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Abstract

In this thesis, we present a semi-automatic process to artistically render portrait

photographs in a charcoal style. The software system requires the user to coach

the process by identifying regions and edges in the portrait. With this information

and a set of selected parameters, the user can quickly generate an artistic charcoal

sketch. In general, our system produces a charcoal image by rendering the following

�ve features of a portrait photograph: 1) the background area, 2) the hair, 3) the

edges and lines, 4) the facial features, and 5) the facial tone. Although we compute

the vertex points that compose the line segments in the �nal image, our system

relies on an external software application to render these lines in a charcoal style.

In order to render the hair region in the second process step above, we developed

a novel image processing operation based on the Hough transform to �nd the

orientation of each point in the hair region.
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Chapter 1

Introduction

Artistic rendering is a relatively new and broad �eld in the computer graphics com-

munity. Its applications are numerous, and many approaches to artistic rendering

have been proposed. Although pen-and-ink style illustrations are the most com-

mon, work has also been done in many other media including oil and watercolor

paints. The diversity of these approaches stems from the broad range of target

media as well as the various source data types from which the art work can be

generated. Furthermore, as with the work of traditional artists, artistic rendering

methods often reect the style of their authors. Yet even with this diversity, artis-

tic rendering methods share the one common goal of generating synthetic images

that appear to have been created by a human hand.

In computer graphics, artistic rendering is more commonly referred to as non-

photorealistic rendering. This terminology originates from the computer graphics

term photorealistic rendering, which involves the creation of synthetic images that

are indistinguishable from photographs. However, the term non-photorealistic ren-

dering negatively implies that the �eld involves the generation of all images that are

1
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not intended to look realistic as contrasted to those that appear artistic. Therefore,

we prefer the more direct terminology of artistic rendering.

In this thesis, we present a semi-automatic process to artistically render portrait

photographs in a charcoal style. The software system requires the user to coach

the process by identifying regions and edges in the portrait. With this information

and a set of selected parameters, the user can quickly generate a charcoal sketch.

Our system di�ers from other artistic rendering systems because it is the �rst

system primarily focused on generating charcoal style drawings and is the �rst

content speci�c artistic rendering system. Although this content sensitivity may

seem to be a limiting factor, it actually allows for assumptions that ultimately

produce higher quality drawings. For example, because we know that rendering

hair will be a common task, we can develop an algorithm speci�cally for this

purpose.

In general, our system produces a charcoal image by rendering the following

�ve features of a portrait photograph: 1) the background area, 2) the hair, 3) the

edges and lines, 4) the facial features, and 5) the facial tone. Although our system

computes the vertex points that compose the line segments in the �nal image, our

system relies on MetaCreations' Painter software [37] to render these lines in a

charcoal style. An overview of artistic rendering process is presented in Chapter

3. Details of the signi�cant image processing techniques that compose the process

are discussed in subsequent chapters.

In order to render the hair region in the second process step above, we develop

a novel image processing operation to �nd the orientation of each point in the
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hair region. More speci�cally, we de�ne a method for computing local orientation

using a line detection operator followed by multiple applications of a small Hough

transform. Details of this process can be found in Chapter 4.

Unfortunately, the system we present for artistically rendering portrait pho-

tographs has limitations. Because of the assumptions that we make in the oper-

ations that compose the rendering process, our system can only handle a limited

range of facial types. Primarily, our system has di�culty handling the following

cases: 1) curly hair, 2) darker skin complexions, 3) dark areas on the face such as

those caused by deep wrinkles or birthmarks, and 4) occluding objects to the face

such as glasses.

However, within the range of facial types that are suitable for our artistic

rendering process, we are able to generate convincing sketches that accurately

capture the essence and the subtleties of the human facial expression. For an

artist, capturing these subtleties is the most di�cult part of drawing the human

face. Even when directly tracing a portrait to create a sketch, it can be di�cult to

precisely recreate one's expression. The reason for this di�culty stems from the

fact that humans are very tuned to interpreting the �ne details in facial expressions.

Accurately capturing these details is a signi�cant result of our artistic rendering

process. A set of sample sketches from our system is shown in Chapter 7.

1.1 Applications

As previously mentioned, the applications of artistic rendering are numerous and

growing. One application for artistic rendering with high potential is in digital
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halftoning1. Grey-scale images that are rendered as pen-and-ink illustrations are

often much better suited for print than if processed with traditional halftoning

techniques. Photocopying pen-and-ink line drawings generally produces a much

cleaner copy than a photocopy of a halftoned image.

Artistic rendering can also be used for the automatic generation of technical

illustrations from 3D models. It is often much easier to extract meaning from

a technical illustration than from a photograph. Lansdown et al. [30] give an

example of car maintenance manuals to illustrate this fact. \How much use is a

photograph to mechanics when they already have the real thing in front of them?

Photographs often perform poorly when clear and precise delineation, explanation,

and understanding is required."

Conceptual design is yet another application of artistic rendering. Sometimes

it is desirable to render a 3D model with an added level of ambiguity. For example,

a designer might quickly generate a 3D sketch of a room interior, using a simple

cuboid object to represent an end-table. If photorealistically rendered, the scene

will be interpreted concretely, and a viewer may wonder why the designer chose

to place a cube-like object in the corner of the room. In this case, the viewer

misinterprets the intentions of the designer because the rendering style does not

match the roughness of the design. However, if the designer could render the

cuboidal object more ambiguously and sketch-like, then the lack of detail will only

indicate the presence of an object rather that precisely de�ning what it is. The

1Halftoning is a process in which images are quantized into a 1-bit, black and
white image. For example, halftoning is used in printing, where grey-scale images
are converted to high-resolution 1-bit, black and white images.



5

interpretation of the object is left to the viewer. An example of artistic rendering

in conceptual design can be found in Zeleznik's SKETCH system [58].

Artistic rendering is largely applicable in the entertainment industry. Cartoon

style rendering is common in animated �lms and weekend cartoons. Furthermore,

recent �lms, such as What Dreams May Come [54], use artistic rendering to create

rich visual e�ects. Artistic rendering also has large potential in the gaming and

educational software industry.

Finally, artistic rendering has also found its way into commercial applications.

Viewpoint Datalab's LiveArt98 [9] is an example of clipart software that allows a

user to render simple 3D geometry in an artistic fashion. Our system for artis-

tically rendering portrait photographs is also geared toward commercial applica-

tions. Primarily, our system could be used in a digital portrait studio to generate

added-value.

1.2 Thesis Organization

This thesis is organized in the following manner. Chapter 2 will begin by presenting

previous and related work in the �eld of artistic rendering. Chapter 3 presents an

overview of the artistic rendering process that we have de�ned. Chapters 4 through

6 then describe, in greater detail, the components that make up the overall process.

Chapter 7 shows sample results and �nally, Chapter 8 concludes this thesis by

presenting several areas of future work in addition to closing remarks.



Chapter 2

Previous and Related Work

This chapter summarizes prior work that relates to the artistic rendering of por-

trait photographs. Section 2.1 �rst describes related work in the general �eld of

non-photorealistic rendering. Section 2.2 then proceeds to describe work directly

relating to the image processing and machine vision techniques that underlie the

artistic rendering system proposed in this thesis.

2.1 Non-Photorealistic Rendering

The �eld of non-photorealistic rendering (NPR) is a diverse �eld both in the prob-

lems it proposes as well as the methods that have been introduced to solve them.

Lansdown et al. [30] divided NPR into two general categories, image space e�ects

and perspective space e�ects. Image space e�ects describe methods that use only

an intensity-map or a photograph as source data. Perspective space e�ects relate

to techniques that require thrree-dimensional information such as geometry or a

depth map.

However, NPR is a much more complex �eld than that suggested by Lansdown.

6



7

More accurately, NPR can be described as a 4-dimensional matrix with axies com-

posed of the following categories: 1) the source data types required by the system,

2) static or dynamic image generation, 3) the target artistic rendering style, and 4)

the degree of user interactivity required to operate the methods. The broad range

of techniques vary from user-interactive processes to generate detailed images of

static photographs to automatic real-time methods for visualization.

The following section reviews the non-photorealistic work to date that is di-

rectly related to our research1. The majority of the discussion is structured after

Lansdown. Section 2.1.1 will discuss image-based techniques while Section 2.1.2

will review techniques which assume the presence of depth or geometry informa-

tion. Finally, Section 2.1.3 will review techniques of simulating natural media, an

important primitive to all NPR systems.

2.1.1 Image-Based Techniques

Our proposed system for generating charcoal sketches from portrait photographs is

categorized as an image-based technique. The works presented here have provided

much of the motivation and the inspiration behind our research.

Haeberli [19] describes several methods for generating painterly2 images from

a source photograph (Figure 2.1a). In the most basic form, Haeberli introduces a

technique that allows a user to interactively place brush strokes onto a image. The

1A more comprehensive listing the published research in the �eld of NPR can
be found in the bibliography.

2Painterly is de�ned by the Marriam Webster dictionary to be \of, relating to,
or typical of a painter." In the non-photorealistic rendering literature, painterly
generally refers to techniques that simulate an impressionist style of painting.
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(a) (b)

Figure 2.1: Heaberli. [19] Two sample results of Haeberli's system. Figure (a) shows a
painting with multiple sized brushes and strokes oriented along the source image gradient.
Figure (b) shows a sample of Haeberli's system working in conjunction with a ray-tracer.

colors of the strokes are sampled from the underlying source image rather than

being chosen by the user. The orientation and the size of the brush strokes can be

determined either by the gradient direction of the source image or by interactive

techniques, such as using mouse direction and speed to determine stroke orientation

and size. Haeberli's system also allows various brush stroke types to achieve both

painterly and abstract results. In addition to generating painterly renderings from

source photographs, Haeberli also briey describes using his system in conjunction

with a ray-tracer to abstractly render geometry (Figure 2.1b). To do this, Haeberli

samples information from the geometry, such as color and surface normals, to orient

the strokes in the �nal painting. A method for using relaxation to automatically

generate images is touched on as well.

Salisbury et al. [43] present an interactive system for generating pen-and-

ink style illustration by allowing users to interactively paint with stroke textures.
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Salisbury de�nes a stroke texture as \a collection of strokes arranged in di�erent

patterns." Figure 2.2a shows some sample stroke textures. To operate the system,

a user �rst selects a stroke texture and a target tone. Then with these selections,

the user can \paint" the illustration, while the computer is left responsible for

drawing the individual strokes. In addition to interactively painting the tone map,

the user can also allow the system to sample tone from a reference image. A

grey-scale image is imported and its pixel values are used as tone. Salisbury

describes two methods for matching painted textures to tones. For more basic

textures, the system can randomly apply strokes from the source texture to the

target image until the correct tone is met. For more complex textures, such as

cross-hatching, the user is responsible for prioritizing the individual strokes in the

texture. Strokes with a higher priority are drawn before lower priority ones when

rendered (Figure 2.2a). Lastly, Salisbury describes the use of procedural stroke

textures. These textures are automatically generated and can be oriented along

the gradient direction of the underlying reference image. Results of this technique

are show in Figure 2.2b.

Pnueli et al. [40] introduce a system for both automatically and interactively

creating halftoned images that resemble man-made engravings3. In general, their

technique works by computing a set of \equipotential" lines from an image. Pnueli

de�nes equipotential lines as curves in an image that are separated by a constant

delta, de�ned by the user, in gradient-magnitude space. These lines produce an

3Halftoning is a process in which images are quantized into a 1-bit, black and
white image. For example, halftoning is used in printing, where grey-scale images
are converted to high-resolution black and white images.
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(a) (b)

Figure 2.2: Salisbury et al. [43] Figure (a) shows a sample prioritized stroke texture.
Note how horizontal lines are drawn before vertical lines, vertical lines before diagonal
lines, and so on. Figure (b) show some results of Salisbury's illustration system.

image that resembles a man-made engraving. Although the system can automati-

cally generate a set of these lines for any image, the user can choose to use a more

interactive mode. As a �rst step, the user must subdivide the source image into

regions. Each region is then individually halftoned with a di�erent set of parame-

ters chosen by the user. The halftoned images are then composited to produce the

�nal engraving.

Sherstinsky et al. [47], [48], [49] introduce a new method for automatically

halftoning photographs to create the appearance of the \hand-drawn" style found

in the Wall Street Journal using the M-lattice system4. Sherstinsky states that

the M-lattice \is a non-linear dynamical system that is well-suited for a variety of

applications formulated as constrained non-linear optimization. In particular, it

can perform image processing operations that emphasize oriented patterns." To

4Sherstinsky notes that the process of producing a hand-drawn halftoned image,
such as those that appear in the Wall Street Journal, takes an artist roughly 3-5
hours.
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Figure 2.3: Sherstinsky et al. [47], [48] A few results of Sherstinsky's orientation-
sensitive halftoning system. Note how the dots in the halftones form lines that follow the
orientation of major features.

�nd this orientation information, Sherstinsky employs steerable �lters [15], which

are used to guide the action of the M-lattice system. Results of Sherstinsky's

system are shown in Figure 2.3.

Salisbury et al. [45] describe \a representation for pen-and-ink illustrations

that allows the creation of high-�delity illustrations at any scale or resolution." In

other words, Salisbury introduces a technique to allow the scaling of pen-and-ink

illustrations without changing their apparent tone or artistic quality. A new re-

sampling algorithm that relies on a low-resolution tone map and a high resolution

discontinuity edge map underlies their technique. When an illustration is resized

from a lower to higher resolution, a new intensity map is computed by interpolating

pixels from surrounding values. However, unlike a standard re-sampling algorithm,

Salisbury's technique does not weight pixels that are located across edge boundaries

(Figure 2.4c-f). Once the tone map has been scaled, Salisbury picks strokes from
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Figure 2.4: Salisbury et al. [43] Figures (a),(b) show the results of \blasting" strokes
on low-resolution tone map scaled with and without a discontinuity edge map. The re-
sults using the new representation, Figure (b), are noticeably sharper. Figures (c)-(f)
illustrate the advantages of using the discontinuity edge map. Figure (c) is the original
low resolution tone map. Figure (d) is the edge map. Figure (e) is the original tone
map scaled via standard interpolation. Figure (f) shows the results of the new scaling
technique.

a stroke texture and applies them to the resulting image until the target tone is

met. Salisbury refers to this method of placing strokes as blasting. Figure 2.4a,b

shows a sample result.

Litwinowicz [34] describes a method for generating painterly animations from

video sequences. The basis of his technique is similar to that of Haeberli except

that Litwinowicz adds additional algorithms to handle the frame-to-frame coher-

ence necessary for video. Like Haeberli, Litwinowicz achieves a painterly style by

sampling colors from a source image, and then for each sample, paints a stroke onto

the �nal image. To generate smoother and more temporally coherent animations,

Litwinowicz applies optical ow techniques. These techniques enable paint strokes

to track their associated objects in the source video. Because paint strokes move
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Figure 2.5: Litwinowicz. [34] The image to the right illustrates the results of a single
animation. The image to the left is the source frame. Note how the orientation of the
strokes on the mouse pad are consistent with the surrounding stroke orientations.

over time, special care is taken to introduce or remove strokes where stroke popula-

tions become too sparse or dense. Orienting strokes based on gradient information

from the corresponding video frame provide additional coherence. Rather than

using a standard gradient, Litwinowicz introduces a novel method for interpolated

gradient values from surrounding values in regions where the gradient magnitude is

low. For instance, in at colored regions, strokes are oriented in a consistent, rather

than haphazard, direction to their surroundings. Figure 2.5 shows the results of

this technique.

Salisbury et al. [44] describes a method for interactive pen-and-ink illustration

using orientable textures. In their system, Salisbury creates a vector painting pro-

gram which allows a user to interactively draw vector �elds over a source image.

These vector �elds are then used to orient small collections of B-splines or orien-

tation textures which are then composited and drawn onto a �nal image. Figure

2.6a illustrates this process. As in their previous work [43, 45], careful attention is
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Figure 2.6: Salisbury et al. [44] Figure (a) illustrates the process of generating a pen-
and-ink illustration. The �rst image is the source tone map. The second image is the
vector �eld painted by the user. The third image is the orientation texture. The �nal
image is the resulting illustration. To construct this image, the orientation texture is
rotated in the proper direction de�ned by the vector �eld. The texture is then placed into
the �nal drawing with care taken to match the tone of the source tone map. Figure (b)
shows a more detailed result.

given to the rendering of strokes so that they do not cross object boundaries and

so that they preserve the tone of the original image. Figure 2.6b shows a sample

result.

Most recently, Hertzmann [20] introduces another extension to Haeberli's work

by adding curved brush strokes and the automatic generation of painterly render-

ings. Hertzmann de�ned a coarse to �ne technique for painting where a set of large
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Figure 2.7: Hertzmann. [20] A sample result of Hertzmann's system is shown on the
right. On the left is the the source image.

strokes are painted before successively smaller and smaller sets. Between each set,

errors are computed between the current painting and the source image. Smaller

strokes are then added for areas of large errors. This process is repeated for three

to four iterations. Hertzmann also extends Haeberli's work by introducing curved

brush strokes which are painted along lines perpendicular to the direction of the

maximum gradient. Figure 2.7 shows a sample result.

2.1.2 Geometry-Based Techniques

Although geometry-based NPR techniques assume di�erent underlying data types,

the various approaches introduced to solve these problems often share many of the

same concepts as those described in the previous section. The following section

will discuss some of the major and more relevant geometry-based techniques to

this thesis. This section is not an exhuastive survey, however, and the reader is

invited to review other related works [11], [12], [18], [32], [14], [29].
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Saito et al. [42] describes a method for generating pen-and-ink style illus-

trations from 3D geometry using image processing techniques. In general, their

method generates a set of 2D geometric-bu�ers, termed a G-bu�er, to which both

standard and novel image processing operations are applied to create a �nal pen-

and-ink style illustration. The G-bu�er is similar to a standard Z-bu�er, except

that it contains additional information rather than just depth. The G-bu�er in-

cludes the nx, ny, and nz bu�ers which contain scalars that represent the angle of

separation between an object's surface normal and the x, y, and z axies respec-

tively. For example, a high bin value in the nx bu�er represents a point on the

surface of an object whose surface normal is directed along the positive x-axis. A

low bin value represents a point whose surface normal is directed away. The G-

bu�er also includes a standard Z-bu�er that Saito refers to as the sz bu�er. Finally,

Saito adds the ou and ov bu�ers to the G-bu�er that represent the u and v object

patch coordinates respectively. With these bu�ers and a few image processing

techniques, Saito describes how to generate a pen-and-ink style illustration. The

general tone of the �nal image can be computed by blending the nx, ny, and nz

bu�ers. Applying di�erential operators on the sz bu�er, such as an edge-detector,

produces edge information. The ou and ov bu�ers are used to compute hatching

information via a novel image processing �lter.

Winkenbach et al. [55] describes a method for generating convincing pen-

and-ink illustrations from 3D geometric models. Their technique, in conjunction

with the work done by Salisbury et al. [43], uses the concept of stroke textures as a

basis for their NPR systems. In short, Winkenbach describes a system for applying
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Figure 2.8: Winkenbach et al. [55] Figure (a) shows the results of Winkenbach's illus-
tration system. Figure (b) shows the same rendering without the use of indication.

stroke textures as texture maps onto the geometry of a polygonal model to generate

pen-and-ink style illustrations. Although simple in concept, Winkenbach discusses

many technical issues necessary to produce more convincing results and faster

running times. For example, prioritized stroke textures allow the system to render

stroke textures into the �nal image with the appropriate tone. These textures

work by requiring the strokes of a texture to be prioritized and requiring the

system to draw the strokes from the prioritized stroke texture (highest priority �rst)

until the target tone is met. Winkenbach also introduces a system for simulating

indication. Indication is a technique used by artists in which only small portions

of a texture are illustrated to imply or \indicate" that an entire surface is made

of that texture (Figure 2.8). Futhermore, boundary outline textures are used to

create object outlines, and special methods are introduced to minimize them in

the �nal rendering. Figure 2.8 shows a sample result of Winkenbach's work.

Winkenbach et al. [56] later extended their earlier work [55] to allow for para-

metric surfaces. Their previous work had only allowed for polygonal meshes. To
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solve this problem of rendering parametric surfaces, Winkenbach introduces the

concept of controlled-density hashing. This algorithm takes curves represented in

the parameter space of the surface and renders them in the image domain such

that the resulting tone of the projected curves form the correct tone (Figure 2.9a).

Winkenbach develops a method for incrementally determining the image-space

distance between two curves on the surface of an object to accomplish this. To

draw the strokes, the user �rst sets an initial distance between a set of strokes

in parameter space. The software then traverses down these strokes, computing

distances between them, and adding/removing strokes where distances are either

too large/small to match the target tone. Winkenbach also takes special care in

computing a planar map from which strokes are clipped. The planar map contains

object edge boundaries and thus, edge information that strokes should be clipped

against. Finally, Winkenbach explains how a shadow planar map can be used to

create an edge map from which shadowed regions can be created. Results are

shown in Figure 2.9b.

Meier [36] introduces a method for generating animated painterly renderings

from 3D geometric objects. Essentially, Meier's technique works by sticking paint

strokes to the surface of objects. These strokes are then transformed and projected

into screen space to generate a resulting painterly image. Animation is achieved

by simply rendering successive frames of the model. Frame-to-frame coherence is

maintained because the paint strokes are associated with the underlying geometry

and not screen space coordinates.

Meier's technique begins by tessellating the surface geometry into triangles.
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(a) (b)

Figure 2.9: Winkenbach et al. [56] Figure (a) shows how an evenly toned image can be
generated via controlled density hatching. Figure (b) shows a �nal result of Winkenbach's
NPR system.

Then, for each triangle, the surface area is computed, and the triangle is populated

with particles. Their number is proportional to the area of the containing triangle.

The original model is then rendered using various shaders. Standard smooth-

shading techniques generate a color-bu�er. An orientation bu�er is then computed

by projecting the surface normals of the object in the direction of the view vector

or any other speci�ed vector. Finally, a scaling bu�er, which holds information on

how to size the paint strokes, is generated. Meier notes that because the scaling

bu�er is simply an intensity map, lighting, texture maps, or specialized shaders

can be used to generate this bu�er. Once these bu�ers have been generated, the

particle model is transformed into screen coordinates and paint strokes are drawn

from back-to-front. A stroke's color, orientation, and size are determined from

the associated (x, y) values in the corresponding bu�er. The overall system is

summarized in Figure 2.10a, and a sample sequence of images is shown in 2.10b.



20

Shaders

Geometry

Particles in
World Space

Camera
Transform

Particle
Placer

Painterly
Renderer

Brush Image

Reference Pictures

Output Image

Color

Orientation

Size

Figure 2.10: Meier [36] Figure (a) shows the overall process of Meier's system. Figure
(b) shows a sample rendered sequence.

Markosian et al. [35] are the �rst to introduce major work in the area of

real-time non-photorealistic rendering of 3D geometric objects. Underlying their

system is a highly optimized version of Appel's hidden-line algorithm [1]. Their

optimizations include the following: 1) the use of a rapid, probabilistic silhouette

edge5 �nding method, 2) the exploitation of inter-frame coherence to speed the

process of locating silhouette edges, and 3) the use of an improved and simpli�ed

version of Appel's hidden-line algorithm. Once the hidden-line algorithm has been

run, the resulting edges are then rendered in various styles to produce di�erent

e�ects. The edges can be displayed directly to simulate a technical illustration

5Markosian de�nes silhouette edges as edges that are adjacent to both front
and back facing polygons. Finding these edges is the �rst step in Appel's hidden
line algorithm.
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Figure 2.11: Markosian et al. [35] Figure (a) shows a hidden-line drawing. Figure (b)
shows the same model rendered non-photorealisticly. Figure (c) shows a more complex
model rendered non-photorealisticly with shading.

style, or perturbed to create a sketchy image. The edges can also be traced with

texture-mapped strokes. Finally, Markosian discusses a method for generating

shaded images with the simplifying assumption that the light is located at the

camera position. Shaded strokes are placed on the surface of the object and are

drawn only when the surface normal and the direction to the camera are greater

than some predetermined degree. Results of Markosian's renderer are shown in

Figure 2.11.

Coutts et al. [7] introduces a method for generating pen-and-ink style illustra-

tions using streamlines. Coutts' technique begins with a 3D geometric model from

which hidden lines are found. Six two-dimensional vector �elds are also calculated

which are later used for guiding streamlines. These vector �elds are de�ned by
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various directions of ow across the objects in the scene to be rendered. Coutts

also uses a tone map, generated by ray-tracing the underlying geometry, to de-

termine tone and stroke spacing. Lastly, Coutts adds an ID map for identifying

objects in the image plane. This ID map allows di�erent objects to be rendered

with di�erent parameters. Once the ow �elds are generated, streamlines, which

simulate pen strokes, can be created. Furthermore, streamlines from various vector

�elds can be composited to create various cross-hatching type e�ects. To gener-

ate the streamlines, Coutts introduces a novel algorithm that grows streamlines

from seeds on the image plane. In the initial case of a blank image, random seeds

are sprinkled around the image. Then, as streamlines are grown, new seeds are

placed at a prespeci�ed distance to either side of it to ensure that streamlines are

evenly spaced. A visit mask is also added that is updated as each streamline is

drawn. The visit mask is an image bu�er that records the regions of the drawing

covered by the new streamline. To ensure that the correct tone in the �nal image

is achieved, the width of the streamline drawn in the visit mask is widened for

lighter regions. Streamlines that grow into regions marked visited are clipped. A

sample of Coutts' output is shown in Figure 2.12.

Finally, Gooch et al. [17] introduce a new shading model for the automatic

generation of technical illustrations. Their model, in contrast to a standard di�use

lighting model, drops the ambient lighting term, and instead, interpolates between

two colors depending on the surface normal orientation to the light source. Points

on the surface that are oriented toward the light are shaded with a warm color,

kwarm. Points facing away from the light source are shaded with a cool color, kcool.



23

Figure 2.12: Coutts et al. [7] A sample image generated from Coutts' pen-and-ink
illustration system.

Special care is taken to chose kwarm and kcool so that they are similar to those colors

used by technical illustrators. While rendering the �nal image, edge lines are also

drawn to produce the �nal technical illustration e�ect. Lastly, Gooch introduces a

technique to generate illustrations of anisotropic metallic objects. This is done by

simply applying randomly generated grey lines around an object. The line closest

to the light source is forced to white. The remaining lines are then interpolated

between these intensity values and the resulting grading is blended with the lighting

model to create the e�ect of metal shading. Results are shown in 2.13.

2.1.3 Natural Media Simulation

A few authors have researched methods focused primarily on the simulation of nat-

ural media. With the exception of the work done by Curtis et al., these techniques

are generally not complete non-photorealistic rendering systems because they only
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Figure 2.13: Gooch et al. [17] Figure (a) shows a machined part rendered with Gooch's
new lighting model. Figure (b) shows an illustration of an anisotropic metal part. Figure
(c) shows Gooch's lighting model blended with the metal shading model.

simulate media and do not have the capability to generate NPR images. However,

natural media simulation techniques are a critical component of any NPR system

and will be briey reviewed in the following section.

Strassman [51] introduced a method to simulate brushes by accurately modeling

the way a wet brush works. Bleser et al. [3] describes a charcoal drawing system

which utilizes a look-up table of sample charcoal strokes. A digitizer's orientation

and pressure are used to index into a table to �nd a charcoal texture with which

to draw. Velho et al. [53] introduced a new method for halftoning images in

which they use space �lling curves instead of standard dithering algorithms. One

surprising artifact they achieve on top of a new halftoning algorithm is the feel

of charcoal shading on rough paper. Hsu et al. [22] introduced skeletal strokes.

They described a method for stretching bitmaps along arbitrary splines and/or

polylines to simulate painterly style strokes. One advantage of their system for
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interactive painting programs is the ease of modi�ng strokes by simply editing

their underlying curve. Lastly, Curtis et al. [8] introduced a system for simulating

water color paint (Figure 2.14a). To do this, they identi�ed key components of

watercolor and its interaction with paper, and then performed a uid simulation

given these components. In addition to an interactive painting program, Curtis

also de�ned methods for the automatic water colorization of both photographs

and 3D geometry. For photographs, Curtis requires the user to �rst segment the

image into regions. Then, for each region, the user must choose pigments for the

system to paint with. The system then separates each region into its component

pigment colors. Finally, the system iteratively brushes over the image, adding

water where the image is too dark and adding pigment where the color does not

match correctly. For 3D scenes, the geometry is rendered to generate a source

image. The remainder of the process is similar to that for photographs, except

that the user is not required to manually separate the rendered scene into regions

because this information already exists in the underlying model. Lastly, watercolor

animations can be created by simply applying the process to successive frames of

a 3D animated sequence. Figure 2.14b shows a sample photograph converted into

a water color painting.

Finally, the commercial industry has also done much work in simulating natural

media. MetaCreation's Painter [37] software provides excellent tools for simulating

various natural media including, charcoal, pens, pencils, and paints. Futhermore,

Adobe Photoshop [24] provides image �lters which convert images into various

natural media style drawings including charcoal and pencil.
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Figure 2.14: Curtis et al. [8] Figure (a) shows the e�ects that can be simulated by
Curtis' system. Figure (b) shows the results of water colorizing a photograph.

2.2 Image Processing and Machine Vision

The goal of this thesis is to produce artistic charcoal-style renderings from portrait

photographs. However, extracting facial information from a photograph is still an

unsolved problem and remains an active research area in computer vision. Even

with a well segmented image, it is still di�cult to extract from a photograph the

geometry information needed to apply some of the NPR methods described above.

Ultimately, the generation of artistic images from portrait photographs is an

exercise in image processing and computer vision. Although we do not provide a

completely automated solution to the generation of our renderings, we do use many

image processing techniques to provide tools with which the user can coach the

rendering process to generate the �nal results. In general, Machine Vision by Jain

et al. [26] and Digital Image Processing by Gonzalez et al. [16] are good sources

for general information in the �elds of machine vision and image processing.
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In the following sections we focus on the related work in three of the major

areas that we draw from in our technique. In Section 2.2.1, we look at previous

work done in the �eld of Hough transform research. In Section 2.2.2, we briey

review the �eld of image segmentation techiques, and in Section 2.2.3, we explore

research done in the area of facial feature detection.

2.2.1 The Hough Transform and Orientation Filter

One step in generating the �nal artistic rendering is to extract a local orientation

�eld from hair regions in the source portrait. We can then use this orientation

�eld to draw charcoal-style streamlines to simulate the sketching of hair.

Although we introduce a novel use of the Hough Transform to extract local

orientation from the source image, our technique is not the only method used to

accomplish this extraction process. Picard et al. [39] provides a short survey of

other methods for computing local orientation in their work. Also, J�ahne [25], in

his book, presents a detailed discussion of the local orientation problem as well as

providing details of a few previous approaches.

Picard notes that most common methods of extracting orientation information

are done by applying a small set of �lters at pre-speci�ed angles and scales. Each

of these �lters then reports a response for its particular direction. The responses

of all the �lters are then averaged to �nd the general orientation of the region.

Knutsson's work et al. [28] on the Quadrature Filter Set Method is an example of

an approach based on this method. This method will be discussed in Chapter 4

in order to compare a more common approach to the technique that we introduce.
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Finally, Picard states that other methods that extract orientation directly have

been explored using local derivatives, moments in the spatial and Fourier domains,

and the Fourier spectrum directly.

In order to extract orientation from a source image, we apply a series of tiny

Hough Transforms to the small region surrounding each pixel in the source image.

Although the details of the transform and the orientation �lter will be discussed

later in more detail in Chapter 4, we will now cite some of the relevant work from

the Hough transform research community.

The Hough transform was introduced by Paul Hough [21] in 1962 as a method

for extracting curves in bubble chamber photographs. In our application of the

Hough transform, we use a common Hough transform variant presented by Duda

and Hart [13] which uses a (�; �) parameterization of lines to avoid problems with

in�nite slopes.

In general, there are two excellent reviews of research related to the Hough

transform. In 1988, Illingworth and Kittler [23] presented \A Survey of the Hough

Transform" and in 1993, Leavers [31] presented his paper, \Which Hough Trans-

form?"

Similar work to our orientation �lter has been done by Bulot et al. [4]. Al-

though Bulot's goal is to reconstruct contour lines from a source image rather

than �nding general local orientation, they similarily apply a series of local Hough

transforms to each edge-detected pixel in the source image. However, rather than

just �nding general orientation, they also �nd the curvature of the edge. This

information is then used to reconstruct a set of arcs that create a clean version of
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the original contour image. Unfortunately, Bulot's work is not directly applicable

to �nding hair details because their technique requires relatively equally spaced

and clean contour images.

Speed is a large concern in our application of the Hough transform. Because it

is not uncommon for portraits to be composed of hundreds of thousands of pixels,

each application of the Hough transform must be fast in order to generate reason-

able running times. One standard method of reducing the amount of computation

required by the Hough transform is to use look-up tables [50].

Other optimizations to speed the computation time can be applied as well.

Ballard [2] describes a method for reducing the dimension of the data accumu-

lated in the parameter space of the Hough transform for analytic curves by taking

advantage of derivative information. For the standard Hough transform, this op-

timization would reduce accumulating lines or sinusoidal curves in Hough space

to accumulating only points, reducing the total amount of computation required.

Davies [10] proposes a similar algorithm that uses a foot-of-normal parameteriza-

tion derived from the gradient information. The foot-of-normal parameterization

characterizes a line by the point on it that lies closest to the origin. This parame-

terization is valuable not only because lines are parameterized as single points in

accumulator space, but also because it can be performed in the same xy space as

the source image.

Other techniques can be used to decrease the computational work required

by the Hough transform as well. Xu et al. introduced the Randomized Hough

Transform (RHT) [57] for detecting lines. The RHT works by taking two random
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points in image space to generate one point in parameter space. Kiryati introduced

the Probabilistic Hough Transform [27] that processes only a subset of all the points

in the source image to reduce the total computation of the transform. Kiryati

showed that only 5 to 15 percent of the source image pixels need to be processed

for reasonable results.

Several hierarchical variations of the Hough transforms have been presented

that, if applied to our orientation �lter, could provide faster computation. Futher-

more, much work has been done in the area of accelerating the Hough transform

through the use of advanced hardware architectures such as via SIMD machines.

Although which of these methods may speed the computation of the orientation

�lter is questionable, they are viable options. Both the hierarchical techniques

as well as the hardware accelerated techniques are well referenced in the Hough

transform surveys presented by Illingworth [23] and Leavers [31].

2.2.2 Image Segmentation

The facial-feature shading algorithm we propose in this thesis depends on the abil-

ity to segment individual facial features in our source photograph. Once segmented,

the individual components of each feature can then be drawn. The following section

will review the general �eld of image segmentation, and then discuss the speci�c

work that we chose to use in this thesis.

In their review of current image segmentation techniques, Pal and Pal [38]

state that \hundreds of segmentation techniques are present in the literature, but

there is no single method which can be considered good for all images, nor are all
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methods equally good for a particular type of image." Furthermore, Pal and Pal

note that \even the selection of an appropriate [image segmentation] technique for

a speci�c type of image is a di�cult problem."

For this thesis, we use a simple segmentation algorithmwhich involves grey level

thresholding. Grey level thresholding is a class of image segmentation algorithms in

which an image is broken up into regions depending on the intensity value of each

pixel. For simple images, such as a picture of a white box on a black background,

these techniques work well. However, because this class of techniques generally

rely on image histogram analysis, they tend to ignore special details which can lead

to incorrect segmentations. The basic philosophy behind grey level thresholding

is that pixels of similar grey values should be grouped together. However this

assumption may not be true on many occasions. Noisy images are a good example

of when this assumption is not valid.

We choose to use a simpli�ed version of the segmentation algorithm introduced

by Lim et al. [33] to threshold the facial features in our source photograph. Al-

though the segmentation algorithm possesses the limitations described above, it

produces good results in our application. Details of this algorithm will be discussed

in Chapter 6. At the core of the algorithm, we employ the concept of scale space

�ltering. More about this topic can be found in [52].

2.2.3 Facial Feature Recognition

In our proposed NPR system, we require the use of facial feature recognition to

isolate and identify individual parts of the face. Left and right eyebrows, for
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example, are both isolated and hatched independently. Eyes are handled similarly,

except di�erent shading parameters are applied.

The general face recognition problem is to match an image of one's face to a

corresponding record stored in a database. Although applications of this research

have mainly been in law enforcement (i.e. matching photos to those in mug-shot

albums), new applications of user authentication in secure systems have arisen.

Examples of such systems include automatic teller machines, computer systems,

and credit card veri�cation.

In their survey of face recognition, Chellappa et al. [6] break the recognition

problem into three main categories, segmentation, feature extraction, and recog-

nition. Segmentation involves isolating facial regions in photographs. Feature

extraction involves �nding various features in the face. Lastly, the recognition

phase takes the features and uses them to match faces stored in a database. Samal

et al. [46] have also published an excellent review of facial feature recognition.

For our work, we are primarily concerned with the feature extraction phase of

face recognition. Segmentation is currently done manually by the user. Because

we are only generating an artistic rendering, recognition is not necessary.

Although feature extraction is only a subproblem of face recognition, many

solutions to this problem have been proposed. For our system, we take one general

approach of searching for darker regions in the facial region and then classifying

them based on their relative location to each other. Other methods for feature

extraction can be found in the surveys by Chellappa et al. [6] and Samal et al.

[46].



Chapter 3

System Overview

While creating a system for generating charcoal sketches from portrait photographs,

we de�ned a rendering pipeline that consists of the following �ve major steps: ren-

dering of facial-features, hair, edges, facial-tone, and background-shading. Each of

these major steps is further composed of a series of sub-steps or operations. These

operations include �lters, such as a Gaussian blur, or drawing operators, like the

hair rendering algorithm. The following chapter presents a high-level overview of

the major-steps and operations that constitute the artistic rendering process (Sec-

tion 3.1). Also, because the artistic rendering process is interactive and closely tied

to the artistic rendering application, a brief overview of the software developed to

implement the rendering process will be described (Section 3.2).

3.1 Artistic Rendering Process

Each of the �ve major steps in the artistic rendering process is responsible for

generating a portion of the �nal artistic rendering. Although most of the steps are

computationally independent, a few dependencies do exist. Thus, we have de�ned

33



34

Order of Computation: Order of Compositing:

1) shading of the background region
2) drawing of hair
3) drawing of edges
4) drawing of facial features
5) shading of facial tone

1) shading of facial tone
2) drawing of edges
3) drawing of hair
4) drawing of facial features
5) shading of the background region

Figure 3.1: A comparison of the computation versus the compositing process.

the computational ordering of the steps in the artistic rendering process to be 1)

the shading of the background region, 2) the drawing of hair, 3) the drawing of

edges, 4) the drawing of facial features, and 5) the shading of facial tone. However,

this ordering di�ers from the ordering in which the results from each step are

composited into a �nal image. For example, the background region is the �rst

to be processed but the last to be drawn. Thus, for the compositing process, a

loose ordering is again implied. We have de�ned the ordering of drawing to be the

following: 1) the shading of facial tone, 2) the drawing of edges, 3) the drawing of

hair, 4) the drawing of facial features, and 5) the shading of the background region.

Figure 3.1 compares the ordering of the computation and compositing processess.

Figure 3.2 illustrates how the results of each of the �ve major steps are composited

into a �nal artistic rendering.

3.1.1 Background Shading

The background region of the source photograph must �rst be segmented for the

background shading step (Figure 3.6b). This user-interactive separation process

is relatively straight-forward because our artistic rendering system requires pho-
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(c) (d)

(e) (f)

Figure 3.2: An overview of the artistic rendering process. The (a) facial tone, (b) edges,
(c) hair, (d) facial features, and (e) background region are compositied for form (f) the
�nal artistic rendering.
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tographs to be taken with a blue-screen. Once isolated, the background can then

be rendered artistically. Figure 3.6c shows an example of an artistically shaded

background region.

Because later steps in the artistic rendering process require knowledge of which

pixels compose the background area, this region must be temporarily stored. We

de�ne this storage bu�er as the image mask. In general, some steps require the

image mask to remove regions in the image that have already been visited by

previous steps.

3.1.2 Hair Drawing

Once the background region has been isolated, the hair region can then be pro-

cessed. In general, we de�ne the hair region to be any hair in the portrait excluding

the eyebrows. Although the eyebrows are also technically hair regions, they will

be handled specially by the facial feature drawing algorithm.

The �rst operation in this step is to isolate the regions in the image that

represent hair (Figure 3.7b). As with the selection of the background region, this

separation process is a user-interactive one. Once the hair region has been isolated,

the image is then converted to grey-scale (Figure 3.7c). The grey-scale conversion

uses the de�nition of CIE luminance [41],

Y709 = 0:2125R+ 0:7154G+ 0:0721B

The grey-scale image is then smoothed with a Gaussian blur (Figure 3.7d). Our

experimental results show that a standard deviation of 2 for the Gaussian kernel
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generally produces good results. Next, a standard line-detection algorithm [26] is

applied to the smoothed image (Figure 3.7e).

The Hough orientation �lter is then applied to the line-detected image (Figure

3.7f). In short, the orientation �lter computes the local orientation of the lines in

the image for each point in the image. Because of noise, quantization errors, and

the inherent fact that hair tends to be somewhat messy, the computed orientation

�eld must be smoothed before it can be used as a basis for the hair-drawing al-

gorithm (Figure 3.7g). To smooth the orientation �eld, an adapted version of a

Gaussian blur for orientation �elds is applied. From experimental results, we have

found that a large standard deviation of 15 is necessary to adequately smooth the

hair region while preserving the general hair orientation. With the resulting orien-

tation �eld, the hair drawing operation can then be applied (Figure 3.7h). Finally,

as with the background region, the hair region must be added to the image mask.

3.1.3 Edge Drawing

After the hair region is processed, the edges that are to be drawn in the �nal image

must be extracted. The edge drawing process is the most user-interactive step of

the artistic rendering pipeline because it requires the user to manually identify

which edges in the image are to be kept. The identi�cation process is done by

erasing the unwanted edges from the edge-detected image. Although seemingly

tedious, the edge removal process is actually quite straight forward. The use of

the image mask and a de-speckling operator help remove unwanted edges in the

hair region and false edges created by noise. Furthermore, a loose de�nition of
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which edges need to be kept also simpli�es this process. Small edge segments that

lie close to wanted edges and that are hard to remove can be left alone without

drastically changing the resulting drawing. This operation usually takes three to

�ve minutes.

The �rst operation in the edge drawing step is to �nd edges in the source

photograph. Although any edge operator can be used, we choose to use the Canny

edge detector [5]. Canny's edge detector begins by smoothing a source image

with a Gaussian blur (Figure 3.8b). Next, the gradient of the blurred image is

computed, and then a non-maxima suppression operator is applied to the gradient

vector �eld. The resulting pixels from these operations form the edges of the image

(Figure 3.8c). The image mask, which at this point contains the background and

hair regions, is subtracted from the edge-detected image to assist in the removal of

unwanted edges (Figure 3.8d). In some cases, the edge between the hair region and

the background region will not be eliminated by this operation. This is because

the user-selected background and hair regions are not guaranteed to be abutting.

The edge that lies between the two regions, since it is not contained in either one,

will remain after the subtraction operation. To further eliminate unwanted edges,

a de-speckling algorithm removes line segments that fall below a user-speci�ed

length (Figure 3.8e). In general, a threshold length of 10-15 works well.

The next step in the edge drawing step requires the user to manually remove

unwanted lines from the remaining edges in the edge-detected image (Figure 3.8f).

Although highly user-interactive, the removal process is relatively straight-forward

and simple. In general, the determination of which lines are to be kept for the
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�nal drawing is entirely a subjective process, and the user is free to determine

which lines in the edge detected image are to be kept. We found that isolating the

lines that represent the chin, ears, neck and shoulders is generally a good metric.

The detailed lines that compose the facial features should usually be removed to

produce good results. In addition to these general guidelines, the lines that are

kept for the drawing process do not need to be precisely isolated from the original

edge-detected image. This unnecessary need for precision is due to the general

sketchy nature of our target charcoal drawing style.

Finally, the edge information can be rendered in a charcoal style. Figure 3.8g

shows the �nal result.

3.1.4 Facial Feature Drawing

The ability to �nd facial features (i.e. the eyebrows, eyes, nose, and mouth) in

the source image lies at the heart of the facial feature drawing step. Our algo-

rithm is based on the assumption that darker regions on the face are signi�cant

markers for the locations of facial features. This assumption works well for por-

trait photographs because the controlled lighting frees us from the need to worry

about shadows. However, the algorithm does make some limiting assumptions.

Primarily, faces with darker skin tone or dark birth marks will cause problems.

Also, occluding objects, such as glasses, will mislead the feature �nding algorithm

as well.

The �rst operation in the drawing of facial features requires the user to select

the region of the source photograph that represents the face. However, unlike
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previous selections, this selection process can be relatively imprecise. All that the

user must do is to include all of the facial features in the selection while excluding

regions outside the face itself. Figure 3.9b shows a sample of a selected region.

Once selected, the image mask must be subtracted from the image. This oper-

ation is necessary when the subject in the source photograph has facial hair such

as a mustache or beard. Because facial hair should have been selected in the hair

drawing step, subtracting the image mask should remove any hair regions from the

facial region. As mentioned previously, eyebrows are an exception to this operation

because they are considered by our system as a facial feature and not as a hair

region.

Next, the lighting in the image must be normalized (Figure 3.9c). This interac-

tive process requires the user to pick various points on skin regions across the face.

This lighting normalization is based on the observation that faces are somewhat

cylindrical in shape and that the lighting in a portrait studio tends to primarily

come from the direction of the camera. In the original photograph, the sides of

the face tend to be much darker then the center. After the normalization process,

the tone across the face is fairly regular.

From this normalized image, a grey-scale image is computed with the same

method described earlier (Figure 3.9d). The brightness and contrast of the image

are then increased (Figure 3.9e). This increase helps the thresholding process by

washing away any of the remaining shadows of the source image.

Next, the features in the face can be found by a clustering algorithm and prior

knowledge of where features lie in relation to one another. Figure 3.9f shows
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the results of this clustering process. The di�erent colors in this image represent

di�erent facial features that were found. With the clustered image, the individual

facial features can then be drawn (Figure 3.9g). Finally, the regions of the portrait

that represent the eyes must be added to the image mask. Note, however, that

we do not add the entire region represented by the facial features to the image

mask. The reason for this exception is mainly aesthetic and will be explained in

the Section 3.1.5.

3.1.5 Facial Tone Shading

The �nal step of the rendering process is the generation of facial tone from the

source image1. Unlike the previous steps, the result of the facial tone shading step

is a grey-scale image rather than a set of brush strokes. This image will be used

as a backdrop on top of which the other elements of the sketch will be drawn.

The �rst operation in the facial tone shading step is to subtract the image mask

from the source photograph (Figure 3.10b). Currently, the image mask contains

the regions of the image that represent the background area, the hair, and the

eyes. After subtracting, we are left with the regions of the image that represent

the face (excluding the eyes), neck, and shoulders. The reason that only the eyes

are excluded, rather than all of the facial features, is due to experimental results.

In generating sketches, we found that by leaving the general tone of the images

under the eyebrows, nose, and mouth unmodi�ed, we were able to obtain a more

pleasing �nal drawing. Subtracting these regions from the tone image often leaves

1Note that although we refer to this step as facial tone shading, it also applies
to the shading of tone around the neck and shoulders.
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discontinuities in tone around each feature. Figure 3.3a,b shows two images of

an eyebrow. Figure 3.3a shows the eyebrow in the case where we subtracted the

mask from the background tone. Figure 3.3b shows the same eyebrow in the case

that it is not subtracted. Notice the unwanted halo-e�ect around the eyebrow in

Figure 3.3a. This e�ect is due to the fact that it is di�cult for the facial feature

clustering algorithm to isolate the entire eyebrow region. The fuzzy nature of

borders in natural images as well as the method in which we threshold the image

before clustering are the source of this inability. The eyebrow in Figure 3.3b lacks

the discontinuity and produces a better result.

Unlike the other facial features, the regions in the image that represent the

eyes are subtracted from the tone image. Figure 3.3c,d illustrates why we chose to

make this exception. Figure 3.3c shows the eye in the case where the eye region is

subtracted from the background tone. Figure 3.3d shows the case where the eye

region is not subtracted. Notice that when the eye is drawn over the underlying

color from the tone map (Figure 3.3d), the highly specular regions of the eye are

not visible.

After the subtraction operation, the image is converted to grey-scale (Figure

3.10c). The image is then heavily blurred (Figure 3.10d) and its brightness is

strongly increased (Figure 3.10e). Note how this blurring process is limited to

only the regions of the image that were not removed when the image mask was

subtracted. The next step in the shading of facial tone is to then remove any

masked regions in the image (Figure 3.10f). These regions are represented by

black areas in the �gure, and after the removal operation, they are replaced with
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(a) (b)

(c) (d)

Figure 3.3: A set of images illustrating the advantages of only including the eye regions
in the image mask. Two eyebrows with the eyebrow regions included (a) and not included
(b) in the image mask. Two eyes with the eye regions included (c) and not included (d)
in the image mask.

unmasked, white pixels. Next, the image is blurred again to smooth the rough

edges that resulted from the image mask subtraction process (Figure 3.10g). The

resulting image is a very smoothed and washed out version of the original image.

Finally, the resulting image is blended with a paper texture to give the appearance

of smudged charcoal (Figure 3.10h).

3.2 Application Architecture

The artistic rendering software provides a user-interface that closely parallels the

underlying rendering pipeline. In general, to create an artistic rendering, the

user begins by loading a source photograph and then proceeding down a linear

progression of operations to produce a �nal image. Figure 3.4 shows a screen-shot

of the interface.

After each operation in the series is applied, an intermediate image is gener-



44

Figure 3.4: A screen-shot of the user interface for the artistic rendering software.

ated. This image is then used as a source image for the following operation. In

our system, we loosely de�ne the term image to describe either a grey-scale or

RGB pixel array with some associated meta-data. This meta-data can include

information such as a vector �eld, visibility mask, or pixel cluster information.

The central data structure to the artistic rendering software is the image stack

(Figure 3.5). Operations use the top stack element as their source image when

applied. Upon completion, the resulting images are pushed onto the stack to

become the new top element. Through the System Dialog, the rendering software

provides the ability to view and reorder previous images in the image stack. This

functionality allows the user to reapply operations to previous images. The System

Dialog also allows the user to generate the script that can later be imported into
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MetaCreations' Painter software [37]. To generate this script, the user is allowed

to choose the pressures of the brushes that will be used to draw the facial features.

In general, the user begins the artistic rendering process by loading a source

photograph. Then, starting with the Setup Dialog (Figure 3.11), the user proceeds

down a series of operations in the dialog box. When completed, a small noti�cation

box will turn red to signify that the current step is complete. At the completion of

each step, the user is required to reset the image stack, reload the original image,

and proceed to the next step. For example, when the user is done with the Hair

rendering step, s/he is required to proceed to the Edge dialog. When all the steps

are completed, the user can then generate the �nal artistic rendering.

In some cases, a pair of Cut and Paste operations will appear in the series of

operations. Although we implement a few tools for image selection and painting,

commercial applications such as Adobe Photoshop [24] generally do a much better

job. Thus, we require an external image manipulation program to handle some

of the user interactive selection and painting tasks required by our system. To

interface with these external programs, we use the Win32 clipboard which allows

the cutting and pasting of images between applications.

Following each of the major steps is a draw operation. This sub-step takes

the top element of the stack and adds it to an output container (Figure 3.5). The

output container stores copies of the image data that will later be used to generate

the �nal artistic rendering. For example, if a vector �eld is needed for the hair

generation algorithm, it will be stored in the output container regardless of whether

it has been ushed from the image stack.
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System Dialog Image Window

Image Stack

Tone Map Pipeline Dialog Output Container

Figure 3.5: The structure of the artistic rendering software. At the heart of the rendering
software is the Image Stack. The System Dialog allows the user to view and reorder
images in the stack. The Pipeline Dialog applies operations to the elements in the
Image Stack to generate new elements. The Tone Map is used for the drawing of facial
features. The Output Container holds images independently of the Image Stack until
the user is ready to generate the �nal artistic rendering.
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Finally, an image mask and tone map are stored independently of the image

stack (Figure 3.5). The image mask represents regions of the source photograph

that have already been drawn or completed. In some steps, the user will be required

to add the current selection to the mask. For example, after the user has isolated

which pixels represent hair, s/he is required to add this region to the image mask.

After the user has reset the image stack and reloaded the source photograph, the

mask can then be subtracted from the image, leaving only those regions which

have not yet been considered. The tone map is used only as a reference for the

drawing of facial features.

Figures 3.11 to 3.15 step through the operations in the artistic rendering soft-

ware.
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(a) (b) (c)

Figure 3.6: A typical image stack for the rendering of the background region. (a) The
original image. (b) The background region after it has been selected. (c) The �nal
artistically rendered result.
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Figure 3.7: A typical image stack for the rendering of hair. (a) The original image. (b)
The hair region after it has been selected. (c) The hair region converted to grey-scale.
(d) The hair-region blurred. (e) The line-detected version of the hair region. (f) The
result of applying the orientation �lter. (g) The smoothed orientation �eld. (h) The �nal
artistically rendered result.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.8: A typical image stack for the rendering of edges. (a) The original image. (b)
The image after blurring. (c) The edge-detected image. (d) The image after subtracting
the image mask. (e) The image after despeckling. (f) The result after a user has removed
unwanted edges. (g) The artistically rendered result.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.9: A typical image stack for the rendering of the facial region. (a) The original
image. (b) The facial region after being selected by the user and subtracting the image
mask. (c) The result of the lighting normalization process. (d) The image after converting
to grey-scale. (e) The image after increasing the brightness and contrast. (f) The image
after the facial feature �nding algorithm. (g) The �nal artistically rendered result.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 3.10: A typical image stack for the rendering the tone in the image. (a) The
original image. (b) The image after subtracting the image mask. (c) The image after
converting to grey-scale. (d) The result after applying a blur. (e) The image after the
brightness has been increased. (f) The image after removing the masked area created by
the substraction process. (g) The image blurred again. (h) The �nal tonal shading.
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Description of Operations:

ToneMap : Sets the global tone map with the
passed image.

input : image_color
output : <none>

SelectBack : Segments the background region of
the image.  User is required to identify a small
rectangular sample of the background region to
be selected.

input : image_color
output : image_color

DrawBack : Sends the selected background
region to the output container.

input : image_color
output : <none>

AddToMask : Adds the selected background
region to the image mask.

input : <any image>
output : <none>

%: tolerance of pixels to be included in the
selection

parameters:

Figure 3.11: The Setup dialog box.
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Description of Operations: 

Cut/Paste : User is required to use an external
program to select the hair region.

input : image_color or image_grey
output : image_color

Intensity : Converts a color image into a grey-
scale image.

input : image_color
output : image_grey

Blur : Blurs the image.
input : image_color or image_grey
output : image_color or image_grey

AddToMask : Adds the selected hair region to
the image mask.

input : <any image>
output : <none>

rad : radius of the blur
parameters:

LineDetect : Detects lines in a blurred image.
input : image_grey
output : image_grey

thr : minimum threshold with which to
generate a responce.

parameters:

Orientation : Computes the orientation of lines
in the image.

input : image_grey
output : image_color_orient

size : the size of the orientation filter.
parameters:

OrientBlur : Smooths the orientation vector field.
input : image_color_orient
output : image_color_orient

rad : the size of the blurring filter.
parameters:

DrawHair : Sends data to the output container.
input : image_color_orient
output : <none>

Figure 3.12: The Hair dialog box.
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Description of Operations: 

Cut/Paste : User is required to use an external
program to erase unwanted edges.

input : image_color or image_grey
output : image_color

Intensity : Converts a color image into a grey-
scale image.

input : image_color
output : image_grey

Blur : Blurs the image.
input : image_color or image_grey
output : image_color or image_grey

SubMask : Subtracts the image mask from the
passed image.

input : <any image>
output : <corresponing image type>

rad : radius of the blur
parameters:

EdgeDetect : Detects edges in a blurred image.
input : image_color or image_grey
output : image_grey

thr : minimum threshold with which to
generate a responce.

parameters:

Despeckle : Removes lines from an edge-
detected image that are less than a specified
length.

input : image_grey
output : image_grey

thr : the minimum line length to keep.
parameters:

DrawEdges : Sends data to the output container.
input : image_grey
output : <none>

Figure 3.13: The Edge dialog box.
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Description of Operations: 

Cut/Paste : User is required to use an external
program to select the facial region.

input : image_color or image_grey
output : image_color

Intensity : Converts a color image into a grey-
scale image.

input : image_color
output : image_grey

Brightness : Changes the brightness of the image.
input : image_grey
output : image_grey

SubMask : Subtracts the image mask from the
passed image.

input : <any image>
output : <corresponing image type>

%: precent change in brightness
parameters:

Cluster : Finds a cluster of pixels associated
with each facial feature.

input : image_grey
output : image_color_cluster

thr : grey-level above with which pixels can be
considered for clustering.

parameters:

DrawEdges : Sends data to the output container.
input : image_color_cluster
output : <none>

Lighting : Normalizes the lighting on the image
to ease later operations.  User is required to
select (left to right) points of various skin tone
intensities.

input : image_color
output : image_color

Contrast : Changes the contrast of the image.
input : image_grey
output : image_grey

%: precent change in contrast
parameters:

AddToMask : Adds the clustered eye regions to
the image mask.

input : <any image>
output : <none>

Figure 3.14: The Face dialog box.
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Description of Operations: 

Intensity : Converts a color image into a grey-
scale image.

input : image_color
output : image_grey

Brightness : Changes the brightness of the image.
input : image_grey
output : image_grey

SubMask : Subtracts the image mask from the
passed image.

input : <any image>
output : <corresponing image type>

%: precent change in brightness
parameters:

Shade : Sends data to the output container.
input : image_grey
output : <none>

Blur : Blurs the image.
input : image_color or image_grey
output : image_color or image_grey

rad : radius of the blur
parameters:

RmAlpha : Removes the masked area created by
the SubMask  step.

Blur : Blurs the image.
input : image_color or image_grey
output : image_color or image_grey

rad : radius of the blur
parameters:

Figure 3.15: The Tone dialog box.



Chapter 4

The Hough Orientation Filter

The Hough orientation �lter extracts local orientation from an image. More specif-

ically, it computes the general orientation of the lines that lie in the small region

surrounding each pixel in the source bitmap1. The result of the Hough orientation

�lter is a 2-dimensional array of 2-dimensional vectors. Each vector's direction

and magnitude represent orientation and response strength respectively. Response

strength can be de�ned as how strongly the lines in the region surrounding s pixel

are oriented in a particular direction. An example showing the result of the Hough

orientation �lter is shown in Figure 4.1. Figure 4.1b shows the vector �eld after

the Hough orientation �lter is applied to the source bitmap shown in Figure 4.1a.

In short, the Hough orientation �lter works by applying a small Hough trans-

form to the region surrounding each pixel in an image. The result of the Hough

transform is an analytic description of the lines contained in the region. The ori-

entation of these lines can then be averaged to generate a vector that represents

1Note that the de�nition of orientation di�ers slightly from that of direction.
Orientation is de�ned between 0 and � while direction is de�ned between 0 to
2�. For example, a vector pointed at 0 and a vector pointed at � have di�erent
directions but the same orientation.

58
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(a) (b) (c)

color
keycolor

orientation
(d) (e)

Figure 4.1: A few sample images illustrating some applications of an orientation �l-
ter. (a) A source black-and-white bitmap. (b) The bitmap after being processed by the
orientation �lter. (c) A sample of using the orientation �eld to draw lines and create
a sketch-like drawing. (d) A sample box-in-a-box image that is di�cult for machines to
interpret. (e) A image showing how an orientation �lter can help remedy this machine
vision problem.

the local orientation.

One application of the Hough orientation �lter is for artistic rendering. Figure

4.1c shows how streamlines can be used to trace an orientation �eld to generate

a sketchy image. Another application for orientation �lters, illustrated in Figures

4.1d,e, is to assist computers in detecting image features that are simple for the

human visual system to see but di�cult for machines to understand.

This chapter will begin by presenting a brief overview of the Hough transform in

Section 4.2. Section 4.3 will detail how to extract general orientation information
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from the results of the Hough transform. Combined, these two concepts form the

basis of the Hough orientation �lter (Section 4.4). Finally, a few optimizations to

the Hough orientation �lter will be presented in Section 4.5. Potential areas for

future optimizations will be discussed in Chapter 8.

4.1 Other Orientation Filters

As mentioned in Chapter 2, many other methods of computing local orientation

have been proposed. The most general class of these methods are techniques based

on the idea of applying a small set of �lters at pre-speci�ed angles and scales. The

following section will review two techniques for computing local orientation in order

to compare more common approaches to our novel technique. The �rst of these

methods is application of the gradient operator. The second is the Quadrature

Filter Set Method [28], which falls into the general class of techniques mentioned

above.

The application of a standard gradient operator is probably the most straight

forward method to compute local orientation of an image. The motivation behind

this method is illustrated in the following example. Assume that we are trying

to �nd the local orientation of the white lines in the image shown in Figure 4.1a.

First, we treat the image as a height-�eld and apply a gradient operator through-

out. This operation yields a set of vectors that point in an uphill direction and

are perpendicular to the white lines in the source image. These vectors represent

the exact local orientation that we are trying to compute. Thus, computing local

orientation with the gradient operator simply involves applying the gradient op-
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Figure 4.2: The application of a gradient operator to compute orientation. The large
vacancies are left in the orientation vector �eld (compared to Figure 4.1b) are due to the
fact that the gradient operator is very localized.

erator to each point in the image and then �nding vectors that are perpendicular

to those computed from the gradient (Figure 4.2). Although fast, the gradient

operator only considers its eight surrounding pixels and is thus, too local of a fea-

ture [25]. For example, a purely random pattern with no speci�c orientation will

generate a well de�ned gradient at each point in the image. Futhermore, large

vacancies can also result in the �nal vector �eld due to this locality.

The Quadrature Filter Set Method [28] characterizes the most common method

for computing local orientation. This method applies a set of �lters to the small

sub-region surrounding each pixel in a source image. Four directional �lters with

45� increments in the directions of 22.5�, 67.5�, 112.5�, and 157.5� measure the

orientational strength of the underlying region in its respective direction. The

results of these �lters are then averaged to �nd the general orientation of the sub-
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Figure 4.3: A sample plot of the directional quadrature �lter in the 112.5� direction.

region. The �lter used in this technique is known as a quadrature �lter2 and is

illustrated in Figure 4.3.

Although many of the previously published methods for computing local ori-

entation are applicable to our ultimate goal of artistically rendering hair, we chose

to use the Hough transform to compute local orientation because of its robustness

in �nding lines in noisy images.

4.2 The Hough Transform

The Hough transform [21] is a standard method in machine vision to �nd a math-

ematical description for lines and shapes in an image. Although many variations

to the Hough transform have been proposed (Section 2.2.1), the Hough orientation

2\A pair of �lters is said to be in quadrature if they have the same frequency
response but di�er in phase by 90�. Such pairs allow for analyzing spectral strength
independent of phase and allow for synthesizing �lters of a given frequency response
with arbitrary phase." [15]
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�lter employs a basic form of the Hough transform that �nds lines in a black-and-

white, 1-bit image. The following section will describe this basic form of the Hough

transform and provide the motivation for using the Hough transform to �nd lines

in an image in favor of a more brute-force method.

Assume that there exists an image that contains n points, and that we want

to �nd the lines in the image that these pixels represent. One possible solution to

this problem is to �nd all the lines determined by each pair of points in the image.

This process generates n(n� 1) � n2 lines. The number of pixels that lie on each

line must then be computed in order to �nd the strength or relevance of the line in

the original image. This operation requires the number of pixels � the number of

lines or (n)(n(n� 1)) � n3 total operations [16]. The Hough transform provides a

much more computationally attractive solution.

Assume that we have a point, (x0; y0), which can be described by the equation,

y0 = mx0+ b. An in�nite number of lines exist through that point, and thus, there

exists an in�nite number of possibilities for m and b. Figure 4.4a illustrates a

point (x0; y0) with 3 di�erent lines passing through it. Now consider the same line

equation rewritten as b = �x0m+ y0. Solving for m and b with a constant x0 and

y0, we obtain, as before, an in�nite number of (m; b) points. In the mb plane (also

referred to as parameter space), plotting all possible m and b values creates a line

with a slope, �x0, and b-intercept, y0. Figure 4.4b illustrates how the three lines

from Figure 4.4a transform into a series of points that lie on a common line. This

transformation, from lines in the xy plane that share a common point to points

in the mb plane that share a common line, is the fundamental concept underlying
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the Hough transform.

Now, assume that we have two points in the xy plane, (x0; y0) and (x1; y1).

Because these two points lie on a common line (Figure 4.5a), there exists an m0

and b0 such that y0 = m0x0 + b0 and y1 = m0x1 + b0 are true. Rewriting these

two equations and generalizing for any m and b, we get b = �x0m + y0 and

b = �x1m+ y1. By plotting these two lines in parameter space, we �nd that they

intersect precisely at (m0; b0) (Figure 4.5b). This observation is the basis of the

Hough transform.

Assume, now, that we have n points along the line shown in Figure 4.5a, and

that the equation of this line is unknown. Transforming these points into parameter

space would create n lines that would all intersect exactly at the point, (m0; b0)

(Figure 4.5b). Once the intersection point in parameter space is found, the original

line equation can be analytically described by the standard line equation, y =

m0x+ b0.

To compute the Hough transform, we quantize the parameter space and divide

it into a 2-dimensional array of accumulator cells. As previously discussed, every

point in the source image transforms into a line in parameter space. However, now

each line in parameter space is rasterized and drawn in such a way that instead

of simply marking the location of individual pixels, accumulator cell values are

incremented by one each time a line is drawn over it. Figure 4.5c illustrates a

sample source image. Figure 4.5d shows two of the points from the source image

converted into parameter space. Although not illustrated, the cell in which the

two rasterized lines overlap has a higher count than its surrounding cells.
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b = -x0m + y0
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(figures not drawn to scale)
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y = m2x + b2

y = m0x + b0

y = m1x + b1

(a)

Figure 4.4: Illustration of the Hough transform. (a) A set of lines that pass through the
point (x0; y0). (b) A �gure illustrating how each of these lines can be represented as a
point along a common line in parameter space.
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Figure 4.5: Illustration of the Hough transform. (a) A line containing two points,
(x0; y0) and (x1; y1). (b) The two points converted into lines when transformed into
parameter space. (c) The same two points, except now they lie in a discrete, rasterized
line. (d) The two points converted into parameter space. The center bin represents an
accumulator cell which has been incremented twice because it is overlapped by two lines.
The cell with the highest count represents the slope and intercept of the original line.
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Once all the pixels in the source image have been drawn in parameter space, we

can extract line information by looking for the accumulator cells with large values.

A signi�cant line in the source image will produce many lines in parameter space

that repeatedly overlap at a single point. From this point, the slope and intercept

(m and b) of the original line in the source image can be extracted.

A problem that arises when using the slope-intercept form of the line equation,

y = mx + b, is that both the slope, m, and the intercept, b, approach in�nity as

the line becomes vertical. This is a problem for the Hough transform since we can

not have an in�nitely large parameter space. Moreover, even using a relatively

large parameter space to capture near-vertical lines may be too computationally

intensive and require too many resources for some tasks. Furthermore, scaling the

parameter space to represent a large area with a small array undesirably reduces

the resolution and accuracy of identifying non-near-vertical lines. To avoid these

problems, we use the normal representation of a line, � = x cos � + y sin � (Figure

4.6a) [13].

With the normal representation of a line, the Hough transform is computed

as before, except that now, each (x; y) is transformed into a sinusoidal curve in

the �� plane (Figure 4.6b,c). As before, the application of the Hough transform

requires every point in the source image to be transformed into a curve in parameter

space. Values are accumulated and cells with large values represent signi�cant

lines in the source image. Also note that � is limited to range from ��=2 to �=2.

Bounding the range of � prevents the computation of redundant information. For

example, a line de�ned by � = x cos � + y sin � is the same as the line de�ned by
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�� = x cos(� + �) + y sin(� + �) and � = x cos(� + 2=�) + y sin(� + 2�).

Figure 4.7a shows a sample source image and Figure 4.7b shows the same image

after the application of the Hough transform.

4.3 Orientation Extraction

Once the Hough transform has been computed, the orientation information can be

extracted. The generation of the parameter space in the �� plane simpli�es this

process because accumulator cells can be directly indexed by � and no additional

computations are required to extract angular information. A further simpli�cation

comes from the fact that we are only concerned with orientation. This focus on

orientation allows us to disregard the � axis. Thus, the �rst step in orientation

extraction is to \squash" the � dimension of the �� parameter space to produce a

1-dimensional array of orientation response strengths indexed by �. This reduction

is done by summing, for each �, the corresponding � accumulator cell values that

rank among the largest 5 percent in the entire parameter space3. The computed

sum is then stored in the orientation response strength array. Each value in the

array represents the strength of the orientation response for that particular �. For

a source image containing a set of lines of roughly equivalent orientations, most of

the values in the resulting response strength array will be zero.

For each non-zero response, we generate a vector whose orientation is based

on the corresponding � index and whose magnitude is based on the array bin

35 percent is an arbitrary value which produced good results during experimen-
tation.
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Figure 4.6: Illustration of how the normal representation of a line is used with the
Hough transform. (a) An illustration of the normal representation of a line. (b) Two
points (x0; y0) and (x1; y1) that lie on a line, � = x cos � + y sin �, where � and � are
constant. (c) Two points, (x0; y0) and (x1; y1), transformed into the parameter space
curves, � = x0 cos � + y0 sin � and � = x1 cos � + y1 sin �. Note that the two curves
intersect at the point (�; �).
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(a) (b)

Figure 4.7: A sample result of the Hough transform applied to an image containing lines.
(a) The original image. (b) The resulting accumulator cells after the application of the
Hough transform. The lighter colored pixels represent accumulator cells with greater bin
counts. Note that because the lines in the source image are oriented in the same direction,
the peak points in the parameter space share the same �.

value. The resulting set of vectors must then be averaged to �nd the average

orientation of the source image. Unfortunately, we cannot simply add the vectors

and divide by their total magnitude to �nd the average orientation. Figure 4.8a-c

illustrates this dilemma. In Figure 4.8a, we have vectors representing two di�erent

orientations. In Figure 4.8b, we average the two vectors, and in Figure 4.8c, the

resulting orientation is shown. However, this orientation is incorrect. The correct

solution is shown in Figure 4.8g. J�ahne [25] describes a technique for properly

working with orientation.

Because the range of orientation is limited to � radians rather than 2� radians,

it is helpful to multiply the orientation of a vector by 2 before applying opera-

tions to it. This adjustment in the vector's angle introduces the cyclic behavior
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necessary to reason with orientation using standard geometric operations (i.e. two

vectors directed at 0 and � radians should be mathematically treated as the same

orientation in the same way that two vectors directed at 0 and 2� are treated as

the same direction.). Figures 4.8d-g illustrate how this technique is used to average

orientation vectors. Before averaging, each vector's direction with respect to the

0�-axis is �rst doubled (Figure 4.8d). The new vectors are averaged (Figure 4.8e),

and the resulting vector's direction is then halved (Figure 4.8f). Figure 4.8g shows

the computed average orientation.

4.4 The Hough Orientation Filter

Once we are able to extract orientation information from the parameter space of

the Hough transform, the application of the Hough orientation �lter is relatively

straight forward. As previously described, for every pixel in an image, a Hough

transform is applied to the surrounding region and the orientation is extracted.

By applying this process everywhere, the local orientation at each pixel is found.

There are two main parameters of this process. The �rst is the size of the

surrounding region around each pixel to which the Hough transform will be applied,

and the second is the resolution of the Hough transform's parameters space. In

general, the size of the Hough transform window should be wider than the average

distance between the lines in the source image. A smaller window size produces

black spots in the resulting orientation vector �eld where the Hough transform fails

to detect any signi�cant lines and no orientation can be extracted. Furthermore,

a small Hough window also creates quantization errors that reduce the accuracy
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Figure 4.8: Illustration of how to average orientation vectors. Figures (a)-(c) show
an example where simply averaging vectors produces an incorrect average orientation.
Figures (d)-(f) show how this problem can be solved by doubling vector angles before the
averaging process and then halving them afterwards.
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(c)

(a)

(d)

Figure 4.9: A set of images illustrating how quantization errors occur when applying the
Hough transform to a small image with a relatively large parameter space. (a) The 21�21
source image. (b) The results of the Hough transform applied to a 21�21 accumulation
bu�er. Note that the general trends in the source image are captured well. (c) The Hough
transform with a relatively over-sized accumulation bu�er. (d) A magni�ed region of the
parameter space shown in (c). Note how the quantization errors cause the curves drawn
in parameter space to cross at incorrect points.

of the �nal result.

The second parameter, the resolution of the Hough parameter space, should be

chosen to be roughly the same size as the original image. Too large of a param-

eter space introduces quantization problems that lead to inaccurate results and

increased computational time (Figure 4.9). A parameter that is too small reduces

the accuracy and resolution of the Hough transform, although having the desired

e�ect of reducing computational time.
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When the Hough orientation �lter is applied to lines detected in a natural

image, the resulting vector �eld is generally very noisy. Before the vector �eld can

be used for our application of artistically rendering hair, the vector �eld must �rst

be blurred.

To smooth the vector �eld, we augment a standard Gaussian blur with two

operations. The �rst operation doubles a vector's angle with respect to the 0�-

axis for every vector in the vector �eld. This operation guarantees the proper

averaging of vectors as previously described. Next, each vector's magnitude is

squared to more heavily weight vectors that represent strong orientation responses.

The resulting vector �eld is then smoothed with a relatively large Gaussian kernel.

Experimental results have shown that a standard deviation of 15 produces results

that adequately smooth the vector �eld while perserving the major details of the

source image. Once smoothed, the vectors are returned to their original form.

Figure 4.10b shows the result of applying the Hough orientation �lter to the

image in Figure 4.10a. Figure 4.10c shows the result of smoothing the vector �eld

resulting from the Hough orientation �eld. Figure 4.10d shows how the smoothed

vector �eld can be used to draw hair.

4.5 Optimizations

Computing a Hough transform for each pixel in a standard image composed of a few

thousand pixels is a very computationally intensive task. Several strategies have

been implemented to reduce this comutational process. Look-up tables are used to

avoid the repeated computation of sines and cosines when computing curves in the



75

color
key

co
lo

r

or
ie

nt
at

io
n

(c)

(a)

(d)

(b)

Figure 4.10: A sample result of the Hough orientation �lter. (a) The source image. (b)
The result of applying the orientation �lter to the source image. (c) The orientation �eld
after smoothing. (d) A sample of using the orientation �eld to draw sketchy, hair-like
lines.

�� parameter space and provide a signifcant performance increase. Furthermore

we parallelize the Hough orientation algorithm to take advantage of machines with

multiple processors. This parallelization is done by simply dividing scan-lines

across di�erent threads. These threads are then distributed between processors by

the operating system.



Chapter 5

Facial Feature Extraction

The extraction of facial features is one of the most important steps in the artistic

rendering of portrait photographs. Speci�cally, we wish to isolate the six major

features of the face: the eyebrows, eyes, nose, and mouth. Each of these regions

must be isolated so that each feature can be treated independently and rendered

with a specialized drawing algorithm. Details of the actual shading algorithms can

be found in Chapter 6.

As described in Chapter 2, our facial feature extraction process is based on

the assumption that facial features are generally darker than the skin tones in the

surrounding face. Although this assumption may not hold true for all faces, it is

generally a valid assumption and commonly used in many vision systems.

The following chapter will describe the process of �nding facial features. Sec-

tion 5.1 will describe a simple, user-interactive method to robustly normalize the

lighting in a portrait photograph. This normalization process ultimately achieves

more accurate results. Section 5.2 will then discuss the algorithm we employ to

isolate the facial features.
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5.1 Lighting Normalization

The facial feature extraction process developed for this thesis is based on a classic

machine vision technique known as thresholding. Because we assume that facial

features are darker than their surrounding regions, we can threshold the facial

region to �nd all the pixels that lie above and below a speci�ed grey-level. Once the

image is thresholded, the darker regions can be isolated and assumed to compose

the facial features. Individual features are then found by �rst grouping dark regions

into clusters and comparing the relative positions of the clusters to one another.

One of the basic premises of our artistic rendering system is that we are work-

ing with portrait photographs. This premise eliminates the problem of needing to

work with photographs taken under bad lighting conditions. However, even with

the highly controlled lighting environment in the portrait studio, there are still

shadowed regions in the portrait that must be corrected before the feature extrac-

tion process can be applied. Figure 5.1 shows an example of a typical portrait

photograph. Although seemingly uniform, notice how the colors across the face

vary greatly from the highlight on the forehead to the darker regions on the sides.

The lighting across the face must be normalized before the thresholding process

can be applied because of this inconsistency. In general, however, this normalizing

of lighting is a non-trival task. To help resolve this problem, we make the simpli�ng

assumptions that the head is roughly cylindrical and that the most signi�cant

lighting for the portrait is positioned roughly in the horizontal plane around the

head. Based on these assumptions, we de�ne a simple, user-interactive process



78

Figure 5.1: A �gure showing how much color changes across the face of a portrait
photograph. Note that the skin color at the center of the forehead is much lighter than
that at the edge.

to normalize the image. The process requires the user to pick �ve points across

the face in regions of di�erent tonal values. Generally, choosing points from the

following regions works well: the left edge of the left cheek, the center of the left

cheek, the center of the forehead, the center of the right cheek, and the right edge

of the right cheek. The red crosses in Figure 5.2a show some typical sample points.

Once the points have been picked, the colors of the points are interpolated to

generate a color gradient image (Figure 5.2b). The interpolation process works by

setting the color of each column in the gradient image to the linearly interpolated

color of its two closest sample points. The columns that lie outside the group of

sample points are simply set to the color of their closest point.

The gradient image is then subtracted from the source image (Figure 5.2c),



79

and the result is then inverted to provide better visualization (Figure 5.2d). As

a �nal step, the normalized image is converted to grey-scale (Figure 5.3a) and

the brightness and contrast of the original image are increased to wash out any

remaining dark regions (Figure 5.3b). By the end of this step, none of the facial

features should be connected by dark regions (i.e. the facial features should form

a disjoint set of dark areas in the image). Any dark regions that are not related

to a speci�c facial feature will confuse the feature clustering algorithm (Section

5.2). Figured 5.3c shows the grey-scale version of the original image. Figure 5.3d

shows the brightness and contrast of the original increased. Note how in Figure

5.3d there are still unwanted dark areas around the edges of the face and between

the eyes and eyebrows.

5.2 Feature Clustering

Once the lighting in the facial image has been properly normalized, the thresholding

and clustering algorithms can be applied. Thresholding the image simply involves

removing all pixels that are above a speci�ed grey-level. This process removes the

majority of the pixels that represent skin and leaves behind islands of pixels that

represent facial features.

Once the image is thresholded, the remaining pixels must be grouped into clus-

ters that represent signi�cant facial features. A recursive region growing algorithm

is applied to do this clustering. The algorithm works by scanning through the

image and searching for pixels that have not been removed by the thresholding

process. When an active pixel is found, a cluster is grown by recursively adding
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(a) (b)

(c) (d)

Figure 5.2: A series of images illustrating the lighting normalization process. (a) The
original image (after the selection process). The red crosses on the face show a set of
typical sample points. (b) The color gradient generated from these sample points. (c)
The result of subtracting (b) from (a). (d) The results of the subtraction process inverted.
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(a) (b)

(c) (d)

Figure 5.3: A comparison of an image with and without the normalization process. (a)
The grey-scale version of the result of the normalization process. (b) The brightness
and contrast of the image increased. Note how the facial features now form disjoint dark
regions in the image. (c) The grey-scale version of the original image without processing.
(d) The brightness and contrast of the original image increased. Note how there are still
dark areas that connect the eyes and eyebrows.
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neighboring pixels. Pixels that have been added to a cluster are marked \visited"

so that they will not be referenced again. This process continues until the entire

image has been clustered.

Six clusters, representing facial features, will ideally be isolated after the com-

pletion of this process. In general, however, many more clusters result, and further

processing is required to obtain a clean representation. To solve this problem, we

make use of the observation that in general, after the clustering proces, each facial

feature decomposes into one large cluster surrounded by a few scattered pixels.

Thus, we de�ne a reclusterizing process that involves the following steps: 1) sort-

ing the clusters based on their size, 2) keeping the six most signi�cant clusters and

breaking down the remaining clusters into individual pixels, and 3) merging these

declustered pixels with the cloest remaining signi�cant cluster.

Figure 5.4 shows the results of applying this process to the images in Figure

5.3b,d. Note that when the clustering process is applied to the non-normalized

image, an incorrect clustering results.
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(a) (b)

Figure 5.4: Results of the facial feature clustering process. (a) The result of applying
the clustering process to the image in Figure 5.3b. Di�erent colored regions represent
di�erent clusters. (b) The result of applying the process to the image in Figure 5.3d.
Note how the clustering algorithm fails when the lighting normalization process is not
applied.



Chapter 6

Image Drawing and Shading

The �nal step in the artistic rendering process is to generate a drawing from the

data computed in the �ve major computational steps discussed previously (Chapter

3). The data from these steps include the following: 1) the region of the source

image containing the background pixels, 2) an orientation �eld representing the

hair region, 3) a black-and-white image representing the signifcant edges of the ears,

chin, neck, and shoulders, 4) a set of clusters that identi�es the facial features, and

5) a blurred grey-scale image that will be used to create the tonal shading of the

face.

The following chapter will begin by presenting two supporting functions for

the drawing and shading algorithms described in Section 6.3. The �rst supporting

function, the image thresholding algorithm, is used by the facial feature drawing

algorithm and will be described in Section 6.1. Section 6.2 will then present the

second supporting function, a technique to simulate how a human naturally shades

regions. This hand-shading technique is used by both the background shading and

the facial feature drawing algorithms.

84
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As a �nal note, our artistic rendering system focuses only on the actual draw-

ing algorithms. The simulation of natural media is left to an external program.

Our system generates scripts that contain information such as pen-placement and

brush-selection commands. These scripts are then imported into MetaCreation's

Painter [37] software, which interprets the commands to draw the �nal image. As

mentioned in Chapter 2, Painter is a natural media painting program that provides

a rich set of brushes including charcoal, pens, pencils, and paints.

6.1 Image Thresholding

Image thresholding involves �nding a set of thresholds that mark signi�cant spikes

or features in a histogram of pixel values from a grey-scale image. Once computed,

these thresholds can be used to group pixels that are of a similar intensity. In

machine vision, thresholding is a common technique used to segment images. For

example, if we had an image of a black box on a white background, the image

could be thresholded at 50 percent grey to separate the box from the background.

In this case, image thresholding is relatively simple. However, in natural images,

image thresholding is a much more di�cult problem.

Natural images are often noisy and seldom composed of a discrete set of solidly

colored objects. The resulting histograms computed from these images are thus

equally noisy, and �nding thresholds is not simply a problem of searching for local

minima. To compute thresholds, we use a simpli�ed version of the color image

segmentation algorithm introduced by Lim et al. [33].

Lim's segmentation algorithm, in general, works by creating a color histogram
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of the pixels in the source image and then searching for large clusters in the his-

togram. The centers of these clusters are then used to group pixels in the original

image. One key component of Lim's algorithm is the use of scale space �ltering [52]

to threshold histograms computed from the individual red, green, and blue color

channels of a source image. This is the thresholding scheme we use to segment our

grey-scale images.

Once we have a thresholding algorithm, the shading of the eyes, nose, and

mouth can be done by separating each facial feature into a disjoint set of regions.

Each region is characterized by a particular grey value and can then be shaded

with the appropiate brush and tone.

The following sub-section will give an overview of scale space �ltering and how

it can be used to threshold images. Further details of this process can be found in

the references cited above.

6.1.1 Scale Space Filtering

Assume that we have a noisy histogram (Figure 6.1a) created from an image that

we wish to threshold. To do this, we must �nd the boundaries of the signi�cant

features in the histogram. One solution to this problem is to smooth the histogram

with a Gaussian kernel to remove unwanted noise. Once smoothed, the histogram

can be thresholded by simply searching for local minima. Unfortunately, it is

di�cult to know what value to choose for the standard deviation of the Gaussian

kernel a priori. Under-smoothing the histogram will leave unwanted noise and

lead to the false identi�cation of features. Over-smoothing will eliminate noise but
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remove desired features.

Witkin [52] proposed a method, referred to as scale space �ltering, to help solve

this problem. Assume again that we have a noisy histogram (Figure 6.1a). Now,

rather than creating a single smoothed version of the histogram, we compute a

series of smoothed histograms using successively larger standard deviations for the

Gaussian kernel. This set of histograms, each represented at a di�erent scale, forms

the scale-space image. Figure 6.1 shows a set of smoothed histograms with their

associated �'s. Figure 6.2a shows the same set of histograms grouped together to

form a surface. Brighter colors represent higher regions in the histogram. The

horizontal axis represents grey levels from 0 to 1. The vertical axis represents �

increasing from 0.2 to 5.2.

Next, the points of inection of each histogram are found by computing the

second derivative and searching for zero crossings. Figure 6.2b shows the points of

inection, from the set of smoothed histograms, connected to form lines. Notice

how the points of infection are generally grouped as pairs that disappear as the

standard deviation for the Gaussian kernal, � is increased. This pairing comes

from spikes and dips in the original historgram that atten and disappear as �

is increased. Large features in the histogram that remain at the maximum scale

create point-of-inection pairs that do not fade away. Once the point-of-inection

lines have been computed, they are straightened to facilitate later computation

(Figure 6.2c).

The �nal step in scale space �ltering is to identify long regions in the straight-

ened point-of-inection data. These long regions are refered to as regions of maxi-
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Figure 6.1: A few histograms at varying scales. (a) The original histogram computed
from a grey-scale portrait. (b), (c) The histogram smoothed with a Gaussian kernel of
� = 1:2 and � = 5:2 respectively. Note how small features drop out at � increases.
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Figure 6.2: Plots showing the scale-space image and point-of-inection data. (a) The
height �eld representing the scale-space image for the sample histogram in Figure 6.1a.
(b) Lines representing the points of inection of the scale-space image. (c) The straight-
ened point-of-inection lines. Light blue lines in the �gure represent points of inection
in the surface to the left of local maxima. Black lines represent points of inection to the
right of local maxima.
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mum stability and represent features in the source histogram that are most resilient

to the smoothing process. To identify maximum stablity regions in the straight-

ened point-of-inection data, we �rst construct an interval tree. In general, each

interval parents three sub-intervals. Figure 6.3a illustrates one branch of the in-

terval tree for our sample data. The white rectangle at the top of the unshaded

region in the �gure represents the root interval. From the top down, we search for

nodes in the tree that are longer than the average length of their children. These

nodes are shown in Figure 6.3b. Finally, because we are only concerned with data

containing local maxima, we can quickly eliminate half of the intervals.

Once the maximum stability regions have been identi�ed, the boundaries of

these regions are used to threshold the image. The number of pixels that fall into

each of these regions is counted. Those regions that contain a number of pixels

exceeding a prespeci�ed amount are used as a basis for the thresholding process.

Pixels in the image are grouped to the basis grey-level that they lie cloest to. The

�nal result is a tresholded image.

6.2 Hand Shading Simulation

In order to shade individual regions in our �nal drawing, we need a shading method

that looks and feels natural. Filling an area with a simple horizontal or vertical

pattern produces a very rigid and machine generated feel. However, by simulating

the method in which a human hand shades a region, we can create shaded areas

that appear very natural. Figure 6.4 shows a sample of our shading algorithm.

Essentially, the shading algorithmworks by drawing a set of arcs that are connected
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Figure 6.3: A few images illustrating the construction of the interval tree. (a) The
structure of the interval tree shown in the white region. Note how every interval has
three children. (b) The maximum stability regions in the tree. (c) The maximum stability
regions that contain a local maxima shown as the darker areas in the �gure.
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Figure 6.4: A sample result of the hand shading algorithm.

by their end points. The following section will describe the details of this algorithm.

The shading algorithm requires the following parameters: 1) arc length and

arc radius, the average arc length and radius of the strokes to be drawn, 2)

arc orient, the angle in which the shaded pattern will be oriented, 3) arc dist,

the average distance between the midpoints of the drawn arcs, 4) arc center, the

initial arc center, and 5) arc number, the total number of arcs to be drawn. These

parameters are illustrated in Figure 6.5a,b.

The algorithm begins by computing, arc start, the starting location of the

�rst arc to be drawn. This computation is done by applying a standard translation

and rotation to the arc center. Once the starting point is found, an arc is drawn

who's length is equivalent to arc length. The point at the end of the arc is labeled

arc end (Figure 6.5a). Next, the system is rotated slightly about arc end and the

direction of drawing is reversed. The rotation angle is determined by arc dist.
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Assuming that the distance between arc start and arc end is large relative to

arc dist, we can approximate the rotation angle, �, by the following equation:

� = arctan 2�arc dist

jarc start�arc endj

Figure 6.5b illustrates the parameters of this equation. Figure 6.5c,d shows the

drawing of a second and third arc in the rotated system. After each iteration, the

arc length and � are slightly skewed by a random amount to give a more natural

feel.

6.3 Drawing and Shading Algorithms

With the two tools described above, we can describe the various algorithms that

compose the drawing phase of the artistic rendering process.

As previously discussed in Chapter 3, the composition order of the the �nal

drawing, in contrast to the computational order, is the following: 1) the shading

of facial tone, 2) the drawing of edges, 3) the drawing of hair, 4) the drawing of

facial features, and 5) the shading of the background region. The following section

will present these operations in order.

6.3.1 Facial Tone

The facial tone layer provides a pleasing shaded quality to the �nal artistically

rendered image. Speci�cally, we want to be able to create the appearance of

smudged charcoal for the shaded regions of the face. The areas around the edge of

the face are one such example. We use the following observations of the appearance
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Figure 6.5: The drawing of arcs for the hand shading algorithm. (a) The initial setup
and basic parameters for the algorithm. (b) How � is computed from arc dist. (c), (d)
A few more iterations of the shading algorithm.
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of smudged charcoal: 1) both dark and light smudging tends to create either a

mostly black or mostly white solid pattern, and 2) medium smudging creates a

rougher and more gritty pattern.

To simulate this behavior, we take a source grey value and blend it with a

rough paper texture. In order to adhere to the observations above, we blend the

two values via the following formula:

d = t�w(s)+s�(1�w(s))+n�s
(n+1)

w(s) = 1+cos(2�(s�1=2))
2

where s is the source grey value, t is the paper texture grey value, d is the

destination grey value, w(s) is the weighting factor, and n is a bias factor that

can weight the source image more heavily in the �nal blending. For our imple-

mentation, we set n = 1. Figure 6.6a shows a sample plot of w(s) where s ranges

from 0 to 1. The cosine in the weighting function provides the behavior described

above. Figure 6.6d shows the result of blending a paper texture (Figure 6.6b) with

a grey-scale gradient image (Figure 6.6c). Figure 6.11 shows the result of applying

the algorithm to the blurred image generated during the facial tone computational

step.

6.3.2 Edges

The result of the edge extraction process described in Chapter 3 is a black and white

image in which white pixels represent lines that the user wishes to be drawn. In

general, the drawing process works by �rst converting the pixels into line segments

and then drawing the line segments in a sketchy fashion. The main loop of the
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Figure 6.6: Illustration of the generation of facial tone. (a) A plot of the function w.
(b) An image of a typical paper texture. (c) A grey-scale image gradient. (d) The result
of blending the paper texture with the image gradient.

edge tracing algorithm scans through the image and searches for a pixel that lies

on a line (e.g. white pixels in the black and white image). To clarify, a pixel that

composes part of a line in the source image will be refered to as an edge pixel.

When an edge pixel is found during the scanning process, the algorithm traces the

line and marks the edge pixels that represent it as \visited" so that they will not

be considered again. Once traced, the algorithm continues scanning through the

image in search of other edge pixels. Figure 6.7a illustrates an example of an edge

pixel found by the loop above.

Once an edge pixel is isolated, a recursive growing algorithm is applied to �nd

all the connected edge pixels that lie within a prespeci�ed radius (Figure 6.7b). For

our application, we chose an initial radius of 3. Vectors pointing from the center

pixel to these perimeter pixels are then created, and the average vector for each

direction is computed (Figure 6.7c). In general, either one or two initial directions

are found. Figure 6.7c illustrates two directions. However, if the source pixel is

located at the end of a line segment, only one direction will result.
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(a) (b) (c)

Figure 6.7: An illustration of how to �nd the initial vectors for the edge tracing process.
(a) A sample initial point for the edge tracing algorithm. (b) Pixel within a prespecifed
radius. (c) Vectors to these points are found and averaged.

Unfortunately, it is not always guaranteed that the initial pixel will lie on a

single line. It is also possible that this pixel is either isolated in space or located

at the intersection of many lines. However, in both these cases, the edge tracing

algorithm works correctly. For an isolated initial pixel, the search for perimeter

pixels will fail and the algorithm will return to the main loop. In the second case,

vectors will be computed in erroneous directions and the line tracing algorithm will

again fail and return to the main loop. Although seemingly incorrect, this failing

at intersection points is not a problem because further attempts to trace each line

will later be made as the main loop scans though the image.

Once an initial pixel and initial directions have been found, the line tracing can

begin. Because the tracing algorithm is symmetric for each direction, we will only

discuss the tracing of a line in a single direction.

The �rst step in the line tracing algorithm involves scaling the initial direction
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vector to a length of three. Next, the direction vector is added to the initial pixel

location resulting in a new point that predicts the direction of the line (Figure

6.8a). The 5�5 region around the predicted point is then scanned where the

closest edge pixel to the predicted point is found (Figure 6.8b). Also, during the

scanning process, all edge pixels in the region are marked as \visited" to prevent

backtracking and later consideration. If no edge pixels are found in the region, the

algorithm returns to the main loop.

The location of the closest edge pixel to the predicted point is added to the

�nal line segment and is also set as the new initial pixel (Figure 6.8c). With this

new initial pixel, a new direction vector is computed by averaging the previous

direction vector with the vector that points from the previous initial pixel to the

new initial pixel (Figure 6.8c). This process is repreated until the terminating

condition is met (Figures 6.8d,e). Finally, after the completion of the main loop,

the individual line segments computed from the tracing algorithm are linked. This

linking is done by joining lines with similar end points.

Once the edges have been vectorized, they are then drawn in a sketchy fashion.

Essentially, this sketchiness is achieved by drawing slightly displaced subsets of

the line segment. Speci�cally, the line is �rst broken up into a set of random

overlapping segments. Random o�sets are then computed for the start and end

of each segment. Finally, each segment is drawn while being displaced from the

original line by the o�sets previously computed. After the completion of this

process, the original line is drawn to emphasize the �nal line. Figure 6.9 compares

two images drawn with and without added sketchiness.
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(a) (b) (c)

(d) (e)

Figure 6.8: A few diagrams illustrating the edge tracing process. (a) A sample line to
be traced. The inital point and tracing directions are shown. (b) The 5�5 region around
the predicted point and the closest edge pixel. (c) The closest edge pixel becomes the new
inital pixel, and a new vector direction is computed. White pixels represent edge pixels
marked as \visited." (d), (e) The continuation of the process. The blue dotted line is the
�nal extracted line segment.
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(b)(a)

Figure 6.9: The di�erence between the drawing of edges (a) with the sketchy drawing
algorithm and (b) without.

The results of the edge drawing algorithm are shown in Figure 6.12.

6.3.3 Hair

Once the orientation map from the orientation �lter has been generated, the draw-

ing of hair simply involves tracing lines along the orientation map with a user

speci�ed length and number. To do this tracing, we begin by picking a random

starting position, and then growing a line in both directions based on the under-

lying orientation. The line is grown until a prespeci�ed length is met or the line

has grown outside of the hair region.

The actual growing algorithm works as follows. A random point in the hair

region is chosen. From this point, two line segments are drawn in opposing direc-

tions. The directions of the segments are aligned to the orientation vector located

at the seed point. The end points of the two segments are used as new seed points.

The orientation under these points are sampled, and a new line segment is drawn
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from these points. However, unlike the initial condition, only one segment per seed

point is drawn in an outward direction. This process is repeated until one of the

terminating conditions is met.

To add a more natural feel, an angular o�set is added to the value sampled

from the orientation �eld. This o�set is randomly chosen at the start of each

line. For our application, we chose random o�sets between ��=12 and �=12, and

have found that these values increase naturalness while still preserving the general

orientation of the hair. Figure 6.10 shows the results of this growing process with

and without using the o�set. In addition to this angular o�set, the length of each

hair segment is randomly altered as well.

As a �nal note, 500 to 1500 hair strokes are generally drawn to create the results

shown in Chapter 8. The number of strokes depends greatly on the size of the hair

region as well as the average length of strokes used to cover it. Furthermore,

although we employ no algorithms to guarantee even coverage of strokes over the

hair region, it is probabilistic given the number of strokes that are typically drawn.

The results of the hair drawing algorithm are shown in Figure 6.13.

6.3.4 Facial Features

After the facial features have been clustered, the eyes, nose and mouth are thresh-

olded as described in Section 6.1. Each thresholded region is then shaded using

the algorithm described in Section 6.2. Unlike other facial features, however, the

eyebrows are not thresholded. Instead, these regions are �lled using only the hand

shading algorithm. We chose to use a larger spacing between the strokes and to
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(a) (b)

Figure 6.10: A sample hair rendering showing the di�erence between the drawing of hair
(a) with random o�sets and (b) without.

orient the shading direction of each eyebrow in opposing directions. These param-

eters give the eyebrows a more directed appearance.

The results of shading the facial features are shown in Figure 6.14.

6.3.5 Background

The �nal and most straight forward drawing and shading algorithm is the one for

the background region. This shading simply involves taking the segmented region

and applying the hand-shading algorithm to it. Figure 6.15 shows a sample result.
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Figure 6.11: A sample result of shading facial tone.
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Figure 6.12: A sample result of tracing and drawing the edges.
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Figure 6.13: A sample result of drawing hair.
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Figure 6.14: A sample result of the drawing of facial features.
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Figure 6.15: A sample result of shading in the background region.



Chapter 7

Results

This chapter illustrates sample results of the artistic rendering system that we

have developed in this thesis. The source image sizes ranges from 500�600 to

600�800 pixels, and the processing time for the images range from 10 to 20 minutes,

depending on the amount of user interaction involved.

We demonstrate that our artistic rendering system can create convincing char-

coal sketches from portrait photographs. More importantly, however, is the fact

that in the resulting sketches, our system is able to capture small subtleties from

the source portrait that de�ne the expression and the essence of the subject.

Although our artistic rendering system works for a wide range of portraits, it

has limitations. Glasses or any other occluding objects will pose a problem for our

system. These objects can cause errors in the facial feature clustering algorithm.

Darker skin complexions as well as dark spots caused by birthmarks or dimples can

also throw o� the facial feature clustering algorithm. Curly hair is also problematic

because of the manner in which we apply an orientation �lter to �nd and draw the

hair region.

108
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Figure 7.1 shows a sample portrait and Figure 7.2 shows the result of artistically

rendering this image. Note that this drawing was rendered without the background

shading step. The choice of shading the background is left to the user. Figures

7.3 and 7.4 show another sample set of images. Figures 7.5 and 7.6 show the

same subject from the previous set of image smiling. Notice how the bottom lip

of 7.6 is washed out in the �nal image. This is due to the fact that the lips in the

source image are thin and close in color to the subject's skin tone. Furthermore,

the specular highlight on the lip throws o� the facial clustering algorithm as well.

Figures 7.7 and 7.8 illustrate how our system can handle facial hair. For this image,

the removal of edges was a more di�cult process because of the shirt pattern on

the subject. A �nal set of sample images are shown in Figures 7.9 and 7.10.
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Figure 7.1: Subject A: Portrait Photograph
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Figure 7.2: Subject A: Artistic Rendering
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Figure 7.3: Subject B: Portrait Photograph
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Figure 7.4: Subject B: Artistic Rendering
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Figure 7.5: Subject B: Portrait Photograph (smiling)
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Figure 7.6: Subject B: Artistic Rendering (smiling)
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Figure 7.7: Subject C: Portrait Photograph
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Figure 7.8: Subject C: Artistic Rendering
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Figure 7.9: Subject D: Portrait Photograph
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Figure 7.10: Subject D: Artistic Rendering



Chapter 8

Conclusion and Future Work

In the past decade, artistic rendering has become an exciting research area in

the computer graphics community. During this time, a wealth of artistic rendering

techniques have been explored that vary both in their source data assumptions and

their target medium types. In this thesis, we introduced a semi-automatic artistic

rendering system for generating charcoal-style drawings from portrait photographs.

We believe our system di�ers from previous work in the following manner. First,

our system is the �rst to primarily focus on generating charcoal style drawings.

Second, it is focused on rendering only portrait photographs. Although seemingly

detrimental, this restriction allows us to make assumptions during the rendering

process to enable a higher quality �nal image.

In Chapter 3, we reviewed the overall artistic rendering process for converting

from portrait photographs to artistic drawings. In summary, the process is broken

down into the following �ve main areas: 1) the background area, 2) the hair, 3)

the edges and lines, 4) the facial features, and 5) the facial tone. Chapters 4

though 6 then reviewed the major components of each of these steps in greater
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detail. Chapter 7 presented the �nal results of our artistic rendering process and

illustrated how our system can produce convincing charcoal sketches that convey

the essence of their source portraits.

The most signi�cant area of improvement for our artistic rendering system is to

improve robustness. As discussed in Chapter 7, our system is limited in the scope

of the faces that it can render. For example, glasses pose a problem for our system

as do people with darker skin complexions. Dark areas on the face such as those

caused by birthmarks or dimples can also throw o� the facial feature clustering

algorithm. Curly hair is also problematic.

The artistic rendering system can also be improved by automating the user

interactive processes. Currently, the user is required to manually select the regions

of the image that represent the background, hair, face, and edges. If these pro-

cesses could be automated, then our artistic rendering system could be used with

little or no instruction or implemented as a \plug-in" module for a photo manip-

ulation program such as Adobe Photoshop [24]. For instance, template matching

techniques could be used to locate major features of the face. Furthermore, in

conjunction with the information found from the template matching, texture seg-

mentation techniques could be applied to automatically isolate hair regions of the

portrait.

However, the isolation of edges in the source image may be a more di�cult task

to automate because choosing which edges are to be drawn in the �nal image is

relatively subjective. Template matching methods can also be explored here.

Finally, additional metrics can be explored for automatically choosing param-
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eters such as hair color and the pen pressure for the drawing of facial features.

Currently, the Hough orientation �lter takes roughly 30 seconds to run on a

dual-processor 300MHz Pentium II machine for a typical hair region. A few op-

timizations have already been implemented for the Hough orientation �lter, but

as discussed in Section 2.2.1 there are still possibilities for improvement. Most

notably, the results of Kiryati [27] show potential for a signi�cant performance

increase via the Probabilistic Hough Transform. In addition to increasing perfor-

mance, a study comparing the Hough orientation �lter to other orientation �lters

would be useful.

Currently, we use the same drawing algorithm for the eyes, nose, and mouth.

Specialized drawing algorithms for each of these features could ideally produce

a more attractive �nal drawing. Also, we randomly render hair with strokes to

probabilistically �ll the entire hair region. An algorithm to ensure even coverage

would be bene�cial.

In summary, our system for semi-automatically generating a charcoal style

drawing from a source portrait photograph is the �rst content speci�c artistic

rendering system for rendering portrait photographs. Although there is much work

to be done before this system can be widely applied, we hope to have provided a

solid foundation to the problem of artistically rendering portrait photographs.
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