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ABSTRACT 

In this paper we introduce a new model of surface appearance that is based on quantitative studies of gloss perception. We 

use image synthesis techniques to conduct experiments that explore the relationships between the physical dimensions of 
glossy reflectance and the perceptual dimensions of glossy appearance. The product of these experiments is a 

psychophysically-based model of surface gloss, with dimensions that are both physically and perceptually meaningful and 

scales that reflect our sensitivity to gloss variations. We demonstrate that the model can be used to describe and control the 

appearance of glossy surfaces in synthetic images, allowing prediction of gloss matches and quantification of gloss 

differences. This work represents some initial steps toward developing psychophysical models of the goniometric aspects of 
surface appearance to complement widely-used colorimetric models. 
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1. INTRODUCTION 

Color and gloss are two fundamental attributes used to describe surface appearance. Color is related to a surface’s spectral 
reflectance properties. Gloss is a function of a surface’s directional reflectance properties. Many models have been developed 

for describing color, from the simple RGB model used in video and computer graphics, to the more sophisticated Munsell, 
XYZ, and CIELAB models that have grown out of the science of colorimetry30,7. These colorimetric models have made it 
easier to describe and control color because the models are grounded in the psychophysics of color perception. Unfortunately 

similar psychophysically-based models of gloss have not been available.  

Current physical models of gloss are based on quantitative studies of light reflection6,8,28,23,14,24, and although great progress 

has been made in the accuracy and generality of these models, for the most part their parameters are visually unintuitive, and 

interactions among the parameters make it difficult to specify the appearance of glossy surfaces. Conversely, the most 
widely-used model of apparent gloss11

 is based on dimensions derived largely by intuition and scaled one-at-a-time, under 
highly restricted material, illumination, and viewing conditions. It has proved difficult to use this model to predict glossy 

appearance, because of the multidimensional nature of gloss perception under natural conditions1. A model of gloss that is 

grounded in both the physics of light reflection and the phenomenology of gloss perception could greatly facilitate the 

process of describing and controlling surface gloss properties.  

In this paper we introduce a new model of surface appearance that is based on quantitative studies of gloss perception. We 

have used image synthesis techniques to conduct experiments that explore the relationships between the physical dimensions 

of glossy reflectance and the perceptual dimensions of glossy appearance. We use the results of these experiments to rewrite 

the parameters of a physically-based light reflection model in perceptual terms to produce a psychophysically-based gloss 

model, with dimensions that are both physically and perceptually meaningful and scales that reflect our sensitivity to 

variations in gloss. We will show that the model can be used to describe and control the appearance of glossy surfaces in 

synthetic images, allowing prediction of gloss matches and quantification of gloss differences. This work represents some 

initial steps toward developing psychophysical models of the goniometric aspects of surface appearance to complement 
widely-used colorimetric models. 

2. BACKGROUND 

The earliest studies of gloss perception are attributed to Ingersoll12
 who in 1914, examined the appearance of glossy papers. 

In 1936, Hunter11
 observed that there are at least six different visual phenomena related to apparent gloss. He defined these 

as: 

specular gloss – perceived  brightness associated with the specular  reflection from a surface 

contrast gloss – perceived relative brightness of  specularly and diffusely reflecting areas 

distinctness-of-image (DOI) gloss – perceived sharpness of images reflected in a surface 

haze – perceived cloudiness in reflections near the specular direction  

sheen – perceived shininess at grazing angles in otherwise matte surfaces 

absence-of-texture gloss – perceived surface smoothness and uniformity 
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In 1937, Judd13
 formalized Hunter’s observations by writing expressions that related them to the physical features of surface 

bi-directional reflectance distribution functions (BRDFs). Hunter and Judd’s research established a conceptual framework 

that has dominated work in gloss perception to the present day. Their gloss dimensions have been used as the bases of many 

important industrial metrics for gloss measurement and specification, however there has been considerable difficulty in 

correlating these metrics with object appearance under natural conditions18. Although Hunter and Judd’s dimensions can 

certainly be observed and measured, few experiments have been done to evaluate if these are the dimensions people actually 

use to judge gloss. 

In 1987 Billmeyer and O’Donnell1
 published an important paper that tried to address the issue of gloss perception from first 

principles. Working with a set of white, gray, and black paints with varying gloss levels, O’Donnell collected ratings of the 

perceived differences in gloss between pairs of samples and then used multidimensional scaling techniques to discover the 

dimensionality of apparent gloss. He concluded that for his sample set and viewing conditions (flat samples, structured/direct 
illumination, black surround) the appearance of high gloss surfaces is best characterized by a measure similar to Hunter’s 

distinctness-of-image gloss, while the appearance of low gloss surfaces is better described by a measure like contrast gloss. 
This work is significant because it is the first to study the multidimensional nature of gloss perception without preconceptions 

about what the dimensions might be. 

In the vision literature, studies of gloss have focused primarily on its effects on the perception of shape from shading. Todd25
 

and Mingolla16
 found that gloss generally enhances the perception of surface curvature. Blake2

 found categorical changes in 

surface appearance and shape depending on the 3d location of the specular highlight.  Braje4
 found interactions between 

apparent shape and apparent gloss, showing that a directional reflectance pattern was perceived as more or less glossy 

depending on the shape of its bounding contour. More recently Nishida17
 also studied interactions between shape and gloss, 

and found that subjects are poor at matching the Phong21
 parameters of bumpy surfaces with different frequency and 

amplitude components. Only recently22
 has the perception of material properties per se become an active subject of study in 

the vision community. 

There is still much work to be done in this area. First, with the exception of Billmeyer and O’Donnell’s experiments there has 

been little study of gloss perception from first principles. Hunter and Judd’s studies of apparent gloss were groundbreaking 

and insightful, but their dimensions were defined a priori. To really understand gloss perception we need to conduct 
experiments that identify and quantify without preconception, the dimensions people actually use to judge gloss. Second, 
previous studies of gloss perception have only looked at flat, directly illuminated surfaces in unstructured surrounds. This 

practice is understandable given the difficulty of controlling complex environments, but it’s strange considering that one of 
the most salient things about glossy surfaces is their ability to reflect their surroundings. To understand how we perceive 

gloss under natural conditions, we need to study three-dimensional objects in realistic environments. Fortunately, image 

synthesis gives us a powerful tool to study gloss perception. Physically-based image synthesis methods let us make realistic 

images of complex objects in globally-illuminated scenes, and gives us precise control over object and scene properties. By 

using image synthesis techniques to conduct experiments on gloss perception we should be able to make significant progress 

toward the goal of developing a psychophysically-based gloss model that can be used to describe and predict the appearance 

of glossy surfaces. 

3. EXPERIMENTS 

3.1 Motivation 

In many ways the experiments that follow are analogous to early research done to establish the science of colorimetry.  In 

that work, researchers wanted to understand the relationships between the physical properties of light energy, and the 

perception of color. Many of the earliest experiments focused on determining the dimensionality of color perception, 
culminating with Young’s trichromatic theory9.  Following this, further experiments were done to find perceptually 

meaningful axes in this three-dimensional color space. Hering’s work10
 on opponent color descriptions, falls into this 

category. Finally, many experiments have been done to scale these axes to create perceptually uniform color spaces and 

estimate just noticeable differences (JNDs) in color. Munsell, Judd, and MacAdam’s efforts are good examples (see 

Wyszecki30
 for a review).  

Although we recognize the great effort involved in the development of color science, our overall goals with respect to 

understanding gloss are similar:  

• In Experiment 1 we will use multidimensional scaling techniques to reveal both the dimensionality of gloss 

perception, and to suggest perceptually meaningful axes in visual “gloss space” 

• In Experiment 2 we will use magnitude estimation techniques to place quantitative metrics on these axes to create a 

perceptually uniform gloss space and predict just noticeable differences in gloss 



 

Finally we will use the results of these experiments to develop a psychophysically-based model of gloss that can be used to 

relate the physical dimensions of glossy reflectance to the perceptual dimensions of glossy appearance.  

3.2 Experiment 1 

3.2.1 Approach 

The purpose of Experiment 1 is to determine the dimensionality of gloss perception and to find perceptually meaningful axes 

in visual gloss space. To do this we’ve designed an experiment based on multidimensional scaling techniques. 
Multidimensional scaling3

 (MDS) is statistical method for finding the latent dimensions in a dataset that takes a set of 
measures of the distances between pairs of objects in a dataset and reconstructs a space that explains the dataset’s overall 
structure. MDS can produce solutions in any number of dimensions to achieve the best fit to the data. The goodness of fit, 
known as the stress of the solution, is given by:  
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where δi,j are the input proximities, xi and xj are the recovered locations in the nth
 dimensional solution, and d is a measure of 

the distance between them. The MDS algorithm attempts to minimize the stress for each of the solutions. 

Plotting stress as a function of the dimensionality of the solution produces a curve that drops sharply as dimensions are added 

that explain more of the data and declines more slowly as superfluous dimensions are added. Standard practice is to choose 

the dimensionality indicated by the inflection point in the stress curve. MDS algorithms come in a variety of flavors that 
differ in the form of the stress function used.  We use a variant called weighted Euclidean non-metric MDS that allows us to 

combine data from multiple subjects, compensate for individual differences, and analyze datasets where the proximities may 

only reflect ordinal rather than interval relations in the data. We also use a second variant called confirmatory MDS that lets 

us test hypotheses about the functional forms of the dimensions and their orthogonality (see Borg3
 for further details). 

3.2.2 Procedure 

To study the dimensionality of gloss perception, we first need to construct a stimulus set with objects that vary in gloss, and 

then collect measures of the apparent differences in gloss between pairs of objects in the set. These apparent gloss differences 

then serve as the proximities the MDS algorithm uses to construct a representation of visual gloss space.  

Gloss is a visual attribute of a wide variety of materials including plastics, ceramics, metals, and other man-made and organic 

substances. Eventually we would like to develop a model that can explain the appearances of all these kinds of materials, but 
initially we need to restrict our studies to a manageable subclass. To start, we decided to study a set of achromatic glossy 

paints. We chose paints because they exhibit a wide variety of gloss levels from flat to high gloss; their reflectance properties 

have been measured extensively so there are good models to describe their physical characteristics, and they are widely-used 

in art and industry, so hopefully our findings will be immediately useful. 

A composite image of the stimulus set used in Experiment 1 is shown in Figure 1. The environment consisted of a sphere 

enclosed in a checkerboard box illuminated by an overhead area light source. Images were generated with a physically-based 

Monte Carlo path-tracer that used an isotropic version of Ward’s  light reflection model28: 

 

Figure 1: Composite image of the stimulus set used in Experiment 1. Labels indicate the diffuse color (ρd ;white, gray, black), ρs , and α 

values. Symbols are included as an aid for interpreting subsequent figures. 
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where ρ(θi,φi,θo,φo) is the surface BRDF, θi,φi, and θo,φo are spherical coordinates for the incoming and outgoing directions, 
and δ is the half-angle between them. Ward’s model uses three parameters to describe the BRDF: ρd – the object’s diffuse 

reflectance; ρs – the energy of its specular component, and α – the spread of the specular lobe. We chose Ward’s model 
because we wanted the objects in the stimulus set to represent the gloss properties of real materials, and Ward provides 

parameters that describe a range of measured glossy paints. Our stimulus set spans this range. Each parameter was set to three 

levels. ρs values were (0.033, 0.066, 0.099), α values were (0.04, 0.07, 0.10), and ρd was set to (0.03, 0.193, 0.767; black, 
gray, and white) which are the diffuse reflectance factors corresponding to Munsell values (N2, N5, and N9). The black and 

white checks in the checkerboard surround were completely diffuse and had ρd’s of 0.03 and 0.767 respectively. By using all 
combinations of the ρd, ρs, and α parameters for the sphere objects, we produced the 27 images shown in Figure 1. 

In the final stage of the image synthesis process, scene radiances calculated by the rendering algorithm are mapped to 

numerical values used to drive a display device. This process is known as tone reproduction. The goal of the tone 

reproduction process is to produce a displayed image that accurately captures the appearance of the scene. In our case, 
choosing a tone reproduction operator presented a challenge because the visible reflection of the light source created images 

with high dynamic ranges. We experimented with a number of tone reproduction operators including simple clipping and 

gamma compression as well as Pattanaik et al.20and Ward-Larson et al.’s29
 high dynamic range operators, but they all 

produced objectionable artifacts such as halos and banding. We settled on Tumblin’s27
 Rational Sigmoid operator which 

compresses highlights without abrupt clipping and allows all other scene radiances to be directly reproduced by the display. 

Nine subjects participated in Experiment 1. The subjects were the first two authors and seven graduate and undergraduate 

Computer Science students. All had normal or corrected to normal vision. With the exception of the authors, all were naïve to 

the purpose and methods of the experiment. 

In the experimental session, the subjects viewed pairs of images displayed on a calibrated SXGA monitor. Minimum and 

maximum monitor luminances were 0.7 and 108 cd/m2
 and the system gamma was 2.35. The images were presented on a 

black background in a darkened room. The monitor was viewed from a distance of 60 inches to ensure that the display raster 
was invisible. At this viewing distance each image subtended 3.2 degrees of visual angle.  

Subjects were asked to judge the apparent difference in gloss between the pair of objects shown in the images. They entered 

responses using a mouse to vary the position of a slider that was displayed below the images. The ends of the slider scale 

were labeled “0, small difference” and “100, large difference”. A readout below the slider indicated the numeric position 

along the scale.  

Subjects judged the apparent gloss differences of all 378 object pairs in the stimulus set. The pairs were presented in random 

order. For each subject, the apparent gloss differences measured in the experiment were used to fill out a 27 x 27 proximity 

matrix. All nine proximity matrices were used as input to the PROXSCAL5
 MDS algorithm. 

3.2.3 Results 

Recall that our goal in this experiment is to discover the dimensionality of gloss perception for our stimulus set and to find 

perceptually meaningful axes in this space. To do this we observed how the stress value varied with the dimensionality of the 

MDS solutions. Our analysis showed that the stress value dropped sharply with the change from a 1-dimensional to a 2-
dimensional solution, but declined more slowly with the addition of higher dimensions that were probably only 

accommodating noise in the dataset. From this pattern we inferred that under the conditions of our experiment apparent gloss 

has two dimensions. The two-dimensional gloss space recovered by the MDS algorithm is shown in Figure 2.  

We must now identify perceptually meaningful axes in this space. The cross in the lower right corner of the diagram indicates 

two important trends in the data that are related to properties of the reflected images formed by the surfaces. First, the 

apparent contrast of the reflected image increases from the lower left to the upper right of the diagram. Second, the apparent 
sharpness or distinctness of the reflected image increases from lower right to upper left. We believe these dimensions are 

qualitatively similar to the contrast gloss and distinctness-of-image (DOI) gloss attributes Hunter observed and so we will 
name these dimensions c for contrast gloss and d for DOI gloss. However, to foreshadow the results of the next experiment, 
we will differ significantly from Hunter and Judd in the quantitative formulation of the relationships between these 

perceptual dimensions and the physical parameters used to describe surface reflectance properties. 



 

3.3 Experiment 2 

3.3.1 Approach 

In Experiment 1 we discovered the dimensionality of gloss perception for our stimulus set and identified perceptually 

meaningful axes in this gloss space. The purpose of Experiment 2 is to place metrics on these axes and rescale them to create 

a perceptually uniform gloss space. To do this we’ve designed an experiment based on magnitude estimation techniques. 

Magnitude estimation is one of a family of psychophysical scaling techniques designed to reveal functional relationships 

between the physical properties of a stimulus and its perceptual attributes26. In the basic magnitude estimation procedure, 
subjects are presented with a random sequence of stimuli that vary along some physical dimension, and they are asked to 

assign a number to each stimulus that indicates the apparent magnitude of the corresponding perceptual attribute. Magnitude 

estimates are then used to derive a psychophysical scale.  Just noticeable differences (JNDs) can be derived from measures of 
dispersion of the magnitude estimates26. 

3.3.2 Procedure 

Two magnitude estimation studies were performed in Experiment 2 to scale the perceptual gloss dimensions found in 

Experiment 1. In both cases the stimuli used were subsets of the stimuli used in Experiment 1, supplemented by new stimuli 

 

Figure 2: Two-dimensional MDS solution for Experiment 1. 



 

with parameters intermediate to those in the original set. In the contrast gloss study 24 images were used, showing objects 
with combinations of ρd levels of (0.03, 0.087, 0.193, 0.420, 0.767) (black, dark/medium/light gray, white) and ρs levels of 
(0.017 0.033, 0.050, 0.066, 0.083 0.099) (low to high specular energy), the α parameter was fixed at 0.04 (small spread) to 

make variations along the contrast gloss dimension as salient as possible. In the DOI gloss study, α was varied in 10 levels 

from 0.01 to 0.19 (small to large spread), and the ρd and ρs parameters were fixed at 0.03 (black) and 0.099 (high specular 
energy) to make variations along the DOI gloss dimension as salient as possible. 

The subjects in Experiment 2 were the same as those in Experiment 1, and the same display techniques, viewing conditions, 
and data gathering methods were used. In each study, subjects viewed single images from the stimulus sets. Images were 

presented in a random sequence and each sequence was repeated three times. On each trial subjects were asked to judge the 

apparent glossiness of the object in the image on a scale from 0 to 100 by adjusting an on-screen slider. 

3.3.3 Results 

Our goal in these experiments is to derive psychophysical scaling functions that relate changes in apparent gloss along the 

perceptual dimensions discovered in Experiment 1 to variations in the physical parameters of the light reflection model. To 

achieve this goal we tested various hypotheses about functional relationships, first with least squares fitting techniques on the 

magnitude estimation data and then with confirmatory MDS on the full dataset from Experiment 1. This approach allowed us 

to verify that the scaling functions are task independent and to determine whether the perceptual dimensions are orthogonal. 

First we examined the d (DOI gloss) dimension. Our hypothesis was that d is inversely related to the α parameter. In Figure 3 

subjects’ gloss ratings are plotted versus the function d = 1 - α. The line was obtained through linear regression and the r2
 

value of the fit was 0.96. Polynomial fits only increased r2
 by less than 0.01 so we concluded that the relationship is linear.  

Interpreting the c (contrast gloss) dimension was less straightforward. In the MDS solution from Experiment 1 (Figure 2) it is 

clear that c varies with diffuse reflectance, since the white, gray, and black objects form distinct clusters that occupy different 

ranges along the c dimension. Our first hypothesis was that c is a simple function of the physical contrast (luminance ratio) of 
the reflected black and white patches in the image plane but this provided a very poor fit to the data (r2

 = 0.76). Our second 

hypothesis was that “contrast” in this situation is a function of the difference in apparent lightness of the two patches, where 

lightness is defined as CIELAB (L). This second formulation provided a much better fit to the magnitude estimation data (r2
 

= 0.87). However when we tested this second hypothesis on the full dataset from Experiment 1 using confirmatory MDS, we 

found that the fit was poor for surfaces with large α values where the physical contrast in the image plane drops as the 

reflected image gets blurrier. Finally, we tested a third hypothesis that when judging gloss, subjects’ lightness estimates are 

based on object-space features rather than image-plane features (i.e. subjects show a form of constancy, compensating for 
blur-related losses in image contrast). This hypothesis is formalized in Equation 4 which we derived using standard 

integration techniques under the assumption of small α values and high environmental contrast. 

Figure 4 plots the data from the contrast gloss study, which shows how subjects’ gloss ratings relate to this final formulation 

for the c dimension. The line was obtained through linear regression and provides a good fit to the data (r2
 = 0.94). Using this 

formulation also decreased the stress value in a subsequent confirmatory MDS test on the full dataset, which indicates that 
the c and d axes are independent, and therefore orthogonal in this region of gloss space. 

Equations 3 and 4 show the final formulas for the metrics on the c and d axes. These metrics relate changes in apparent gloss 

to variations in the physical parameters of the light reflection model.  
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Figure 3: Magnitude estimates and fit for DOI gloss d. 
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Figure 4: Magnitude estimates and fit for contrast gloss c. 



 

These metrics are perceptually linear, but to make the space perceptually uniform, we need to find weighting factors for 
metrics so that distances in the space can be measured. These weights are given as a byproduct of the confirmatory MDS 

analysis which lets us write distance as: 

  22 )](78.1[][ jijiij ddccD −⋅+−∝          (5) 

Figure 5 shows a visualization of the perceptually uniform gloss space defined by the metrics with the stimuli from 

Experiment 1 placed at their predicted locations. The contrast gloss (c) and DOI gloss (d) axes form a two-dimensional space, 
(which is also shown in the inset), and surface lightness (L) (which we will incorporate in the following section) is an 

orthogonal third dimension. 

4. A PSYCHOPHYSICALLY-BASED GLOSS MODEL 

To take full advantage of this new space, we are going to rewrite the parameters of Ward’s physically-based light reflection 

model in perceptual terms to create a psychophysically-based model that can be used to describe both the physical and visual 
characteristics of our glossy surfaces. To do this, we need to introduce a perceptually linear parameter related to a surface’s 

diffuse reflectance. For compatibility with perceptually uniform color spaces we chose CIELAB lightness (L). This final 
addition allows us to express the physical parameters in terms of the perceptual ones through the following equations, where f 
is the CIELAB lightness function normalized in [0,1]:

 

Figure 5: The perceptually uniform gloss space derived from Experiment 2. 
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Figure 6 illustrates the influence of the diffuse component on apparent gloss. Here the solid curve plots the maximum 

contrast gloss c achievable for surfaces with different lightness values (derived by enforcing energy conservation of the 

BRDF). This curve defines the envelope of gloss space with respect to surface lightness. We also plotted how contrast gloss 

varies with lightness for a fixed energy of the specular lobe. This curve shows that for the same specular energy, contrast 
gloss is smaller for lighter objects. That is to say, if two surfaces are painted with black and white paints having the same 

physical formulations, the black surface will appear glossier than the white one. 

Strictly speaking, the model we’ve developed is only predictive within the range of stimuli we tested, however this should 

not be too much of a limitation because the stimulus set actually covers a substantial range of glossy paints. The model may 

also be applicable outside this range, but we feel that the model parameters should be constrained to the space of physically 

plausible BRDFs that can be expressed by the Ward model. In particular we feel that the Ward model’s α value should not be 

much larger than 0.2 because the specular component of the BRDF is not normalized for such broad lobes, and it is unclear 
that the c and d dimensions remain independent in the extreme low gloss domain. 

5. APPLYING THE MODEL 

In the previous section we used the results of our experiments to develop a psychophysically-based gloss model. In this 

section we demonstrate the power of the model by showing how it can be used to facilitate the process of describing and 

controlling surface appearance in realistic image synthesis. 

5.1 Gloss matching 

Many studies of gloss perception11,1
 have noted that apparent gloss is affected by the diffuse reflectance of a surface, with 

light colored surfaces appearing less glossy than dark ones having the same finish. This effect is illustrated in the top row of 
Figure 7 where the white, gray and black objects have the same physical gloss parameters (ρs = 0.099, α = 0.04) but differ in 

apparent gloss, with the white sphere appearing least glossy and the black sphere appearing most glossy. This phenomenon 

makes it difficult to create objects with different lightnesses that match in apparent gloss.  The bottom row of Figure 7 shows 

the results produced with our psychophysically-based gloss model. Here the objects have been assigned the same perceptual 
gloss values (c = 0.057, d = 0.96), and they appear similar in gloss despite differences in their lightnesses. Using the 

dimensions provided by the new model should make it much easier to create objects that have the same apparent gloss. 

5.2 Isogloss contours 

One of the benefits of working in a perceptually uniform description space is that steps along the dimensions produce equal 
changes in appearance. This is true of uniform color spaces such as CIELAB where equal numerical steps in lightness (L) or 

Figure 7: Matching apparent gloss: white, gray, and black objects 
having the same physical gloss parameters (top row) and 

perceptual gloss parameters (bottom row). 
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Figure 6: Effect of surface lightness on contrast gloss. 



 

chroma (a,b) produce perceptually equal changes in color 
appearance. 

The perceptually uniform gloss space our model is based on has similar properties. Figure 8 shows isogloss contours with 

respect to the object in the lower left corner of the diagram (c = 0.087, d = 0.93). According to the model, the objects falling 

on the circular contours are equally different in apparent gloss from the reference object. The concentric circles show two 

degrees of isogloss difference (∆c = 0.04, ∆d = 0.022 = 0.04/1.78).  

It’s important to realize that because the gloss space is two-dimensional, two objects judged to be equally different in gloss 

from a reference object may have different reflectance properties. For example, the two objects at 12 and 3 o’clock in Figure 

8 have very different reflectance properties: the one at 12 o’clock produces a sharp but low contrast reflection, while the one 

at 3 o’clock makes a blurry but high contrast reflection. Still, the model predicts that they will be judged to be equally 

different in gloss from the reference object. This prediction was supported by an informal ranking study we ran using the 

stimulus set from Experiment 1. Objects whose parameters fell along isogloss contours with respect to a low gloss reference 

object received similar rank values, suggesting that subjects found them to be equally “glossy”, but in different ways. 

5.3 Just-noticeable differences in gloss 

A major goal in the development of colorimetry was the formulation of color difference metrics that could be used to predict 
visible differences in color. Color difference metrics have great value in science and industry where they can be used to 

predict required precision and acceptable tolerances in measurement and manufacturing processes. In 1942 MacAdam15
 

performed a series of experiments to estimate just noticeable differences in chromaticity within the CIE XYZ color space. 
When these JNDs are plotted on the chromaticity diagram they form the so-called MacAdam ellipses.  

We have attempted to estimate measures analogous to the MacAdam ellipses for visible differences in gloss. In the absence 

of direct experiment, Torgerson26
 suggests that just noticeable differences can be estimated from measures of dispersion in 

the ratings given to stimuli in a scaling task. Following this procedure, we calculated JNDs for c and d as the average 

standard deviation of the distribution of differences between the gloss values predicted by the regression lines in Figures 3 

and 4 and the actual ratings made by the subjects. We multiplied this value by 0.954 to adopt a 75% discrimination criterion. 
We excluded near-endpoint stimuli from our calculations to eliminate range-related constraints on dispersion, which could 

lead to artificially small JNDs19. The JND formula is: 
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Here i is the number of stimuli included in the calculations (20 and 8 respectively for c and d), and n is the number of 
measures taken on each stimulus (27 for both c and d). This method yields JNDs for c and d as 0.031and 0.017 respectively. 

 

Figure 9: Just noticeable differences in gloss: the ellipsoids 
indicate the changes in material properties required to produce 

visible differences in gloss from the materials defined by their 
centers. 

Figure 8: Isogloss contours: objects along the contours are 

equally different in apparent gloss from the central object. 



 

Figure 9 shows these values plotted in terms of the physical parameters of the Ward model for a subset of the stimuli tested in 

Experiment 2. The ellipsoids indicate the changes in material properties necessary to produce just noticeable differences in 

gloss for each of the stimuli. The horizontal ρd ,ρs plane relates to c, the contrast gloss dimension. The vertical axis relates to 

d, the DOI gloss dimension.  There are several things to notice. First, in general, the lighter objects (high ρd) require larger 
changes in material properties than darker ones (low ρd)  to produce noticeable differences in gloss. This is because for a 

fixed ρs, lighter objects show less contrast gloss than darker ones. However it should also be noted that the effect of 
increasing ρs is proportional to the object’s ρd value: increasing ρs reduces the size of a JND more for lighter objects than for 
darker ones. Finally, the stimuli along the vertical axis show that the effect of α on JNDs is constant over the range of stimuli 
we tested. Although direct measurements of gloss JNDs should be done before any definitive claims are made, these JND 

estimates are consistent with observers’ subjective reports and also suggest interesting directions for future study.      

6. CONCLUSIONS 

In this paper we’ve introduced a new model of surface gloss that is grounded in the psychophysics of gloss perception. Using 

image synthesis techniques, we conducted two experiments that explored the relationships between the physical dimensions 

of glossy reflectance and the perceptual dimensions of glossy appearance. The product of these experiments is a 

psychophysically-based model of gloss where the dimensions of the model are perceptually meaningful, the scales of the 

dimensions are perceptually uniform, and gloss differences can be quantified. We have demonstrated that the model can be 

used to describe and control the appearance of glossy surfaces in synthetic images. Although we feel that these results are 

promising, there is much more work to be done.  

First, we want to make clear that at this time, the model we’ve developed is only predictive of appearance within the range of 
glossy paints we studied, under the imaging and viewing conditions we used. Although we believe our results will generalize 

well, if the goal is to develop a comprehensive psychophysically-based model of surface gloss, many more studies need to be 

done: 1) to investigate different classes of materials like plastics, metals, and papers (possibly requiring different BRDF 

models); and 2) to determine how object properties like shape, pattern, texture, and color, and scene properties like 

illumination quality, spatial proximity, and environmental contrast affect apparent gloss. Even though in our experiments we 

found that apparent gloss has two dimensions, we fully expect that for other materials and under other conditions different 
gloss attributes such as sheen and haze may be more salient and add dimensions to “gloss space”.  

A potential criticism of using image synthesis techniques to study gloss perception is that because of the dynamic range 

limitations of display devices, if there are visual gloss attributes related to the absolute intensity of surface reflections, these 

attributes may not be accurately represented by images, which could lead to underestimation of their importance. The clear 
utility of images as visual representations of objects and scenes and the well known dynamic range adaptations of vision, 
suggest that this may not be the case, however further studies are necessary before the results of our experiments can be 

generalized from predicting appearance in the imaging domain to predicting appearance in the real world.  

Clearly there is more to do, but hopefully this work represents some initial steps toward developing psychophysical models 

of the goniometric aspects of surface appearance to complement widely-used colorimetric models.  
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