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Our novel interface consists of two parts. The first uses graphic displays
that illustrate specific characteristics of the surface. Users can isolate differ-
ent types of curves on a surface. These curves vield unique information
about the surface. Such curves include coordinate curves of parametrically
defined surfaces (curves obtained by varying only one parameter}, normal
seetions (intersections with planes normal to a point on the surface), lines of
curvature, asymptotic curves, and geodesics. By moving a 3D cursor about
the surface and choosing the appropriate type of curves, users can examine
the local behavior of the surface in real time through these icons.

The second part of cur interface uses some of the specialized icons to
interactively manipulate the surface itself. With these icons, users can isolate
a segment of a coordinate curve or a principal normal section, then modify
its curvature and torsion or maximum and minimum normal curvature,
respectively, at some point on the surface. Curvature and torsion locally
definearegular, differentiable curve uniquely up to arigid body motion. The
principal curvatures actually classify all points on the surface. With the
modified curve segment, a new surface function can be obtained that con-
tains the curve and meets the neighboring patches with zero, first, or second
order of continuity. By using parameterized algebraic surfaces, the surface
functions can be computed by polynomial interpolation.

measures,
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While using curvature and torsion is not new in deriving
curves and surfaces in computer-aided geometric design,’ re-
searchers have placed little emphasis on developing measures
that let end users manipulate the surface directly. Researchers
have proposed surface analysis methods that use intrinsic dif-
ferential geometry,” but the resulting displays (such as color
curvature maps, drawings of contour lines, lines of curvature, or
geodesics) offer a global examination of the surface, and they
take a lot of time to compute. Our local methods address these
interactivity and real-time issues.

Locally editing curved surfaces

With local control in mind, let’s briefly review the most
broadly used methods of creating and editing curved surfaces.
Some of the most straightforward construction methods consist
of applying extruding, revolving, or sweeping to a planar curve.?
Lofting—generating a surface by interpolating between differ-
ent planar curves at points along a spine curve®—also falls in
this category. Such surfaces are modified by editing the gener-
ating curve(s). The extent of local control depends on the
curve’srepresentation.

Constructing objects made of primitive-type surfaces (for ex-
ample, cubes, spheres, and cylinders) is also fairly simple. How-
ever, since the representation of each patch of an object thus
made (using constructive solid geometry, for example) is fixed
and precise, you cannot exert any local control within a patch.
In general, implicitly defined surfaces provide exact represen-
tation," but they don’t offer any interactive local control, even
when you can manipulate the surface’s defintion, as with skele-
tally defined implicit surfaces.’

The more flexible methods (and less straightforward) use
spline-based, parametrically defined surfaces. The Bezier and
B-spline formulations are the most popular of these methods.
The basic interface to such surfaces consists of adding, moving,
and deleting the control points that define them. Bezier sur-
faces offer no local control, and the degree of the resulting
polynomial function increases linearly with the number of con-
trol points. B-splines allow some flexibility and local control by
setting the order of the spline independently of the number of
control vertices. Manipulating the knot vector of the curves in
cach parametric direction also adds to B-splines’ flexibility.'
Interacting with these additional variables, however, becomes
increasingly complex, and with the exception of moving control
points, the outcome of manipulating the variables is not very
intuitive to a nontechnical user. Furthermore, both these meth-
ods hide from the user the exact extent of change that results
from moving a control point.

One notable exception to this is hierarchical B-spline refinen-
ment,® where users operate on points on the surface corre-
sponding to the maximal influence of each control vertex. Users
can refine the patch of the surface about such points by intro-
ducing additional control points and re-representing that patch,
while the rest of the surface remains unaffected.

On a more global scale, a curved-surface interface might in-
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Figure 1. The osculating circle and its relation to the tangent, normal,
and binormal vectors (the Frenet trihedron).

clude methods for applying regular and free-form deforma-
tions,”® as well as for controlling the outline of parametrically
defined surface patches by using trimming curves in the domain
of the surface.” Most of these methods interact with the surface
by imposing external constraints, that is, operating on the sur-
face by changing features external to it. Our method, how-
ever—a method that you can use in combination with all the
techniques mentioned here—changes intrinsic features.

Intrinsic geometric characteristics

To adequately describe our interface, we must first define the
mathematical features used to modify the surface. (The formal
expressions, derived from M.P. DoCarmo’s textbook,'® are ex-
plainedin the sidebars on the following pages.) Let’s begin with
the definition and geometric interpretation of the most perti-
nent concepts.

The curvature of a curve o : I — R* at a point s € I R is the
length of the second derivative vector of the curve map, de-
noted x(s) = lo”’(s)l, assuming that a(s) is parameterized by arc
length. (Note that a straight line has zero curvature since its
second derivative is zero.) The unit second derivative vector
n(s)=o"(s)/la”’(s)l is perpendicular to the unit tangent
1(s) = o/(s) and hence called the normal at s. The plane spanned
by the unit tangent and normal vectors is called the osculating
plane. The circle of radius 1/k, tangent to the curve at s and lying
on the osculating plane, is called the osculating circle (shown in
Figure 1). Its curvature is constant and equal to k. Note that
there exist two such circles, one on each side of the curve. By
convention, we draw the one lying on the positive side of the
curve normal.
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at s. Observe that if « is a planar curve, the
cross-product #(s) X n(s) is constant, and
hence its derivative with respect to s is zero.
That is, it has zero torsion. Intuitively, the
torsion measures how much the curve twists
away from the osculating plane.

Curvature and torsion define a regular,
differentiable curve uniquely up to a rigid
body motion. In other words, if two curves
have the same expressions of curvature and
torsion in the neighborhood of some point,
then the traces of the curves will overlap in
the neighborhood of those points when one

Figure 2. The normal curvature x, is the projection of the vector xn onto N. On the
right, the two curves C; and C; have the same normal curvature at p. C, is the

normal section.

The cross-product of the tangent and normal vectors is the
binormal at s, denoted b(s). The derivative of the binormal
b’(s) is colinear with n(s). The scalar function of s, 1, relating the
two vectors (such that b’(s) = 1(s)n(s)) is called the rorsion of o

Gaussian awxvature in local coordinates

The Gaussian curvature at a point p of a surface can
be derived in local coordinates from the equations of
Weingarten using the first and second fundamental
forms of the surface. They yield a quadratic equation of
the form

2
k° + (M1 + m)K + mima — mamp2 =0

whose solutions are the principal curvatures at p. Since
the derivation of this equation is quite lengthy, we sim-
ply provide the values of its coefficients and refer the in-
terested reader to DoCarmo's work. ©
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where £, F, and G are the coefficients of the first funda-
mental form and e, £, and g are the coefficients of the
second fundamental form. The coefficients of both
forms are the result of the dot products

E=Xu'Xu
e=N-Xu

F=Xu- Xy
f'—‘N'Xuv

G=Xv'XV
g:N‘XVV

where N is the surface normal at p, and Xy, Xv, Xuw,
Xuu, and Xy are the partial derivatives of the surface
function X(u, v).
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of the curves is moved so that the two points
and the respective curve tangents and nor-
mals are identified. This uniqueness is the
result of the Fundamental Theorem of the
Local Theory of Curves, and we invoke it to
justify using these two measures to manipu-
late the definition of a curve, and hence the surface on which it lies.

The most direct way to isolate a curve on a surface is restrict-
ing one of its parameters to be constant. Such curves are coor-
dinate curves. In our interface, we refer to these curves as
parametric, to avoid misleading users to assume they are always
aligned with the coordinate axes of the image space. Another
class of curves isolated for use in modifying a surface are princi-
pal sections. Given some point on the surface, the curve of
intersection of the surface with the plane defined by the surface
normal and some tangent vector at that point is called a normal
section. When this tangent vector is aligned with one of the
principal directions (explained later) at that point, we call the
curve a principal normal section, or principal section.

The normal curvature of a curve alying on a surface S passing
through some point p € S is defined as k, = «x cos 6, where x is
the curvature of a at p, and 0 is the angle between the surface
unit normal N and the curve’s normal vector n. The normal
curvature measures the projection of the vector xm onto N. The
normal curvature is the same for all curves passing through p
that have the same tangent line (see Figure 2). Thus we speak
of the normal curvature along a given direction v at p.

The maximum normal curvature k; and the minimum normal
curvature k; are called the principal curvatures at p. The corre-
sponding tangent vectors e; and e» are called the principal direc-
tions at p. These vectors are mutually orthogonal, and the
product kk; is called the Gaussian curvature of S at p.

The Gaussian curvature is used to classify a point on a surface.
It is called elliptic if kik2 > 0, hyperbolic if k1 k2 < 0, parabolic if
kik> = 0 but one of k; or k; is nonzero, and planar if ky = k, =0.
The formulas for deriving the Gaussian curvature are included
in the sidebar on this page.

All the metric concepts listed here are defined locally, in the
neighborhood of a point on the surface. Furthermore, we can
perform the computations needed to derive them without
“leaving” the surface. Since the metric concepts are based on
the partial derivatives of the surface, they are intrinsic to the
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surface. Hence, the study of such properties is intrinsic geometry.

Representing geometric measures

So that users can modify the intrinsic geometric properties of
the surface efficiently, the system should present changes to
quantifiable characteristics in a graphically clear, concise for-
mat that can supplement numerical data. By manipulating the
representation of each measure, users can effectively modify
the surface itself.

We divided our typical screen layout into three viewing win-
dows (one large and two smaller ones) with a column of menu
buttons on the right-hand side. The lower left of the two smaller
windows shows the parametric domain of the model being ed-
ited. The other two windows show the surface geometry itself.
The menu area consists of a set of submenus with headings
displayed at the top of the menu. By clicking on each heading,
users make a different set of buttons fill the rest of the menu.
The submenus contain the operations of the interface, grouped
according to their functionality (see Figure 3). The local editing
submenu contains the modification buttons and mode switches
pertaining to them. The presentation submenu controls the
appearance of the surface and the editing tools’ icons. The label
of each button explains its operation. Let’s look more closely at
the tools we developed as handles on the surface’s geometry.
We present them in the order they appear in the interface.

3D cursor

While in surface editing mode, there is always a current refer-
ence point. When entering this mode, the system sets the refer-
ence point to the center of the first patch of the object. The user
can later move it about continuously. The domain viewport acts
as a potentiometer for moving the cursor, which is displayed
simultaneously in the domain and image views so that the cor-
respondence is obvious.

In the image view, the system draws one red and one blue
rectangle at the current point. These rectangles intersect the
surface as indicated by the cross-planes alignment switch. If the
cross-planes are aligned with the parametric directions, then
the system identifies the red rectangle with the plane defined by
the tangent and normal vectors of the coordinate curve in the u
direction and that passes through the current point. The blue
rectangle is similarly aligned in the v direction. If users want a
principal cross-plane alignment, then the system automatically
aligns the red rectangle with the plane defined by the maximal
curvature direction and the surface normal. It also aligns the
blue rectangle with the plane defined by the minimal curvature
direction and the surface normal.

To determine the extent of the local region, users can explic-
itly set the length of each rectangle. The boundary of the region
automatically aligns with the parametric directions (see Figure
4). The rectangles are centered about the current (reference)
point. The system computes their heights based on the highest
and lowest point of intersection of either plane with the surface.

We use a number of display conventions for clarity. We dis-
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Figure 3. The surface editor interface with the local edit-
ing submenu.

play the patch being edited in green and all the other patches in
a cool gray. By defaulit, the polygon fill, boundary lines, and
mesh lines switches are active when entering the surface defini-
tion editor. The mesh lines appear in white and the boundary
lines in yellow. The local region around the current point is
displayed with 25 percent transparency to expose the lines of
intersection of the red and blue planes with the surface. The
portion of the cross-planes above the line of intersection is
given 50 percent transparency, while the portion below is
opaque. The definition of “above” and “below” is established
by the direction of the surface normal at the current point. For
empbhasis, the lines of intersection themselves are bold white.
Corresponding to the cross-planes in the image view, the do-
main viewport displays a cursor in the shape of a cross, with its
two line segments reflecting the position of the red and blue
rectangles in parameter space. They are drawn in red and blue
(respectively), and the extents of the local region are high-
lighted in bold yellow. As the user moves the current reference
point around the domain, this cross-plane assembly shows the
behavior of the surface at the local region.

Osculating circles

Since the curvature at a point on a curve is defined as the
inverse of the radius of the osculating circle, it is only natural to
visualize the curvature of the red or blue plane curve using the
osculating circle. The system draws it at its exact geometric
location—tangent to the curve at the current point and lying on
the plane defined by the curve’s tangent and normal vectors at
this point (the osculating plane). The point of tangency and the
center of the osculating circle are colinear with the curve’s nor-
mal. The center is set above the tangency point if the curve is
concave and below if it is convex. To amplify their visibility, the
system draws the two circles as very thin cylinders. Each circle
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Figure 4. We use the ¢ross-planes to define the current reference point on the surface, delimit the
local editing region, and exhibit the correspomdence between the parametric and geometric
views, A parabolaid of revolution and a hyperbolic paraboloid surface illustrate the parametric

and principal alignment of the cross-planes.

e point ar mmd Ih; system wmmucms]v up-
es both circles to reflect the curvature of the curves of inter-
on of the cross-planes with the surface.

Lisers can modify four different meastires of curvature {our-
;, Maxbmum curvature, or minimum
selecting the corresponding button. They can

s during editing. Any one of the viewports can
a one-dimensional potentiometer to continuously
ure value. Users can also enter one value at a
‘board. For each new curvature value, the
local region so that the edited curve displays
the new curvature {as shown in the two images of Figure 6).

time using the
tern updatesthe

3

When the userisdone editing,
the display status of the inter-
face is reset to what it was be-
fore the curvature editing
buttonwas selected,

Torsion coil
The measure of torsion ol a
curve at any arbitrary point is
usually difficult to visualize.
Torsion measures how much
the curve veers away from the
osculating plane at that point.
More intuitively, it tells us
how much twist the curve has
al that point. Naturally, a pla-
nar curve has zero torsion at
every point. Since the red and
blue rectangles are already
coplanar with the osculating
plane of their respective
curves, they lend themselves
as a reference for represent-
ing zero torsion. Presented as
if it were a rolled piece of
paper, the torsionicon depicts
the “veering away” of the
curve from the osculating
plane. The system displays
the icon when the torsion coil
switch is activated. Emanat-
ing from the intersection edge
of the two rectangles, the icon
is tangent to the rectangle
whose curve’s torsion it quakhi-
fies. The torsion icon has the
same height as the rectangle
and the same arc length. The
starting radius of the coil is inversely proportional to the mea-
sure of torsion and is reduced by 20 percent every half revolu-
tion. This ¢coil appears on the side of the plane on which the
binormal Hes at the current point, in the same color as the
rectangle (see Figure 7). Toshow zero torsion, the icon overlaps
the rectangle.

Theinterface behaves as it did for the osculating circles, Users
can interactively enter new value(s) for the measure of torsion
one at a time wsing the keyboard or continuously using the
window as a potentiometer. The local region is modified ac-
cordingly. When users have finished editing, the interface re-
verts to-its original state. Figure 8 demounstrates the interface
before and after editing. The interface lets you twist the surface
in the neighborhood of the current point. Atits boundaries, the
local region meets the adjacent patches in the specified continu-
ity. With the torsion in « and torsion in v buttons, users can
currently manipulate only parametric {coordinate) curves.
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Derivation

One chass ol surfaces of par-

tients ¢ s graphs

scatar functionsintwo vari-

sles. They are of interest to
ffort because the param-
erization ol alscbraic sur-
< ¢lass is wrivial

are also mmportant be-

cause focally any surface is the

ton. Givensa point poof a sur-
ce S, you can choose the
s of R 5o that
e origin is at p and the verti-
cat £y} axis i directed along
e normal of §-at p (and
nce the xz plane is coingi-
nt with the tangent plane at
Then we can represent a
ghborhood of p in S in the
orm A, vi= fu i, vy, v
th fuvis R, and
'+ R a differentiable
function.” The development
in this section relies on this
concept, and we therefore restrict it to algebraic graph surfaces,
{For more details on the derivation, see Georgtades” thesis." );

coordinate a

Y

H

Using the curvature of parametric curves

coordinate or parametric curve of an algebraic graph sur-
> is the graph of a polynomial function in oge variable, We
construct the polynomial that results in a particular user-
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Figure 5. We nse osculating circles as icons to depict the curvature of various curves of the surface
that pass throngh the current reference point. The same two sample surfaces show the two
coordinate curves and the two principal normal sections at the current reference point.

continuities, so we choose to provide continuity of up to €. We
derive the definition for the curve segment as follows: Let  be
the parametric direction of the curve {either u or v), and let €
be the user-defined continuity in that direction. Also, let
w =2k, + 2 and I'=[ro, r2] be the parametric interval of the curve
map. Denote the point in  corresponding to the current refer-
ence point by r and the input curvature by A, If we denote the
given value of the ith derivative of the curve function at re and
r2 by fi and f3, respectively, with i =0 . . . k,. then we compute
the coefficients of the polynomial of the new curve B9 = {r, fr)),




Figure 7. The torsion coil illustrates the torsion of the coordinate curves at the current point. In these nonlinear

parameter

ions of the paraboloid and the hyperboloid, the intersections of the cross-planes with the surfaces are

still plane curves, but they don’t coincide with the coordinate curyes,

b

)

and all seven for C” continuity. (We get Equation 1 from
ion of curvature giveninthe sidebar on the next page.)

#i)

Surface from curve

Because the boundaries of the graph (defining the local re-
gion) are aligned with the parametric directions u and v, which
are inturn mapped into the x and 7 directions in image space,
we can derive the surface graph function by interpolation. The
parametric domain of B(r) is already identified with either i or
v, so we denote the other parameter by s the order of continuity
in that direction by &, and set r, = ry and 7, = r,. We generate a
number of interpolating curves in the s direction so that they
pass through B(r) and meet the adjacent patches with C* conti-
nuity. We use their coefficients Lo interpolate the surface func-
tion, The resulting surface polynomial contains f{r) and is of
degree )l =2k, + 2 when restricted in the r indeterminate, {The
derivation of these interpolating curves is discussed in the side-
bar on the next page.) We denote these curves by pis),
i=0...u, and let v be their highest degree 2k, + 2 or the de-
gree of either boundary curve atr, and ry, whichever is greater).

Figure 8. The interface before and after modifying the torsion of the parametric curve aligned with the red
eross-plane. We use the twisted line in the inferpolation of the new surface function.
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Then each p; is

p)=a,+ais+- - +as’

where po(s) and py(s) are the boundary curves at r, and s,
respectively. We write the sought function A(r,s) : [ra, rs] x
[$a, s8] & R as

h(r.s) = go(r) + S(q1(r)) + 5°(q2(n)) + - - - + $¥(gu(r))

such that each gi(r;), 0 < i< p,is
) = djy+ diri+ dpri +- -+ dit = a
Hence, we produce A(r, s) by computing each g,,0 < j < v, with

the following Vandermonde matrix system. This matrix is guar-
anteed to have nontrivial solutions for distinct ro . . . r,."?

_ aF o1 T
1 ro i3 ... flld, ao,
2
Vor oo - rflldi| |ag
5
Lo r)|dy| |ay
= (&)
2 s n
R Tu | _dz.,d L n, |

Using the torsion of parametric curves

Even though the coordinate curves of a surface given as the
graph of a function are planar, we let the user twist such curves
locally around the current reference point, thus introducing
torsion. We compute a new nonplanar curve, having the input
measure of torsion and the same curvature as the planar one. At
its ends, this new curve meets the adjacent patches with C°, C',
or C? continuity. Then we use the curve to generate additional
interpolating curves from which we obtain the surface function.

To have nonzero torsion, the curve must vary simultaneously
in more than one coordinate. We express a u coordinate curve
as or) = (r, fir), g(r)} and a v coordinate curve as o(r) = (g(r),
fir), r). In either case, we seek two polynomial functions f{r) and
g(r) defined over the interval I = [ro, r2], such that the curve o
has atapointr; € ] a given torsion of ¢ and a given curvature of
A. The curve o also satisfies the set continuity constraints at the
ends of the interval o and r; (see Figure 9). Again we set up and
solve a system of simultaneous equations, the number of which
depends on the order of continuity we choose. Using the same
notation, the constraints resulting from the end conditions are
Rr) =15, frny = 3, F/(rofb, £/(r) =3, f7(ro) = £, f7(r2) = 3,
and g(ro) =g(r2)=s, g'(r) =g'(r2) =0, g”(ro) = g"(r) = 0. In all,
there are 2(2k, + 3) pieces of information, so the polynomials
f(r) and g(r) need to be each of degree 2k, + 2. Let their coeffi-
cients be

Curvature and torsion of curves

The curvature and torsion of a regular curve o | — RS,
not necessarily parameterized by arc length, at a point
rel ¢ R can be expressed in general as

_la'() x a”(nl
0= ()P
W= _(@'(nx () x ()

lo'(r) x e ()2

The curvature of a u and v coordinate curve of a surface
given as the graph of a function X(u, v) = (u, h(u, v), ) is,
respectively,

() = hudr, ©) and x() = Chede
A+ (hudr, NH7 A +ic, H*
where
oh oh
ha= '’ he= v
and

&*h &*h
hyy = 3090 ,hw= v’ and cis a constant.

Deriving interpolating polynomials

To derive the interpolating curves needed to compute
the surface function, intersect each curve with the curve
computed from the input curvature and torsion while main-
taining C* continuity at its boundaries. The resulting sys-
tem of equations is quite similar to Equations 2, where we
substitute the variable r by s and p by v = 2k; + 2. Write
each polynomial as

St

PAS) =8 +ais + -«
The point of intersection of pi(s) with the given coordinate
curve (denoted a(r) and B(r), inthe article) provides the
last equation needed to mmplete the systﬁm The matnx
form in the case of kg =215

s % 8 s% % sS ‘
T s8¢ 8 s §
1 s % ‘siasw 53 5

0 1 2s0 3sb 45 5s5 655
0 1 25 3% 43 558 65
0 0 2 6sp 1285 2053 30s5{|
0 0 2 65 129 208 305

Its determinant is det = 4(sp ~ 31) Go= sz)g(sz -51)3 hence
the matrixis mvertrbie for sg <s1< 52
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R

f(r)

Figure 9. The curve a(r) = (r, fir), g(r)) has torsion ¢ =0 at
r=ryand zero torsionat r=r, and r = r.

fry=bo+bir+bar’ + - -+ byr*
g =corar+er’+ -+t

withp = 2k, + 2. We can summarize these conditions by two sets
of equations. The set representing the constraints on f{r) is
identical to Equations 2. We can use the same equations for
g(r), by substituting ¢ for b, s for f5, and 0 for f} and f7,h =0, 2.
The system is completed by the curvature and torsion equa-
tions, derived from the expressions in the “Curvature and tor-
sion of curves” sidebar.

(g r) = g ") + € ) + (Y _
(") + @)y +1)°
F7rg”(r) — £ (r)g" (r1) o
(F(r)g (r) = £/ (r)g " (r))* + (" ()" + (f"(r))’

@)

&)

Once we compute the curve o(r), ro < r < r, we fit it on a surface
patch whose boundaries are aligned with the coordinate direc-
tions, as defined by the extents of the cross-planes. We obtain
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Figure 10. The plane curves pi(s) cross over a(r) and meet the bound-

aries with the continuity set in the s direction.

interpolating curves as in the “Using the curvature of paramet-
ric curves” section. These curves should pass through o(r) (see
Figure 10). Then use their coefficients as the entries of the
Vandermonde matrix (Equation 3), which computes the final
patch function (see Figure 11). Observe that o(r) is no longer a
coordinate curve of the new surface patch. Instead, we use it to
compute a patch that approximately contains o, and its para-
metric directions are aligned with the coordinate axes. How
good the approximation is—and hence how high the degree of
the function in the r indeterminate—depends on the number of
interpolating curves computed in the s direction.

Using the Gaussian curvature

As users modify the Gaussian curvature at a point on the
surface, the program derives a new surface definition by reduc-
ing the problem to modifying the curvature of a coordinate
curve. The Euler formula given in the sidebar on the next page
relates the normal curvature to the principal curvatures at some
point on the surface. Replacing the normal curvature with its
definition with respect to the curvature of a coordinate curve
yields

K cos 0 = k; cos 2q>+ ko sinz(p

k1 cos” @ + k(1 — cos® @)

K= ©)
cos 0

where « is the curve’s curvature, 0 is the angle between the
surface normal N and the curve normal n, and all other quanti-
ties are as defined earlier. Note that cos 8 = N - n is never zero
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on graph surfaces, as can be shown by direct sub-
stitution. By using the values of the maximum
and minimum normal curvatures (which we’ve
already computed or the user has set), we can get
a value for the desired curvature for the coordi-
nate curve. Hence, as described under “Using the
curvature of parametric curves,” we can use it to
calculate a new patch graph function.

Conclusions

The interactive tools we described in this article
provide a new, powerful means for locally manip-
ulating curved surfaces. By depicting key intrin-
sic measures of the geometry of a surface, these
tools give users an intuitive, tangible handle on

v 1
" [ YL 4
Sty \\ [ po(s) ! 1o-="" r=n
- W
AL . La--" I
N . T
Si Ny TS {p+1)/2
,\-'\--"" n
S5p=S, hh=r,

the surface. We present them as a complemen-
tary capability to the well-established techniques
of modeling by means external to the surface.

Specifically, a 3D cursor consisting of a pair of
intersecting planes lets users traverse the surface
and delimit a local region of interest. The osculat-
ing-circle and torsion-coil icons depict the curva-
ture and torsion of the curves of intersection of these planes
with the surface. The osculating circle shows either curve’s cur-
vature at the point of intersection with the other curve, drawn
atitsexact geometric location. Literally twisting the cross-plane
away from the osculating plane illustrates the torsion at that
point.

Since our approach is local, it differs from previous methods
that treat the entire surface. As a system of examining a surface,
the 3D cursor, the osculating circles, and the torsion coil let
users freely traverse the surface and toggle these icons on and
off with the surface normal. Thus, while the entire surface is
rendered in some uniform format, this interface reveals surface
characteristics that are normally difficult to see. The advantage
is real-time display, but the resulting image doesn’t provide a
macroscopic view of the surface’s intrinsic measures, like color
curvature maps and contour lines.

With the handles that lie right on the surface, users can manip-
ulate any arbitrary point on the surface and. with the lengths of
the cross-planes, users can define a local region of interest of
arbitrary size around it (within the constraints of regularity and
locality). Spline-based methods only let users manipulate con-
trol points or points of maximal influence, and the local regions
of interest, when editable, must correspond to some partition of
the parametric space based on the control vertices. In our inter-
face, once users define the local region, they can employ the
display tools we developed to modify the geometric measures
the toolsrepresent. The new values of these measures yield new
curves from which the system interpolates a new surface patch.
Since we restricted our work to local neighborhoods, the logical
next step is to extend the implementation to edit boundary
curves. a
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Figure 11. The curves g;(r) interpolate the curves p;(s) to produce the graph
function A(r, 5).
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