / 18months)

Growth In Computer Power (2x / 18months)

(Top of Curve)

Search Engines

Impact of Abundant Computer Power

- Needles in a "Haystack" (security monitoring, focused advertising, etc)
- The internet of things (omnipresent sensors)
- Digital health care (remote medical diagnosis)
- MOOCs (Massive open online courses)
- Autonomous driving vehicles
- 3D data acquisition
- 3D printing

Understanding Moore's Law – Log Scale

How many instructions are completed in a 3.6 Ghz PC in the time it takes for the bullet to pierce the apple?

Apple diameter = 3.36" Bullet velocity = 2800ft/sec photograph by Harold Edgerton

International Technology Roadmap for Semiconductors

	2001	2004	2007	2010	2013	2016
Technology (nanometers)	130nm	90nm	65nm	45nm	32nm	22nm
Functions per Chip (millions)	97	193	386	1546	3092	6184
Clock Speed (Ghz)	2.5Ghz	4.1Ghz	9.3Ghz	15Ghz	23Ghz	40Ghz
Wafer Size (millimeters)	200mm	300mm	300mm	300mm	450mm	450mm
Chip Size (mm ²)	140 mm ²	14 0 mm ²	140 mm ²	140 mm ²	140 mm ²	140 mm ²

Roughly 0.5 shrink every 3 years 29% cost/reduction/function/yr.

Technology Outlook											
High Volume Manufacturing	2008	2010	2012	2014	2016	2018	2020	2022			
Technology Node (nm)	45	32	22	16	11	8	6	4			
Integration Capacity (BT)	8	16	32	64	128	256	512	1024			
Delay Scaling	>0.7			~17	~1?						
Energy Scaling	~0.5			>0.	>0.5						
Transistors	Planar			3G,	3G, FinFET						
Variability	High			Extreme							
ILD	~3			towards 2							
RC Delay	1	1	1	1	1	1	1	1			
Metal Layers	8-9	0.5 to 1 Layer per generation									

http://www.xbitlabs.com/news/cpu/display/20090822094141_Intel_Outlines_Process_Technology_Roadmap.html

Feb 11- 1576 afferation for halting through a belogaph une_ Gray no Bell et al Speaking Relephone Interferences Exhibit Gray Apeating Telephone Canal nignial chetch EdutABech May 7th 1880. Artany Public

Alexander Graham Bell

Wasserman, Neil H. "From Inventions to Innovation: Long-Distance Telephone Transmission at the Turn of the Century," The John Hopkins University Baltimore and London, 1985.

"This 'telephone' has too many" shortcomings to be seriously considered as a means of communication. The device is inherently of no value to us."

> Western Union Internal Memo, 1876

My achievements occurred, not because of my skating skill, but my innate ability to skate to where "the puck will be"!

~ Wayne Gretzky

Everything is a System

Large Scale: Google \rightarrow Internet \rightarrow Mobile device **Desktop:** $CPU \rightarrow Memory/Hard drive \rightarrow Display$ Chip Level: $Memory \rightarrow Data Movement \rightarrow$ Cache → Instruction Execution

Digital Photography

For digital photography to succeed, it needed:

- Camera
- Storage
- Battery Power
- Printers
- Transmission

Growth Rates of System Components of the Electronic Age

- Computer Memory.....
- Bandwidth....

2x /18months
2x /18months
3x /18 months

10x/3 years

Growth Rates of System Components of the Electronic Age

2x / 18 months

2x/50 years

- 3D Graphics
 - Image Capture.....
 - Image Display..... 2x / year (Hardware, Software)
- User Interface
- Product Design

Relative Rates of Growth of Computer System Components

Transistor Density (Processing Power)

Processing Power

100 Million X

Processing Power

One Trillion X

Keck's Law

The Light Exponential

IEEE Spectrum

Nielsen's Law

Nngroup.com

Processing Power Compared

• 2015: iPhone 5 > 1985 Cray-2

(2.7x)

Pine A64

Engadget.com

Powers of 10 Dykstra

iPad

- <u>Introduced</u>: 2010 (February)
- <u>Price</u>: starting at \$499

The Impact of the iPad

- PC Manufacturers
- Microsoft
- Intel & AMD
- Disk Drive Manufacturers
- Bookstores

Disruptive Technologies

Disruptive Technologies Salient characteristics

- Different package of performance attributes not valued by existing customers
- Performance attributes that are valued can improve at very rapid rates - and invade those established markets

CD or DVD

HERG Equilarm 6000 ADS Tachnikcal L.Grany/6000

iPod or You Tube

Internet TV

Concept of Performance Trajectories

- Rate at which performance is expected to improve (demand)
- Rate at which performance improves (supply)

Performance Trajectories: Log Scale vs. Arithmetic Scale

S Shaped Performance Trajectories

Discrete Performance Trajectories

Typical Sustainable Technology

Typical Sustainable Technology

Typical Disruptive Technology

Performance

Typical Disruptive Technology

Performance

Rigid Disk Drive Industry

Alan F. Shugart

Developer of Disk Drive Industry

John Markoff. "Alan F. Shugart, 76, A Developer of Disk Drive Industry," NYT, 12/15/06.

Rigid Disk Drive Industry

Disk Drives	
1957 IBM	24" diameter
	50 platters
	5MB capacity
	12kbs sustained read
Fujitsu (~ 2000)	3.5" diameter
	1.1 GB capacity
	6.8 MBs sustained read
Today Flash memory ?	1.8" drives for mobile platforms
	1.3" drives for laptops
	1.0" drives for digital cameras
	0.85" drives for digital cameras

Hard disk drive volumetric density trend

E. Grochowski, R.D. Halem. "Technological impact of magnetic hard disk drives on storage systems," IBM Systems Journal, vol. 24, no. 2, 2003 p. 339.

Cost of storage for disk drive, paper, film, and semiconductor memory

Will Flash Memory replace Disk Storage? Is this a Disruptive Technology?

Already with 34nm technology Intel and Micron have broken the \$1/GB barrier

E. Grochowski, R.D. Halem. "Technological impact of magnetic hard disk drives on storage systems," IBM Systems Journal, vol. 24, no. 2, 2003 p. 339.

Flash Scalability

date

Disruptive Technologies

- What is typical management and marketing dogma?
- Stay close to your customers!

Disruptive Technologies

Sony Walkman

- What happens when your best customers reject a new technology?
- Xerox's large photocopy centers had no use for small photocopiers
- IBM's large customers had no use for minicomputers

- What happens when your best customers reject a new technology?
- DEC's minicomputer customers (PDP 11/40-11/70 and VAX 11/780-11/730) had no use for PC's
- SGI's graphics customers had no use for PC graphic boards

Graphics Display Performance

Performance

BusinessWeek

A PUBLICATION OF THE McGRAW-HILL COMPANIES

HOW DICK GRASSO IS TRANSFORMING THE NYSE

THE SAD SAGA OF SILICON GRAPHICS

Its gee-whiz computer graphics brought fame and fortune. But now, dogged by

STATISTICS.

THE NOTION

THE ADDRESS OF THE ADDRESS

AUGUST 4, 1997

troubles, its market value has dropped by half. Here's the untold tale of what went wrong. Can CEO Ed McCracken fix things?

- Research shows most well managed companies are ahead of their industries (both with incremental improvements or new approaches PROVIDED THESE TECHNOLOGIES ADDRESS THE NEXT GENERATION NEEDS OF THEIR CUSTOMERS
- These same companies make bad decisions when the technologies do not meet the needs of their main stream customers and appeal only to SMALL OR EMERGING MARKETS

Disruptive Technologies: What choices?

With established companies managers have 2 choices:

- Go downmarket -- accept lower profit margins, initially these emerging markets may be lower cost
- **Go upmarket** -- alluringly high profit margins, e.g., margins of IBM mainframes are higher than PCs

• How does a company allocate resources?

 Existing processes are designed to "weed out" proposed products/technologies that DO NOT ADDRESS CUSTOMERS NEEDS

Netflix

- First CDs, then DVDs
- Then envelope shapes
- Then partnership with Blockbuster refused
- Then streaming video
- Now Comcast

Blockbuster and Redbox

http://www.bloomberg.com/news/2010-07-19/redbox-plots-internet-movie-strategy-in-challenge-to-netflix-on-home-turf.html

Netflix 5-year stock chart

