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Abstract: The performance of hardware-based interactive rendering systems is often
constrained by polygon fill rates and texture map capacity, rather than polygon count
alone. We present a new software texture caching algorithm that optimizes the use of
texture memory in current graphics hardware by dynamically allocating more memory
to the textures that have the greatest visual importance in the scene. The algorithm
employs a resource allocation scheme that decides which resolution to use for each
texture in board memory. The allocation scheme estimates the visual importance of
textures using a perceptually-based metric that takes into account view point and
vertex illumination as well as texture contrast and frequency content. This approach
provides high frame rates while maximizing image quality.

1. Introduction

Many important graphics applications require complex scenes to be rendered at
interactive rates (simulation, training systems, virtual environments, scientific
visualization, games). Hardware-based rendering is currently the best solution for
these interactive applications. Performance increases in hardware-based graphics
accelerators have enabled significant improvements in rendering capabilities, but
concurrent increases in user requirements for realism, complexity and interactivity
mean that computational demands will continue to outstrip computational resources
for the foreseeable future. For example, the performance of current graphics hardware
strongly depends on the number of primitives drawn as well as the number and
resolution of the textures used to enrich the visual complexity of the scene. While
much work has been done to try to reduce the number of primitives displayed (see
[ 12 ] for a good summary), little research has been devoted to optimizing texture
usage.
Current graphics accelerators employ fast memory for texture storage. To achieve the
best possible framerate, all the textures should reside in texture memory. While
textures might be dynamically loaded from main memory, this remains a slow
operation that causes drastic framerate reductions (even with fast AGP buses).
Hardware developers are trying to address this problem by constantly incrementing
the amount of texture memory available, by speeding up texture swapping operations
and by employing hardware texture compression techniques. However such
improvements do not solve the problem when the total size of textures exceeds the
capacity of the board memory. In such conditions, it is often impossible to allocate
on-board memory quickly enough to load the textures needed to render the scene.  
A few software texture caching systems have been presented in the past to address
this problem. Some of them optimize texture swapping with respect to no image
degradation. While these algorithms ensure image quality, they provide framerates
which are strongly dependent on the size of the original texture set. Other approaches
guarantee target framerates by allowing image degradation. Unfortunately, the metrics
employed to measure image degradation are too simple and do not guarantee that the
rendered image has the best possible quality for the given target framerate.



In this paper, we present a new algorithm for texture caching that allows fast and
predictable framerates while maximizing image quality on current low-end graphics
hardware. The algorithm employs a resource allocation scheme that decides which
resolution to use for each texture in board memory. The resolution is chosen
depending on the current view-point and illumination conditions as well as texture
contrast and frequency content. This naturally led us to employ a perceptual metric.
Unlike previous approaches, the texture content is analyzed to provide the best decisions
on the chosen resolutions. Depending on the texture content, the allocation scheme
allows more or less reduction in resolution for the texture to save on-board memory.
In the following sections, we first review previous work and then outline our texture
caching algorithm before describing some of the implementation details. Finally, we
present the results produced by the algorithm, before concluding and discussing future
work.

2. Related work

Hardware texture compression is now frequently used to increase the effective size of
texture memory in graphics hardware. A simple lossy scheme presented by S3 [ 18 ]
can now be found in most off-the-shelf graphics boards. Talisman [ 19 ] is an example
of non-standard graphics pipeline that employs a hardware-based compression
scheme similar to JPEG. A texture compression algorithm based on vector
quantization has been proposed to be used in hardware in [ 1 ].
Software caching schemes try to address texture memory limitations by only using a
subset of the original texture set to render the current frame. A good portion of the
texture caching algorithms described in the literature uses specialized caching
schemes to address specific applications. For examples, Quicktime VR [ 4 ] cuts
texture panoramas into vertical strips for caching purposes. Many simple metrics,
based on viewing distance and viewing angle, have been proposed in terrain
visualization applications [ 2 ][ 6 ][ 10 ][ 15 ]. A progressive loading approach has
been presented in [ 5 ] and applied to terrain visualization; this caching scheme
tolerates image degradation to ensure framerate during its progressive loading steps.
While these approaches have proven to be fairly effective, either they do not
guarantee framerate, or when they do, they cannot guarantee that the image generated
is the best possible one since their metrics do not take perceptual effects into account.
In this paper we will show that a caching stategy that maximizes image quality by
using a perceptual metric is  better than standard load/unload priority schemes.

3. Texture cache formulation

3.1. Problem statement
We consider that the color at each pixel of each rasterized polygon is the product of
the Gouraud interpolated vertex color multiplied by the color of the trilinearly
interpolated texture applied to the polygon (using a pyramidal mip-mapping scheme
for each texture). We can write the shading equation for each pixel (x,y) as:

yxyxyx TVC ,,, ⋅= (1)

where C  is the pixel color, V the Gouraud interpolated vertex color and T is the
trilinearly interpolated texture color.
In order to maximize the framerate, we have to ensure that the texture set in use is
smaller than the texture memory on the graphics board. When this is not possible, the



scene should be displayed with a texture set that maximizes perceived image quality,
while respecting texture memory constraints. To obtain this set, we can use the mip-
map pyramids and only load a subpart of each original pyramid (called from now on
subpyramid) on the board.
In order to solve this resource allocation problem, we developed an algorithm based
on a cost/benefit analysis, following the formalism presented in [ 8 ]. We define a
texture tuple as (Ti, ji) to be the instance of a texture mip-map pyramid Ti rendered
using a subpyramid starting at level ji (higher values of ji correspond to lower
resolution). For each texture subpyramid we also define a cost function ci and a
benefit function qi. The cost of a subpyramid is its size, while its benefit is computed
by our perceptually-based error metric which predicts the expected visual degradation
between the image rendered by the texture subpyramid (Ti, ji) and the one for the
high-resolution “gold standard” texture pyramid (Ti, vi) (0≤vi<ji). Our resource
allocation scheme maximizes the total benefit Q, while keeping the total cost C
smaller than texture memory limits. Using this formalism we can state our resource
allocation problem as

Maximize: ∑=
i iqQ (2)

Subject to:   memorytexturecC
i i _≤=∑ (3)

3.2. Resource allocation algorithm
In general the problem of maximizing the total benefit under the cost constraint is NP-
complete, so it cannot be solved in real time even for a small number of textures.
While approximation algorithm exists [ 17 ], they are computationally inadequate for
a real-time implementation. After trying various approaches, we settled on an
improved greedy algorithm.
We first sort all the possible texture subpyramids with respect to

),(/),( 11 ++ ∆∆ iiiiii jjcjjq  (estimated degradation between level ji and ji+1 divided by

memory saved while using level ji+1 instead of level ji). Starting with the full texture
set, we keep reducing its size by discarding the texture levels that have smaller

),(/),( 11 ++ ∆∆ iiiiii jjcjjq  until the size of the set is smaller than the allowed size (i.e

board texture memory).

3.3. Perceptually-based benefit function
The major contribution of our work is the metric used to estimate the benefit function.
Given the current viewpoint, we would like this metric to accurately measure the
perceived visual difference between the current subpyramid and the texture pyramid
used in the gold standard. We believe that a metric based on a psychophysical model
of the human visual system is best suited to accurately measure visual differences in
images. In the past this approach has been employed very successfully to speed up
offline algorithms [ 3 ][ 13 ][ 14 ][ 16 ]. Unfortunately the computational cost of such
metrics prohibits their use for real time applications.
However, our application does not require the same level of generality in perceptual
metrics as the ones presented before, since we are specifically interested in computing
the visible difference caused by decreasing the resolution of a texture. This means that
we can derive a computationally efficient metric by tailoring the metric to the needs
of our application without losing the predictability and accuracy of the perceptually-
based metrics previously given in the literature.



Our benefit function is based on two aspects of the human visual system: visual
saliency (αi ) and perceived error (εi). Intuitively, the benefit qi of a rendered texture
is proportional to the probability αi that we are focusing our attention to this specific
texture, and the visual degradation εi that may occur by reducing its resolution.
We can formally write this as:

)( iiiq εα −⋅= (4)

In our formulation, the maximum benefit is 0 when we are using the gold standard
texture pyramid and it decreases when we use lower resolution subpyramids.
Following [ 10 ], we model visual saliency as proportional to the pixel coverage of the
texture in the current frame. This is a statistical model based on the premise that we
are focusing our attention on each part of the image with equal probability.
We can simply write

ii A∝α (5)

where Ai is the area in pixel covered by texture Ti.
More advanced saliency models might avoid cases where small areas present strongly
perceivable errors.  Metrics for visual saliency are a new area of research in computer
graphics. [ 20 ] has introduced a sophisticated metric based on low-level visual
processing and a model of attention. However this metric is currently too
computationally expensive to be used in interactive systems.
The perceived error term εi measures the apparent visual difference between the
image rendered using the gold standard texture pyramid and the one rendered using a
subpyramid. In order to estimate the response of the human visual system, we use a
formulation based on a Visible Difference Predictor, VDP [ 7 ]. The VDPs predict the
per-pixel probability that an observer will detect a difference between two images
rendered using different approximations. Using this model of the human visual
system, the perceivable error can be written as the product of the VDP times the
physical error. We can write the perceived error as:
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where vi is the lowest mip-map level visible in the current frame for texture Ti (finest
resolution used), m is the m-th mip-map level (m is greater than vi), Ai is the area
covered in the gold standard image by texture i, Ai,m is the area covered in the gold
standard image by m, and f(m,ji) computes the error using a filtered texture ji (with a
lower resolution) versus a higher resolution one, m. Intuitively the error produced by
using ji is the weighted average of the perceived error in the regions drawn using the
different mip-map levels m, this takes into account the fact that if a mip-map level is
only used in a small region, the corresponding change in visual quality will be small.
For the levels when ii jmv <≤  (the ones that need to be drawn but are not in the

subpyramid (Ti, ji)), the error can be estimated as:
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Here, f(m,ji) is equal to the difference ∆ in color C using mip-map level ji instead of m
multiplied by the probability of detection of the error (VDP), normalized by the pixel
coverage. The differences are taken in the CIELAB perceptually uniform color space.



To compute the probability of detection, we chose the VDP presented in [ 16 ] for its
accuracy and computational efficiency1.
This VDP is defined as:

ElevationTVI
VDP

⋅
= 1

(8)

Threshold vs. intensity function (TVI), describes the luminance sensitivity of the
visual system as a function of background luminance, modeling visual adaptation.
The Elevation term describes the changes in sensitivity caused by the frequency
content of the image. It is based on the contrast sensitivity function (CSF), which
describes variations in sensitivity for patterns of various spatial frequencies, corrected
by a masking function to capture the visual system’s nonlinear response to pattern
contrast. In this formulation, the luminance dependent TVI component can be
computed in real-time once per frame, but the spatially-dependant Elevation
component one cannot, which makes this VDP too slow to be used in our system.
The insight that allows us to speed up the evaluation of this metric is the fact that our
application does not require a VDP that is accurate for each pixel but only for each
texture. Since the most expensive part of the computation is evaluating the spatial
contribution (Elevation), we will separate it from the computation of the luminance
contribution (TVI) by decoupling the two components. By taking this conservative
approximation, we obtain a VDP formulation that is efficient enough for real-time
applications, while accurately predicting the perceived error for each texture. The
function f(m,ji) becomes:
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where Vi,m is the average of the Gouraud interpolated vertex colors in the area covered
by mip-map level m of texture i and Ti,m the average color of mip-map level m of
texture i. Note that the differences are taken only on the texture values T (and not the
color ones C as before). Figure 1 illustrates the computation of the spatial
contribution. The efficiency of this new metric derives from evaluating the spatial
contribution as a pre-process (which can be done during mip-map pyramid creation),
and by evaluating the simpler luminance component on the fly.

Mip-Map 
level 3 

_
Spatial 

Contribution 
(0,3) 

Elevation 
Map 

Difference Mip-Map 
level 0 

Example: ji=3,m=0  

Figure 1: Computation of the spatial contribution of the benefit function.

                                                          
1 The reader should consult [ 16 ] for implementation details and theoretical justification of the
computational model presented.



4. Implementation details

4.1. System overview
We implemented our texture caching algorithm in a real time walkthrough application
written using standard OpenGL. The scene vertex colors are produced by a mesh
simplification algorithm performed on a tone mapped hierarchical radiosity solution.
Any global illumination algorithm can be used to provide these per vertex color
values. If no global illumination solution is available, the direct illumination provided
by the hardware shading could be used by our metric. The system is composed of off-
the-shelf PC components: a Pentium III processor with a GeForce II Ultra graphics
board with 64 MB of video RAM.
The resource allocation algorithm runs asynchronously and with lower priority than
the display loop, to ensure that the frame rate will not be affected by the execution of
the algorithm itself. After the computation of the benefit function (as detailed in the
next section), the resource allocation algorithm determines the best possible texture
set to use when drawing the scene. It then loads the specified subpyramids in texture
memory by using OpenGL texture priorities and loading only textures that are needed
but do not reside yet in texture memory. This ensures a minimum number of texture
switching operations. We also decided to amortize the total cost by distributing the
computation steps over time, especially the switching of textures to avoid large
demands on the hardware at the same time. By doing this, the overhead per frame
does not exceed a couple of milliseconds.

4.2. Benefit function evaluation
In order to evaluate our benefit function we need to compute the area covered by each
mip-map level of each texture and the average color Vi,m in each of those regions. To
compute these values, we need the following per-pixel information: V, textureID and
mip-map level. We obtain this information with a single display pass called
TextureIDMap, where for each polygon, the R, G, B values of the vertices are set as:

RP=V, GP=TextureID, BP=1 (10)
To determine the mip-map levels required when rendering with the high-resolution
gold standard texture set, we render the polygons with a special mip-mapped texture,
whose values are constant over the texels. This encodes the mip-map pyramid levels:

RT=1, GT=1, BT=mip-map level (11)
The combination of the polygon color and this texture (with blending operation) fills
the frame-buffer with all the required information. After this step, all per-pixel
information has been calculated.
Treatment of the frame-buffer values now provides the final information required
(e.g. pixel coverage per texture and mip-map level - Ai, and Ai,m -, color values
Vi,m…).  Since the allocation algorithm runs asynchronously, we use a prediction
camera placed slightly behind the location of the actual viewing camera to anticipate
the appearance of previously non-visible textures.
This TextureIDMap predicts mip-map level usage while solving the occlusion
problem. If a textured polygon is occluded by another one its texture quality qi is
reduced (eventually to zero). Unlike previous approaches our metric takes occlusion
events into account. This allows us to handle both open environments such as terrains
and cluttered environments such as architectural walkthroughs. The TextureIDMap is
illustrated in Fig. 2 (here the contrast of each map has been enhanced to facilitate
reading the figure).



5. Results
We tested our algorithm on a highly textured architectural scene containing
approximately 100,000 radiosity elements after mesh simplification. Figure 3-A
shows the variation over time of the values of the benefit function (qi), for each
texture i present in this environment. As the observer moves into the scene, new parts
of the scene become visible (or occupy more space on the screen), while others go out
of view. As a result, the evaluation of the quality function varies with time. Figure 3-
B presents the evolution of the active texture set over time for the same scene during
the walkthrough. This graph shows the minimum mip-map levels that are loaded onto
the graphics board for each texture present in the scene. As one can observe, in this
walkthrough, most of the time the minimum mip-map levels used are 1 or 2 except
between the 50th second and 65th second of the walkthrough where dramatic changes
in the rendering state occur, since the observer has moved toward a picture on the
wall to see it in greater detail. As he moves toward the picture, the resource allocator
gives more memory to this particular texture to permit rendering it at full resolution
(level 0). As a result, this affects the approximations chosen for the other textures and
some of them are almost completely removed from the board memory.
We also tested this scene with high resolution textures (1024 by 1024) to greatly
overload the board memory (the set of textures was 4 times bigger than the memory
allowed by our system). Under these conditions, the rendering system ran at 3 frames
per second. With the framework presented in this paper the framerate remains above
40 frames per second as shown in Figure 3-C.
Note that we also compared our algorithm with a load/unload priority scheme that
used a visibility heuristic. In many circumstances this texture management heuristic
will fail. Indeed, if in one frame all the visible textures overload the board memory,
this heuristic will preserve image quality but at the price of a dramatic reduction in
frame rate. In our test we found that in some cases, this method could only produce 4
frames per second while our algorithm yielded rates above 60 frames per second.
Progressive loading as in [ 5 ] would solve this problem but without any guarantee on
image quality.
Some snapshots from the walkthrough scene are shown in Figure 4. In these images
the diagram in the left indicates the approximation chosen for each texture (the longer
the bar, the coarser the approximation). The graphs indicate that the optimal texture
set is different for each location. The image on the lower right shows the scene when
the observer has moved toward the picture.

6. Conclusion

In this paper we presented a texture caching algorithm that provides high framerates
while maximizing image quality on current commodity graphics hardware. Unlike
previous approaches, our algorithm uses an efficient perceptual metric to determine
where lower resolution textures can be used without reducing the visual quality of the
resulting images. It relies on a textureIDMap to solve the visibility problem and
estimate mip-map level usage. The algorithm should be useful in a variety of
interactive rendering scenarios and could be incorporated and optimized for graphics
APIs like Performer, Direct3d or OpenGL to improve the performance of PC
rendering applications.



This texture caching algorithm may be employed on top of main memory and disk
based texture management schemes (as in [ 5 ]) and is compatible with geometric
simplification approaches (LOD, culling, impostors…) used to reduce the demands on
the graphics pipeline.
The benefit function that drives our algorithm is of general utility and can be
integrated in various other applications. For example, it could be used to prioritize
network bandwidth in client/server rendering for telecollaboration or shared virtual
environments. It could also be used to automate the laborious hand-tuning of texture
and environment maps currently done in memory-constrained console gaming
applications by treating main memory as a limited resource.
In the future we would like to develop more advanced perception metrics to further
increase the efficiency and effectiveness of our algorithm, for example, by taking the
perceptibility of color differences into account. We would also to extend our
algorithm to handle additional map-based shading methods (e.g. shadow maps, light
maps, environment maps, multitexturing) to increase the realism and performance of
interactive rendering applications.
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Figure 2: TextureIDMap computation.
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Figure 4: Walkthrough of an architectural scene
(performance with our caching strategy is 40 fps, without is 3 fps).
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