Current and Future Display Technology

NBA 6120 Donald P. Greenberg September 9, 2015 Lecture #4

A Pixel Consists of Approximately 2 2/3 Triads

A Pixel Consists of Approximately 2 2/3 Triads

Liquid Crystal Color Displays

Liquid Gold

and the Creation of an Industry

Joseph A. Castellano

Different Pixel Configurations

Important Properties of Liquid Crystals

- Crystals are transparent
- Can alter the orientation of polarized light passing through them
- Polarization properties can be changed by applying electrical field
- Switching can be done fast

Polarization of Liquid Crystal

Scientific American, November 1997

Liquid Crystal Color Display

Scientific American, November 1997

Plasma Display Technology

Plasma Display: Advantages & Disadvantages

• The advantage is that they can have high brightness (at the expense of watts). Thus can be used in brightly lit areas.

• The difficulty with plasma displays is that the cell size (pixel) is large relative to a liquid crystal. Thus for a given resolution, the screens must be large.

DMD Structure

DMD[™] Optical Switching Principle

DMD[™] Switching Example (All Off)

DMD[™] Switching Example (1 On)

DMD[™] Grayscale Projection Pulsewidth Modulation

How Grayscale is Created DMD[™] Binary Pulsewidth Modulation

3-Chip DLP Optical System

DLP Projection System

Christie CP4230 Digital Cinema Projector

- 4K DLP
- Screen size up to 105ft (32m)
- 4096 x 2160 resolution
- 2100:1 contrast

Cost of HDTV Displays

Diagonal Inches

Cost of HDTV Displays

Diagonal Inches

Modifications to Existing Technology

- The quest for size
- The quest for brightness
- The quest for energy reduction

Cornell Panoramic Projection System

NASA Ames Control Room

Stonybrook's Reality Deck

Samsung 110-inch 4K UHD TV 2014

Visual Adaptation

- poor contrast
- no color
- low acuity

- good contrast
- good color
- high acuity

Sunnybrook Display Technology

High resolution colour LCD

High Dynamic Range Display Low resolution Individually Modulated LED array

Sunnybrook Display Technology

HDR Image

LED array

LCD with correction

Output image

How E-Paper Works

How E-Paper Works

Flexible Electronic Paper Display

Electronic ink is a straightforward fusion of chemistry, physics and electronics to create this new material.

http://www.eink.com/technology/howitworks.html

Flexible Tablet-Sized Display From L.G. Philips LCD and E Ink Corporation
Plastic Logic

Kindle 2

E-ink Triton Technology

E Ink Triton Color Imaging Film

With the E Ink Triton color configuration, a thin transparent colored filter array (CFA) is added in front of the black and white display. The CFA consists four sub-pixels – red, green, blue, and white – that are combined to create a full-color pixel. The result? A low-power, direct-sunlight, readable reflective display that is mass manufactured in a practical way.

The color filter overlay on the monochrome display

The XO and One Laptop Per Child

The custom XO display contains a reflective layer between it's backlight and the specially formatted LCD layer, allowing it to turn high ambient lighting conditions to it's advantage.

The display is not only inexpensive (\$30/unit), but is also much easier on the eyes.

Images Through Screen Doors

Pixel Qi

Pixel Qi

Organic LEDs (OLEDs)

- Composed of a thin film of organic compounds and conductive layers sandwiched between two electrodes
- When the charges recombine in the organic layer, energy is released in the form of photons
- Can be made with fluorescent-based or phosphorescent material

Organic LEDs (OLEDs) Advantages

- In theory, the energy of this conversion could reach 100%
- Thickness can be measured in nanometers (extremely thin and lightweight) excluding the substrate
- Can be manufactured in sheet form
- Can be put on a variety of substrates including flexible plastic
- Material is environmentally friendly (no harmful elements)

Potential Uses

- Could be applied as wallpaper for illumination purposes
- Very bright and can replace light bulbs already 4x more efficient than light bulbs in terms of lumens/watt
- With ability to produce red, green, and blue (new), can be used for displays

OLED Explanation

A. A voltage is applied across the OLED such that the anode is positive with respect to the cathode. Electrons flow from cathode to anode.

B. Thus the cathode gives electrons to the emissive layer and the anode withdraws electrons from the conductive layer (causing electron holes).

OLED Explanation

C. Electrostatic forces bring the electrons and holes together and they recombine.

- **D**. In organic semiconductors, holes are more mobile than electrons. This happens closer to the emissive layer.
- E. The recombination causes an emission of radiation whose frequency is in the visible region.

Sony 27-inch OLED Panel

SAMSUNG's 40" OLED Display

LG 55" curved OLED TV LG

4mm thin 1000x faster refresh compared to LCDs

Samsung Curved OLED TV

"It's a small world after all"

Ultra-Miniature Projection Display Prototype 1/9/07

Ultra-Miniature Projection Display Prototype 1/9/07

"Ultra-Miniature Projection Display for Mobile Devices" http://www.gizmag.com/go/6685/

Microvision

http://www.microvision.com/pico_projector_displays/index.html

Potential Smart Device Designs

Sci Techie.com, May 5, 2010

Sony Smartwatch 2 (SW2)

1.3 inch OLED screen 220 x 176 resolution Battery life of 3-4 days or 14 hours of continual use Communicates with Android 2.1+ smartphones

http://www.engadget.com/2013/09/04/sony-smartwatch-2/

Apple Watch

Retinal Displays

This schematic diagram illustrates the functional components of a laserscanned display system.

Sergey Brin with Google Glass

Google Glass Projection System

Human Computer Interfaces

Impedance-matching our Senses: Limitations of WIMP GUI

Limited Vision (Flat, 2D)

No Speech

No Gestures

Limited Audio

One Hand Tied Behind Back

Limited Tactile

Dr. Douglas C. Englebart

Computer Mouse

The first computer mouse held by Engelbart showing the wheels that directly contact the working surface.

http://en.wikipedia.org/wiki/Douglas_Engelbart

Crossing the Chasm: Time from Concept to Mass Adoption

Touch Panel Displays

- The ability to display dynamic color images on a flat, rigid surface has enabled new modes of interaction Touch Panel Displays
- The most popular are:
 - Resistive systems
 - Capacitive systems
 - Infra-red optical systems
 - Frustrated total internal reflections
- There are many others such as:
 - Surface acoustic waves
 - Strain gauges
 - Thermal
 - Etc.

Infra-red optical systems

- Surface is bathed with near infra-red light at 850 nanometers so that it is not visible to the human eye
- When an object touches the table top, light is reflected to multiple infra-red cameras with a net resolution of 1280 x 960 allowing it to sense and react to items touching the table top

Microsoft Surface (old): Behind the Scenes

Screen
Infrared
CPU
Projector

Capacitive Systems

- In the capacitive system, a layer that stores electrical charge is placed on the glass panel of the monitor
- When the user touches the monitor with his/her finger, some of the charge is transferred to the user
- The decrease is measured by circuits located at the corners of the display and the coordinate of the touch event are calculated
- Advantage Transmits 90% of light from the monitor

Apple's iPhone

- Uses a capacitive technology on an LCD manufactured by Balda (a German company)
- Users tap soft buttons on this display
- Eliminates the WIMP interface (Windows, Icons, Menus, Pointing)
- Uses accelerometers, similar to Nintendo's Wii game console interface
- Everything else is standard
SONY's Crystal LED DisplayCES2012

3 LEDs per pixel

