NBA 6120: Disruptive Technologies *Display Technology*

> Lecture #4 February 5, 2018 Donald P. Greenberg

Required Reading

• J.C.R. Licklider, "Man-Computer Symbiosis." IRE Transactions on Human Factors in Electronics. March 1960. <u>IRE Transactions</u>.

A Pixel Consists of Approximately 2 2/3 Triads

A Pixel Consists of Approximately 2 2/3 Triads

Perceptual Constraints

- Update rate
- Refresh rate

Update Rate

- The update rate is the number of changed images which are displayed per second.
- For the average human observer if changed images are shown at greater than 12 frames per second one can perceive motion .

Flicker Fusion Frequency

- The flicker fusion frequency of the average human observer is approximately 60 cycles per second.
- If the refresh rate is greater than this threshold, the observer sees a constant intensity.

Phosphor Decay Behavior

Temporal Properties of NTSC

REFRESH

- Iow refresh rate -> flicker
- high refresh rate -> too much bandwidth
- solution: interlacing
- provides 60 Hz refresh rate with only 30 Hz update rate

frame 2

Update Rate vs. Refresh Rate

Film: 24fps update rate, 3 blade shutter, 72Hz refresh rate

Video: 30fps update rate, 2:1 interlacing, 60 Hz refresh rate

• interlacing: matches flicker limits of vision, minimizes bandwidth

Mapping the Frequency Spectrum

Important Properties of Liquid Crystals

- Crystals are transparent
- Can alter the orientation of polarized light passing through them
- Polarization properties can be changed by applying electrical field
- Switching can be done fast

Different Pixel Configurations

Polarization of Liquid Crystal

Scientific American, November 1997

Liquid Crystal Color Display

Scientific American, November 1997

LCD Advantages & Disadvantages

- Can have high resolution. (Corning & Samsung)
- Requires very flat glass panels which are now being produced relatively cheaply.

Plasma Display Technology

Plasma Display: Advantages & Disadvantages

• The advantage is that they can have high brightness (at the expense of watts). Thus can be used in brightly lit areas.

• The difficulty with plasma displays is that the cell size (pixel) is large relative to a liquid crystal. Thus for a given resolution, the screens must be large.

Digital Micromirror Devices (DMD)

- Pioneered by Texas Instruments. The research on these micromechanical (MEMs) devices started in 1977.
- The first digital light valve projection systems (DLPs) had mirrors measuring 17 microns per side. At 1280 x 1028 resolution (HDTV) this resulted in a rather large chip in 1996.

DMD Structure

DMD[™] Optical Switching Principle

DMD[™] Switching Example (1 On)

DMD[™] Grayscale Projection Pulsewidth Modulation

How Grayscale is Created DMD[™] Binary Pulsewidth Modulation

Example: Lenna Original

3-Chip DLP Optical System

DLP Projection System

Digital Micromirror Devices (DMD)

- Pioneered by Texas Instruments. The research on these micromechanical (MEMs) devices started in 1977.
- The first digital light valve projection systems (DLPs) had mirrors measuring 17 microns per side. At 1280 x 1028 resolution (HDTV) this resulted in a rather large chip in 1996.
- Today this technology is used in almost all digital theaters and some home televisions.
- Most theaters now use DLP with 4K resolution (4096 x 2160)

Cost of HDTV Displays

Diagonal Inches
Cost of HDTV Displays

Modifications to Existing Technology

- The quest for size
- The quest for brightness
- The quest for reduced energy
- The quest for mobility
- The quest for resolution

Cornell Panoramic Projection System

NASA Ames Control Room

Stonybrook's Reality Deck

Samsung 110-inch 4K UHD TV 2014

Christie CP4230 Digital Cinema Projector

2018

- 4K DLP
- Screen size up to 105ft (32m)
- 4096 x 2160 resolution
- 2100:1 contrast

Visual Adaptation

- no color
- low acuity

- good color
- high acuity

Sunnybrook Display Technology

High resolution colour LCD

High Dynamic Range Display Low resolution Individually Modulated LED array

The XO and One Laptop Per Child

The custom XO display contains a reflective layer between it's backlight and the specially formatted LCD layer, allowing it to turn high ambient lighting conditions to it's advantage.

The display is not only inexpensive (\$30/unit), but is also much easier on the eyes.

OLPC XO-4 Touch

August 2013

Images Through Screen Doors

Pixel Qi

Pixel Qi

Organic LEDs (OLEDs)

<u>SOFT LIGHT</u>: Junji Kido of Yamagata University shows off his bright and smooth prototype OLED system.

Organic LEDs (OLEDs)

- Composed of a thin film of organic compounds and conductive layers sandwiched between two electrodes
- When the charges recombine in the organic layer, energy is released in the form of photons
- Can be made with fluorescent-based or phosphorescent material

Organic LEDs (OLEDs) Advantages

- In theory, the energy of this conversion could reach 100%
- Thickness can be measured in nanometers (extremely thin and lightweight) excluding the substrate
- Can be manufactured in sheet form
- Can be put on a variety of substrates including flexible plastic
- Material is environmentally friendly (no harmful elements)

Potential Uses

- Could be applied as wallpaper for illumination purposes
- Very bright and can replace light bulbs already 4x more efficient than light bulbs in terms of lumens/watt
- With ability to produce red, green, and blue (new), can be used for displays

Sony OLED

Sony's 2.5-inch, 160-by-120-pixel OLED prototype can be bent into a semicircle while playing full-motion video

May 2007

OLED Explanation

- A. A voltage is applied across the OLED such that the anode is positive with respect to the cathode. Electrons flow from cathode to anode.
- **B**. Thus the cathode gives electrons to the emissive layer and the anode withdraws electrons from the conductive layer (causing electron holes).

OLED Explanation

C. Electrostatic forces bring the electrons and holes together and they recombine.

- **D**. In organic semiconductors, holes are more mobile than electrons. This happens closer to the emissive layer.
- E. The recombination causes an emission of radiation whose frequency is in the visible region.

Sony 27-inch OLED Panel

SAMSUNG's 55" OLED Display

Samsung Curved OLED TV

LG press-on 'wallpaper' TV under 1mm thick

How E-Paper Works

Nick Sheridon, Xerox PARC inventor of electronic reusable paper, and Fereshteh Lesani show off the first roll produced by 3M partners.

Flexible Tablet-Sized Display From L.G. Philips LCD and E Ink Corporation

Kindle 2

Corning

Corning Fusion Process

Modifications to Existing Technology

- The quest for size
- The quest for brightness
- The quest for reduced energy
- The quest for mobility
- The quest for resolution

Dell's UltraSharp Display

\$3,699.99 7,680 x 4,320 resolution

LG 88-inch 8K Display

Sony's 2098 ppi

Highest Resolution Mobile Displays PPI Smackdown!

Sony

2016

Retinal Displays

This schematic diagram illustrates the functional components of a laserscanned display system.

HMD information must have sufficient luminance to be seen when overlayed on realworld views.

Nomad for Commercial, Industrial and Automotive Applications

NOMAD FOR COMMERCIAL, INDUSTRIAL AND AUTOMOTIVE APPLICATIONS

Headlights- Carnegie Mellon

Smart Headlight

Smart Headlights

Retinal Prosthetics

Arons 2013

Retinal Prosthetics

Arons 2013

С

А

Original image

В

From the blind retina viewing the image through the encoder-ChR2 prosthetic

From the blind retina viewing the image through the standard prosthetic

