Approximate Visibility for
lllumination Computations using
Point Clouds

Philip Dutré
Parag Tole
Donald P. Greenberg

PCG-00-1 June, 2000

In this report, we present a simple technique to evaluate the visibility between pairs of points in a scene. In most
current rendering algorithms, visibility queries are evaluated exactly. Our approach approximates the visibility
value between two points using a point cloud representation of the surfaces in the scene. The computed value is a
function of the distance and orientation of points in the point cloud relative to the line segment connecting the two

guery points.

Approximate Visibility for
lllumination Computations using Point Clouds

Abstract. In this paper, we present a simple technique to evaluate the visibility between pairs of points
in a scene. In most current rendering algorithms, visibility queries are evaluated exactly. Our approach
approximates the visibility value between two points using a point cloud representation of the surfaces
in the scene. The computed value is a function of the distance and orientation of points in the point
cloud relative to the line segment connecting the two query points.

1 Introduction

When rendering scenes, there are two types of possible visibility queries (figure 1). Thefirst type of query
can be formulated as; “Looking in a specific direction from a given point, what is the closest surface point
in that direction?’ The point produced by this query (e.g. primary visibility through a pixel; hitpoints for
particle tracing) can then be used as a parameter in other functions. A second type of visibility query can be
formulated as. “Are two given (surface) points mutually visible or is there an intervening surface that
blocks the line segment connecting them?’ The resulting answer can numerically be expressed as 0 or 1
and can subsequently be used in further computations (e.g. form-factor computations in radiosity algo-
rithms; shadows in direct illumination computations).

Fig. 1. Two different types of visibility queries. The query to locate x from the eye is of the first type; the queries to
shade x due to the light source are of the second type.

In thiswork, the second type of visibility query will be computed using an approximate method, which can
be summarized as follows: First, the surfaces in the scene are sampled to construct a collection of oriented
surface points, which we call the point cloud. Then, when evaluating the visibility between a pair of arbi-
trary points, we look at the position and orientation of the points in the cloud relative to the line segment
connecting the two query points. A value between 0 and 1 is computed which is an approximation of the
exact visibility between the two query points. We then use this visibility value in illumination computa-
tions. In the case of direct illumination, visibility queries are necessary between every point to be shaded
and the light source. With global illumination, visibility queries are dealt with between pairs of surface
points, which can be located anywhere in the scene. Note that we still keep the original geometry in order
to answer visibility queries of the first type.

The motivation for using an approximate technique to compute visibility stems from the observation that
visibility queries are still the major bottleneck in illumination computations. By substituting complex

objects, composed of many polygons, by a simpler point cloud, we hope to get a faster way of evaluating
the visibility function usable for illumination computations.

2 Previous Work

Both modeling and rendering algorithms have used collection of points. Points, or particles, have been
used to model “fuzzy” objects such as smoke, clouds, fire, water, and even trees [12, 13]. Solid objects
have also been modeled using oriented points [3, 8, 4], or have been used as primitive elements to model
surfaces[15, 19].

Since an image basically is a collection of pointsin space, point clouds also have been used to render new
views from existing images[2, 9, 16], or from images rendered specifically with this purpose in mind [10,
11]. Various techniques have been proposed to organize and structure these collections of pointsin such a
way that the generation of new views becomes efficient. Tracing rays using depth maps has also been used
for generating soft shadows [1].

The approach we follow in thiswork is related to the field of geometric probability and integral geometry
[6,14], although since we are interested in the properties of individual lines and points in space instead of
the statistical averages of these properties, the use of resultsfrom thisfield seemsto be limited for our pur-
poses.

3 Approximate Visibility

The principle of our approach is asfollows:

N surface points x; are generated from the original geometry, which are stored together with their respec-
tive surface normals n, . No connectivity information between the pointsis stored, and thus all points can
be considered independent entities. The number of points N can be smaller or greater than the number of

original surfaces in the scene (figure 2).
?
P g
s 4 & Yad

R
ey pl ey o

SceneGeometry ———— Surfacesampling ————= Oriented points
Fig. 2. Surfaces are replaced by oriented points to answer visibility queries of type 2.

» To compute the approximate visibility between two surface points p and q in the scene (which do not
themselves have to belong to the point cloud), we look for points x in the cloud which are close to the
line segment pq. We then use a heuristic based on the distance between x and pq in the tangent plane
M, (the plane perpendicular to n, containing x). This heuristic produces a value between 0 and 1, with 1
indicating full visibility, and 0 indicating the line segment being blocked.

The heuristic starts from the notion that we can construct asmall surface-element with shape S, located in
M, and containing x, which can be considered a first-order approximation of the original surface. Since x

is randomly sampled, we approximate the original surface by assuming that S, can have many different
positions which are given by a probability density function dns(S,) (figure 3).

Fig. 3. All possible positions of S, are checked to see whether they containyy.

Let y be the point of intersection between pq and M, . The probability p(S,, y) with which y belongs to
S, isthen given by:

P(Sey) = [dns(S)HS,
(xS (1)
(yOS)

The approximate visibility value, due to the presence of X, isthen set to:
vis(x, pa) = 1-p(S,) 2

In other words, the approximate visibility value equals the probability that y does not fall within S, given
the distribution dns(S)) . If C points (X4, X5, ..., Xc) in the point cloud are considered to be potential
occluders of pq, thetotal visibility value vis(pq) is computed as a combined probability value:

c

vis(pq) = M vis(x;, pq) ©)

i=1

If the point cloud is large, it is impractical and inefficient to consider all points when computing (3). We
use several techniques to keep the cost of computing vis(pq) low:

* Assuming S, is finite in size, dns(S,) has finite support, and p(S,, y) equals O outside this support.
Including points in the set (X4, X,, ..., Xc) which fall outside this support has no effect on the value of

vis(pq).

» Only the C closest points (according to the distance between x and their respective y) are considered as
potential occluders. In order to search efficiently for the closest points, the point cloud is stored in an
octree structure. This allows for an efficient search algorithm and guarantees that the points are found in
order, closest distance first. We can cut off the search when we have found the C closest points, or when
we have exceeded the support of S . The specific search procedure we use is based on the technique
described by Hjaltason and Samet [5]. This algorithm uses a recursive search. By evaluating the distance
between the query object (in our case the line pq) and all cells of the spatial subdivision structure or

objects at the current level of the spatial subdivision structure, a sorted stack is maintained which guaran-
tees that the objects will be found in increasing distance from the query object.

» We also reject points whose corresponding intersection point with pq lies outside the range of segment
pg. It is assumed that the original surface will also not intersect the segment pq (figure 4).

Fig. 4. Only x; is selected as potentially blocking the segment pg. X, is rejected because IM,, does not cut the line
segment between p and g; X3 because it is outside the support of S 5.

In our implementation, we use asquare with length L = /A/ N for the shape of S . The orientation of the
square is such that it is aligned with the line xy. The distribution function dns(S,) for the centre of the
squareischosenas (1 — M/ L)d , Where My isthe distance between x and y, and d is a parameter to con-
trol the shape of the distribution. p(S,, y) can then be computed as (figure 5):

pS.y) =2"1-3F it X2

2
d .
p(S,y) = 1-2320" i <2
dns(S,) P(S, Y)
d = 10
08 d e l 08 d - 3 \ — 5
d =3 d=0
02 d = 5 r_XY 02 r
d=10 Xy
, L L

Fig. 5. The distribution functions dns(S,) and the resulting probability p(S,, y).

A large value of d makes adistribution where S, is closely centered around x. As aresult, if the distance
between x and the query line is large, the probability that the line will intersect with S is small, and
P(S, y) will have very small values. This effect is less outspoken for small values of d. Experiments
showed that replacing the square by a circle did not change results significantly, but resulted in more com-
plex expressions and therefore a slightly higher computation time.

4 Validation

To validate our model, we generated a point cloud, using uniform area sampling, from the surfaces of sev-
eral scenes. 50,000 line segments connecting two random surface points p and g (excluding trivial cases
such as self-occlusion) were generated. vis(pg) was then computed, and was considered to be the proba-
bility that the line segment pg was visible. This probabilistic outcome for the visibility was then compared
to the exact visibility of the line segment. The results are summarized in figure 6. The influence of different
parameters was examined:

Size of S, : Increasing the size of the square L by afactor f, will result generally result in lower values for
vis(pq) . Thisislogical, since alarger S, means that unblocked line segments have a higher probability of
being classified as not visible, and the percentage of correctly detected visible line segments decreases.
Decreasing the value of L has the reverse effect. The total percentage of line segments detected correctly
reaches a maximum for a specific scene-dependent value of f. For most scenes, the optimal value of f var-
ied between 1.0 and 2.0.

The number of points N in the point cloud: Increasing N increases the percentage of correctly detected
visibility events. In all experiments, the curve flattened rather quickly. For simple scenes, a few thousand
points are sufficient to get an accuracy as high as 95 percent. The same trend was noticed in some more
complex scenes (e.g. the tree scene, see section 5), where the number of pointsis the same order of magni-
tude as the number of polygons. The main reason for this behavior isthat the size of S, isdependent on N.
Increasing N decreases the size of S, in such away that the collection of all S, is a better approximation
for the actual surfaces.

Number of closest points C: Increasing C only increases the percentage of correctly detected invisible
line segments. For all scenes, there is no significant influence when C > 3. Thisis explained by two obser-
vations: the closest points have the most influence on the value of vis(pq), so adding more points will not
alter the probahility of the line segment being blocked much; and there are only a limited number of points
within the support of distr(S,). Increasing C beyond this bound will not change the numerical value of

vis(pq) .

Choice of dns(S,) : Increasing d, and thus making the distribution more and more centered around the
surface point, improved the percentage of correctly detected line segments. However, this did not translate
in better image quality. The best quality was achieved using values, ranging from 2 to 4, such that the visi-
bility value had a continuous value, and not a discreet one, as would be the case when d goes to infinity.
This is because we compute soft shadows, for which continuous values for visibility are less objectionable
than sharp cut-off values, since we are interested in integrated values of visibility and not in discrete val-
ues.

5 Application to Direct lllumination

For direct illumination, the following equation for each surface point x visible through a pixel needs to be
evaluated:

cos6, cos6,
L(x - ©) = ILe(z - X)f(Z o X o G))r—ZV(x, 2)dz)

Xz
AL

where L(x — ©) isthe radiance reflected from x in direction © of the camera, L (z - x) isthe radiance
emitted by the light source, A, istheareaof al light sources, f.(z - X ~ ©) istheBRDF, and V(X z) is
the visibility (0 or 1) between x and z. In our tests, a standard Monte Carlo approach for computing this

1 1
vishl visble
Iinvisole
08 08 tOtd
total
o invisible
04] 04
02 02
00‘ 1 2 3 : 4 5 6 7 8 9 10 0 5000 10000 15000 20000 25000 X 30000 X 35000 40000 45000 50000
a. Size of square - fL b. Number of pointsin cloud N
1 1 ot
visible Vil —
0ss oss LT total
/’W"’F— wof
[— invisible
085] — ¥ ossh f
invisible
08 08
075 0.75
07 07
065) 0.65
06 06
055 055
05 05
1 2 3 4 5 6 7) 8 9 10 o] 10 20 30 40 50 60 70 80 90 100
¢. Number of closest points C d. Power d

Fig. 6. Influence of different parameters on the percentage of line segments correctly classified.
integral isused to compute L(x —» ©) by generating different points on the light source [17]. All factors of
the integrand are evaluated exactly, except the visibility term V(x, z), for which we use the numerical
value of vis(xz) , whichisanumber between 0 and 1, as described in the previous section.

In essence, we could also use vis(xz) as the probability that V/(x, Z) equals 1. However, this would intro-
duce extravariance. The expected value of this stochastic processis vis(xz) itself, so it isthis value which
we use in the evaluation of the direct illumination integral.

Figure 7 shows two trees casting a shadow on a ground plane, due to an area light source that subtends a
solid angle of 0.005 steradian as seen from the center of the tree. The scene consists of 18,000 polygons.
The middle and bottom image are generated with approximate visibility using 10,000 and 20,000 points
respectively. The quality of the shadow is comparable to the reference image, although there are some light
leaks near the stem in the middle image, caused by insufficient sampling of the polygons making up the
stem. This test scene illustrates that it is possible to obtain faster execution times for environments with a
large number of polygons (1 point is faster to process in our approach than 1 polygon). A spatial subdivi-
sion acceleration scheme was used to determine visibility in the reference solutions, such that both search
algorithms have the same complexity.

6 Application to global illumination

In order to compute a global illumination solution, we need to consider all possible light paths with multi-
ple reflections between the light source and the point to be shaded. We use bidirectional path tracing [7, 18]
to compute our global illumination solution. One problem isthat we do not use the original geometry, apart
from the primary visibility queries, so we cannot generate eye paths with length greater than 1. Therefore,

alarge number of light paths are generated and stored in a pre-processing phase. The complete algorithm is
asfollows:

» Generate light paths starting from the light sources. The direction of each light path after a reflective
bounce is chosen at random over the hemisphere of possible directions. The length of each light path is
determined using Russian Roulette sampling. All generated light paths are stored, such that they can be
re-used for the actual global illumination computations.

» Generate the point cloud which will be used for visibility testing using uniform area sasmpling.

* For each pixel, find the closest point using the original geometry and compute the illumination value by
connecting this point to a random selection of light paths. The visibility of this connecting segment is
determined using our point cloud visibility algorithm.

The right-hand column of figure 7 shows a reference image, computed with classic bidirectional tracing,
and two images computed with probabilistic visibility, with respectively 20,000 and 100,000 points in the
point cloud. One can see that the soft shadows are reproduced correctly (e.g. shadows on left and rear wall,
shadows cast by the chair), but that the sharp shadows contain artefacts (e.g. shadows of the pedestal s cast
on the floor). Due to the small number of polygons, execution times are larger using our approach, since a
large number of pointsis necessary to approximate the visibility correctly.

7 Future Work and Conclusions

Using this method, the original geometry is still used for primary visibility queries, but geometry outside
the viewing frustum could be culled and replaced with a point cloud model. This might save on storage
requirements. However, one could imagine an approach where all geometry is replaced by a point cloud,
and using reprojection schemesto solve the primary visibility [4,2,16].

The model performs best for soft shadows. Problems arise with hard and small shadows, where the struc-
ture of the point cloud becomes visible in the shadow. This can be seen in some of the shadows of the glo-
bal illumination solutions. The global illumination algorithm stores two different sets of points. those used
for the point cloud, and those that are points along the light paths. Some experiments that used the points of
the light paths as the point cloud to evaluate visibility did not produce satisfactory images. The main prob-
lem is the difference in local sampling densities. The collection of light paths generates a large number of
points in areas which are directly lit by the light sources, but lessin indirectly lit areas. In some parts of the
scene this resulted in very crude approximations of visibility, and consequently bad estimates for the radi-
ance values.

Thetechnique is obvioudly slower for a scenes with very few polygons (e.g. large rooms with mostly large
flat surfaces). Thus, it might be a good idea to replace only parts of a model with a point cloud. The large
surfaces would still be represented as polygons, but complex objects such as trees or plants would be rep-
resented by points.

We can tune our model such that a better shading is reached by increasing the parameters N and C, at the
expense of more computation time. It is therefore possible to design a ‘quality’ parameter, that allows the
user to choose a trade-off between execution time and shading quality.

The rendered images indicate that the algorithm is capable of producing images which are comparable in
guality to a reference solution. For some scenes, the number of points in the point cloud can be smaller
than the number of polygons. Investigating this techniques further might prove to be a worthwhile area of
research.

8 References

[1] M. Agrawala, R. Ramamoorthi, A. Heirich, L. Moll. Efficient Image-Based Methods for Rendering
Soft Shadows. To appear in S GGRAPH 2000 Conference Proceedings, 2000.

[2] Chun-Fa Chang, Gary Bishop, Anselmo Lastra. LDI Tree: A Hierarchical Representation for Image-
based Rendering. S GGRAPH 99 Conference Proceedings, pp. 291-298, 1999

[3] C. Csuri, R. Hackathorn, R. Parent, W. Carlson, M. Howard. Towards an Interactive High Visual
Complexity Animation System. In Computer Graphics (SGGRAPH 79 Conference Proceedings),
volume 13-2, pp. 289-299, 1979

[4] J.P. Grossman, William J. Dally. Point Sample Rendering. Rendering Techniques '98, G. Drettakis, N.
Max (eds.) Springer-Verlag 1998 (Proceedings of the 9th Eurographics Workshop on Rendering,
Vienna, Austria, June 1998)

[5] Gisli R. Hjaltason and Hanan Samet. Ranking in Spatial Databases. In Lecture Notes in Computer Sci-
ence 951, Egenhofer and Herring eds., pp. 83-95 (Proceedings of the 4th Symposium on Spatial Data-
bases, Portland, Maine, August 1995)

[6] M.G. Kendall. Geometrical Probability, Hafner Publishing Company, New York, 1963.

[7] E. Lafortune and Y. Willems. Bi-directional Path Tracing. In CompuGraphics Proceedings (Portugal,
Dec. 1993), pp. 145-153

[8] M. Levoy, T. Whitted. The Use of Points as a Display Primitive. Technical Report TR 85-022, The
University of North Carolina at Chapel Hill, Dept. of Computer Science, 1985

[9] W. Mark, L. McMillan and G. Bishop. Post-rendering 3D Warping. In 1997 Symposum on Interactive
3D Graphics, pp. 7-16, ACM SIGGRAPH, April 1997.

[10] N. Max, K. Ohsaki. Rendering Trees from Precomputed Z-buffer Views. In Rendering Techniques '95,
P.M. Hanrahan, W. Purgathofer (eds.), Springer-Verlag 1995 (Proceedings of the 6th Eurographics
Workshop on Rendering, Dublin, 1995)

[11] N. Max. Hierarchica Rendering of Trees from Precomputed Multi-Layer Z-buffers. In Rendering
Techniques '96, X. Pueyo, P. Schroder (eds.), Springer-Verlag 1996 (Proceedings of the 7th Euro-
graphics Workshop on Rendering, Porto, 1996)

[12] W. Reeves. Particle Systems: A Technique for Modeling a Class of Fuzzy Objects. In Computer
Graphics (S GGRAPH 83 Conference Proceedings), volume 17, pp. 359-376, 1983

[13] W. Reeves. Approximate and Probabilistic Algorithms for Shading and Rendering Structured Particle
Systems. In Computer Graphics (S GGRAPH 85 Conference Proceedings), volume 19, pp. 313-322,
1985

[14] L.A. Santald. Integral Geometry and Geometric Probability, Addison Wesley, 1976

[15] R. Szeliski and D. Tonnesen. Surface Modeling with Oriented Particle Systems. In Computer Graph-
ics (SGGRAPH 92 Conference Proceedings), volume 26, pp. 185-194, 1992

[16] J. Shade, S. Gortler, L. He, R. Szeliski. Layered Depth Images. S GGRAPH 98 Conference Proceed-
ings, Annual Conference Series, pp. 231-242, 1998

[17] P. Shirley, C.Y. Wang, K. Zimmerman. Monte Carlo methods for direct lighting calculation. ACM
Transactions on Graphics, January 1996.

[18] E. Veach and L. Guibas. Bidirectional Estimators for Light Transport. Photorealistic Rendering Tech-
niques, Springer-Verlag, New York 1995 (Also in Eurographics Rendering Workshop 1994 Proceed-
ings, pp. 147-162)

[19] A. Witkin and P. Heckbert. Using Particles to Sample and Control Implicit Surfaces. SGGRAPH 94
Conference Proceedings, pp. 269-277, 1994

Reference Solution - 97 minutes Reference Solution - 37 minutes

10,000 points - 50 minutes 20,000 points - 229 minutes

20,000 points - 59 minutes 100,000 points - 334 minutes

Fig. 7. Direct and global illumination solutions using the point cloud for visibility (parameters: C = 3; f = 2; d = 3).

	Approximate Visibility for Illumination Computations using Point Clouds
	1 Introduction
	Fig. 1. Two different types of visibility queries. The query to locate x from the eye is of the f...

	2 Previous Work
	3 Approximate Visibility
	Fig. 2. Surfaces are replaced by oriented points to answer visibility queries of type 2.
	Fig. 3. All possible positions of Sx are checked to see whether they contain y.
	(1)
	(2)
	(3)

	Fig. 4. Only x1 is selected as potentially blocking the segment pq. x2 is rejected because Px2 do...
	(4)

	Fig. 5. The distribution functions dns(Sx) and the resulting probability p(Sx, y).

	4 Validation
	Fig. 6. Influence of different parameters on the percentage of line segments correctly classified.

	5 Application to Direct Illumination
	(5)

	6 Application to global illumination
	7 Future Work and Conclusions
	8 References
	[1] M. Agrawala, R. Ramamoorthi, A. Heirich, L. Moll. Efficient Image-Based Methods for Rendering...
	[2] Chun-Fa Chang, Gary Bishop, Anselmo Lastra. LDI Tree: A Hierarchical Representation for Image...
	[3] C. Csuri, R. Hackathorn, R. Parent, W. Carlson, M. Howard. Towards an Interactive High Visual...
	[4] J.P. Grossman, William J. Dally. Point Sample Rendering. Rendering Techniques '98, G. Drettak...
	[5] Gisli R. Hjaltason and Hanan Samet. Ranking in Spatial Databases. In Lecture Notes in Compute...
	[6] M.G. Kendall. Geometrical Probability, Hafner Publishing Company, New York, 1963.
	[7] E. Lafortune and Y. Willems. Bi-directional Path Tracing. In CompuGraphics Proceedings (Portu...
	[8] M. Levoy, T. Whitted. The Use of Points as a Display Primitive. Technical Report TR 85-022, T...
	[9] W. Mark, L. McMillan and G. Bishop. Post-rendering 3D Warping. In 1997 Symposum on Interactiv...
	[10] N. Max, K. Ohsaki. Rendering Trees from Precomputed Z-buffer Views. In Rendering Techniques ...
	[11] N. Max. Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-buffers. In Rendering...
	[12] W. Reeves. Particle Systems: A Technique for Modeling a Class of Fuzzy Objects. In Computer ...
	[13] W. Reeves. Approximate and Probabilistic Algorithms for Shading and Rendering Structured Par...
	[14] L.A. Santaló. Integral Geometry and Geometric Probability, Addison Wesley, 1976
	[15] R. Szeliski and D. Tonnesen. Surface Modeling with Oriented Particle Systems. In Computer Gr...
	[16] J. Shade, S. Gortler, L. He, R. Szeliski. Layered Depth Images. SIGGRAPH 98 Conference Proce...
	[17] P. Shirley, C.Y. Wang, K. Zimmerman. Monte Carlo methods for direct lighting calculation. AC...
	[18] E. Veach and L. Guibas. Bidirectional Estimators for Light Transport. Photorealistic Renderi...
	[19] A. Witkin and P. Heckbert. Using Particles to Sample and Control Implicit Surfaces. SIGGRAPH...
	Fig. 7. Direct and global illumination solutions using the point cloud for visibility (parameters...

	Approximate Visibility for Illumination Computations using Point Clouds

