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We present a method to accelerate global illumination computation in pre-rendered animations by taking advantage of limitations of the
human visual system. A spatiotemporal error tolerance map, constructed from psychophysical data based on vel ocity dependent contrast sen-
sitivity, isused to accelerate rendering. The error map is augmented by a model of visua attention in order to account for the tracking behav-
ior of the eye. Perceptua acceleration combined with good sampling protocols provide a global illumination solution feasible for use in
animation. Resultsindicate an order of magnitude improvement in computational speed.
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1 INTRODUCTION

Global illumination is the physically accurate calculation of lighting in an environment. It is computationally expensive for static environ-
ments and even more so for dynamic environments. Not only are many images required for an animation, but the calculation involved
increases with the presence of moving objects. In static environments, global illumination algorithms can precompute a lighting solution and
reuse it whenever the viewpoint changes, but in dynamic environments, any moving object or light potentially affects the illumination of
every other object in a scene. To guarantee accuracy, the agorithm has to recompute the entire lighting solution for each frame. This paper
describes a perceptually-based technique that can dramatically reduce this computational load. The technique may aso be used in image
based rendering, geometry level of detail selection, reaistic image synthesis, video telephony and video compression.

Reference Image (a) Spatiotempora error tolerance map (Aleph Map) (b)

Figure 1: Global Illumination of a Dynamic Environment (see color plate). Globa illumination correctly simulates effects such as color bleeding (the
green of the leaves on to the petals), motion blur (the pink flamingo), caustics (the reflection of the light by the golden ash tray on thewall), soft shadows,
anti-aliasing, and area light sources (a). This expensive operation benefits greatly from our perceptual technique, which can be applied to animation as
well as motion-blurred still images such as shown above. The spatiotemporal error tolerance map (which we call the Aleph Map) is shown on the right
(b). Bright areas on the map indicate areas where less effort should be spent in computing the lighting solution. The map takes afew seconds to compute
but will save many hours of calculation.

Perceptua ly-based rendering operates by applying models of the human visual system to images in order to determine the stopping condi-
tion for rendering. In doing so, perceptually assisted renderers attempt to expend the least amount of work to obtain an image that is percep-
tually indistinguishable from a fully converged solution. The technique described in this paper assists rendering algorithms by producing a
spatiotemporal error tolerance map (Aleph Map) that can be used as a guide to optimize rendering. Figure 1 shows a scene containing mov-
ing objects (a) and its Aleph Map (b). The brighter areas in the map show regions where sensitivity to errorsis low, permitting shortcutsin
computation in those areas.
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Two psychophysical concepts are harnessed in this paper: spatiotemporal sensitivity and visua attention. The former tells us how much error
we can tolerate and the latter expresses where we look. Knowledge of error senditivity isimportant because it allows us to save on computa-
tion in areas where the eye isless sensitive and visual attention isimportant because it allows us to use sensitivity information wisely. Areas
where attention is focused must be rendered more accurately than less important regions.

Spatiotemporal sensitivity considers the reduced sensitivity of the human visual system to moving spatiad patterns. This limitation of the
human visual system makes us less sensitive to errors in regions where there are high spatial frequency patterns and movement. Movement
is caused by the observer in motion or objects in motion. We exploit this reduced sensitivity to speed up the computation of global illumina-
tion in dynamic environments. This principle of reduced sensitivity cannot be applied naively, however, since the eye has an excellent ability
to track objects in motion. The eye reduces the velocity of the objects/areas of interest with respect to the retina, nullifying the loss of sensi-
tivity due to motion. By using a robust model of visud attention, we predict where viewers direct their attention, allowing us to accurately
derive the viewer’s spatiotemporal sensitivity to the scene.

The Aleph Map represents spatiotemporal error tolerance. Figure 2 shows an outline of our technique. To obtain the Aleph Map, we reguire
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Figure 2: Flowchart outlining the computation of spatiotempora error tolerance. The Aleph Map is a perceptual oracle derived from the spatial
frequency, motion and visually important information in a scene. The saliency map is a measure of visual attention and is used to compensate for eye
tracking movements in order to fully take advantage of perceptua sensitivity in dynamic scenes.

knowledge about the motion and spatial frequencies present in the scene. We & so need to factor in visua attention, which tells us areas of
importance in the scene. Image regions that receive visual attention are estimated by a saliency map. The saliency map is used to account for
the tracking behavior of the eye in order to correctly compensate for eye motion before spatiotempora sensitivity is calculated. It is built up
from conspicuity associated with intensity, color, orientation changes and motion. One may think of conspicuity asthe visual attractor due to
asingle channel such as motion and saliency as the visua attractor due to all the stimuli combined. The saliency map tells us where the eye
is paying attention and the Aleph Map uses that information to tell us how much error we can tolerate in that region. The saliency map allows
us to compensate for eye movements without the use of eye tracking devices. Although eye tracking hardware exists, such hardware is spe-
ciaized and would be impractical for multiple viewers. Our technique yields significant gains in efficiency without incurring the costs and
disadvantages of such hardware. Figure 3 shows speedup achieved by using our technique in global illumination computation.

In Section 2, we will discuss the previous work on which our algorithm is based. Section 3 discusses the advantages of our technique. In Sec-
tion 4, we review current ideas about spatia sensitivity, spatiotemporal sensitivity, eye tracking, eye movements and visua attention. Section
5 covers the implementation details. We demonstrate the usefulness of our algorithms with a practical augmentation of the popular lighting
smulator RADIANCE in Section 6 and present our conclusionsin Section 7.

2 PREVIOUS WORK

Gibson and Hubbold [10] applied perceptual techniquesto compute view independent global illumination by using a tone reproduction oper-
ator to guide the progress of aradiosity algorithm. Their approach differs from ours as we will be focusing on view dependent algorithms.
Most view dependent perceptual techniques that are used to speed up rendering involve the use of a perceptual metric to inform the renderer
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Figure 3: Timing comparison between a reference lighting solution of a complex environment generated using the irradiance caching technique and our
Aleph Map enhanced irradiance cache. Interestingly, the time taken for the perceptual solution remains relatively flat, perhaps because as scene
complexity increases, the tolerance for error aso increases. The time for the perceptual solution includes the time for computing the Aleph Map, which
is small. The irradiance cache is used in the lighting simulator RADIANCE. Calculations were done on a quad processor 500 Mhz Intel Pentium 111
machine.

to stop caculating well before the physical convergence is achieved; that is, whenever the rendered image is perceptually indistinguishable
from afully converged solution.

Bolin and Meyer [3], Meyer and Liu [22], and Myszkowski [23] relied on the use of sophisticated perceptual metrics to estimate perceptual
differences between two images to determine the perceived quality at an intermediate stage of a lighting computation. Based on perceptual
quality, they determined the perceptua convergence of the solution and used it as a stopping condition in their global illumination a gorithm.
These metrics perform signa processing on the two images to be compared, mimicking the response of the human visual system to spatial
frequency patterns and calculating a perceptual distance between the two images. Myskowski uses the Daly Visible Differences Predictor [6]
to determine the stopping condition of rendering by comparing two images at different stages of the lighting solution. Bolin and Meyer used
acomputationally efficient and simplified variant of the Sarnoff Visual Discrimination Model [20] on an upper bound and alower bound pair
of images, resulting in a bounded-error, perceptually-guided algorithm. Both agorithms required repeated applications of the perceptual
error metric at intermediate stages of a lighting solution, adding substantial overhead to the rendering a gorithm.

Ramasubramanian, et al., [26] reduced the cost of such metrics by decoupling the expensive spatial frequency component evaluation from
the perceptual metric computation. They reasoned that the spatial frequency content of the scene does not change significantly during the
global illumination computation step, and precomputed this information from a cheaper estimate of the scene image. They reused the spatial
frequency information during the evaluation of the perceptua metric without having to recalculateit at every iteration of the global illumina
tion computation. They carried out this precomputation from the direct illumination solution of the scene. Their technique does not take into
account any sensitivity loss due to motion and is not well suited for use in dynamic environments. Furthermore, direct illumination evalua
tion is often expensive, especially when area light sources are present in a scene, and hence is not always suitable for precomputation.

Myskowski, et al., [24] addressed the perceptual issues relevant to rendering dynamic environments. They incorporated spatiotemporal sen-
sitivity of the human visual system into the Daly VDP [6] to create a perceptua ly-based Animation Quality Metric (AQM) and used it in
conjunction with image-based rendering techniques [21] to accelerate the rendering of a key-frame based animation sequence. Myskowski’s
framework assumed that the eye tracks all objects in a scene. The tracking ability of the eye is very important in the consideration of spa
tiotemporal sensitivity [7]. Perceptually-based rendering algorithms which ignore this ability of the eye can introduce perceptible error in
visually salient areas of the scene. On the other hand, the most conservative approach of indiscriminate tracking of all the objects of a scene,
as taken by Myskowski's algorithm, effectively reduces a dynamic scene to a static scene, thus reducing the benefits of spatiotemporally-
based perceptua acceleration. The use of AQM during global illumination computation will also add substantial overhead to the rendering
process.

3 OUR APPROACH

Our technique improves on existing algorithms by including not only spatial information but temporal as well. The scen€'s spatiotemporal
error tolerances, held in an Aleph Map, are quickly precomputed from frame estimates of the animation that capture spatial frequency and



motion correctly. We make use of fast graphics hardware to obtain the Aleph Map quickly and efficiently. The map is better because it incor-
porates amodel of visual attention in order to include effects due to ability of the visual system to locate regions of interest.

The Aleph Map can be adapted for use as a perceptual ly-based physical error metric, or asin our application, as an oracle that guides percep-
tual rendering without the use of an expensive comparison operator. By using a perceptual oracle instead of a metric, we incur negligible
overhead while rendering. The next section introduces the background information required to understand the construction of the Aleph

Map.

4 BACKGROUND

This section covers the background relevant to this paper. The first part reviews the spatiotemporal sensitivity of the human visual system
and the second part addresses the attention mechanism of the visua system. For an in-depth discussion of perception in genera, we refer
readers to “Foundations of Vision” by Wandell [30].

4.1 Spatiotemporal Contrast Sensitivity

4.1.1 Contrast Sensitivity

The sensitivity of the human visua system changes with the spatial frequency content of the viewing scene. This sensitivity is psychophysi-
cally derived by measuring the threshold contrast for viewing sine wave gratings a various frequencies [5]. A sine wave grating is shown to
viewerswho are then asked if they can distinguish the grating from a background. The minimum contrast a which they can distinguish the
grating from the background is the threshold contrast. The Contrast Sensitivity Function (CSF) isthe inverse of this measured threshold con-
trast, and is a measure of the sensitivity of the human visual system towards static spatial frequency patterns. This CSF function peaks
between 4-5 cycles per degree (cpd) and fallsrapidly at higher frequencies. The reduced sensitivity of the human visual system to high fre-
quency patterns allows the visual system to tolerate greater error in high frequency areas of rendered scenes and has been exploited exten-
sively [2][3][23][24][26] in the rendering of scenes containing areas of high frequency texture patterns and geometric complexity.

4.1.2 Temporal Effects

The human visua system variesin sensitivity not only with spatia frequency but a so with motion. Kelly [17] has studied this effect by mea
suring threshold contrast for viewing travelling sine waves. Kelly’s experiment used a special technique to stabilize the retinal image during
measurements and therefore his models use the retinal velocity, the velocity of the target stimulus with respect to the retina. Figure 4 summa-
rizes these measurements.
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Figure 4: Velocity dependent CSF, plotted from an equation empirically derived from Kelly’'s sensitivity measurements [7]. The velocities v are
measured in degrees/second.

From Figure 4, we can see that the contrast sensitivity changes significantly with the retinal velocity. Above the retinal velocity of 0.15 deg/
sec, the peak sensitivity drops and the entire curve shifts to the | eft. This shift implies that waveforms of higher frequency become increas-
ingly difficult to discern as the velocity increases. At retinal velocities below 0.15 deg/sec the whole sensitivity curve drops significantly.
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Speeds below 0.15 deg/sec are artificial as the eye naturally moves about dightly even when it isin a steady fixed stare. The measurements
also showed that the sensitivity function obtained at the retinal velocity of 0.15 deg/sec matched with the static CSF function described ear-
lier. This agrees with the fact that the drift velocity of afixated eyeisabout 0.15 deg/sec, and must be taken into account when using Kelly’s
measurement resultsin rea world applications.

4.1.3 Eye Movements

The loss of sensitivity to high frequency spatial patterns in motion gives an opportunity to extend existing perceptually-based rendering tech-
niques from static environments to dynamic environments. The eye, however, is able to track objectsin motion to keep objects of interest in
the foveal region where spatial sensitivity is at its highest. This tracking capability of the eye, also known as smooth pursuit, reduces the ret-
inal velocity of the tracked objects and thus compensates for the loss of sensitivity due to motion.
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Figure 5: Smooth pursuit behavior of the eye. The eye can track targets reliably up to a speed of 80.0 deg/sec beyond which tracking is erratic.
Reproduced from Daly [7].

Measurements by Daly [7] have shown that the eye can track targets cleanly at speeds up to 80 deg/sec. Beyond this speed, the eye is no
longer ableto track perfectly. The results of such measurements are shown in Figure 5. The open circles in Figure 5 show the velocity of the
eye of an observer in atarget tracking experiment. The measured tracking velocity is on the vertical axiswhile the actual target velocity ison
the horizontal axis. The solid linein Figure 5 represents amodel of the eye's smooth pursuit motion.

Evidently, it is crucial that we compensate for smooth pursuit movements of the eye when calculating spatiotemporal sensitivity. The follow-
ing equation describes a motion compensation heuristic proposed by Daly [7]:

Vg = Vv, =min(0.82v, + Vi Viax) @

where v is the compensated retinal velocity, v isthe physical velocity, vy, is 0.15 deg/sec (the drift velocity of the eye), vy, 5 IS 80 deg/sec
(which is the maximum velocity that the eye can track efficiently). The value 0.82 accounts for Daly’s data fitting that indicates the eye
tracks all objects in the visual field with an efficiency of 82%. The solid line in Figure 5 was constructed using this fit. Use of this heuristic
would imply only a marginal improvement of efficiency in extending perceptua rendering algorithms for dynamic environments, but our
method offers an order of magnitude improvement.

4.2 Visual Attention and Saliency

Though the eye’s smooth pursuit behavior can compensate for the motion of the moving objects in its focus of attention, not every moving
object in the world is the object of on€e's attention. The pioneering work of Yarbus [36] shows that even under static viewing conditions not
every object in the viewing field captures visual attention. If we can predict the focus of attention, then other less important areas may have
much larger error tolerances, allowing us to save calculation time on those areas. To accomplish this, we need a mode of visual attention
which will correctly identify the possible areas of visual interest.

Visual attention is the process of selecting a portion of the available visual information for localization, identification and understanding of
objectsin an environment. It allows the visual system to process visual input preferentially by shifting attention about an image, giving more
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attention to salient locations and less attention to unimportant regions. The scan path of the eye is thus strongly affected by visual attention.
In recent years, considerable efforts have been devoted to understanding the mechanism driving visual attention. Contributors to the field
include Yarbus[36], Yantis [35], Tsotsos, et d. [28], Koch and Ullman [18], Niebur & Koch [25], Horvitz & Lengyel [12].

Two general processes significantly influence visual attention, called bottom-up and top-down processes. The bottom-up process is purely
stimulus driven. A few examples of such stimuli are: acandle burning in adark room; ared ball among alarge number of blue balls; or sud-
den motions. In all these cases, the conspicuous visual stimulus captures attention automatically without volitional control. The top-down
process, on the other hand, is a directed volitional process of focusing attention on one or more objects which are relevant to the observer’s
goal. Such goals may include looking for street signs or searching for atarget in acomputer game. Though the attention drawn due to conspi-
cuity may be deliberately ignored because of irrelevance to the god at hand, in most cases, the bottom-up process is thought to provide the
context over which the top-down process operates. Thus, the bottom-up process is fundamental to the visual attention.

We disregard the top-down component in favor of a more general and automated bottom-up approach. In doing so, we would be ignoring
non-stimulus cues such as a “look over there” command given by the narrator of a scene or shifts of attention due to familiarity. Moreover, a
task driven top-down regime can always be added later, if needed, with the use of supervised learning [14].

Itti, Koch and Niebur [13][14][15][16] have provided a computational model to this bottom up approach to visual attention. We chose this
model because the integration of this model into our computational framework required minimal changes.The model is built on a biologi-
cally plausible architecture proposed by Koch and Ullman [18] and by Niebur and Koch [25]. Figure 6 graphically illustrates the model of
visual attention.

The computational architecture of this model is largely a set of center-surround linear operations that mimic the biologica functions of the
retina, lateral geniculate nucleus and primary visual cortex [19]. These biologica systems tend to have a receptive field that triggers in
response to changes between the center of the field and its surroundings. The center-surround effect makes the visua system highly sensitive
to features such as edges, abrupt changes in color and sudden movements. This model generates feature maps using center surround mecha
nisms for visually important channels such as intensity, color and orientation. A feature map can be considered to represent the conspicuity
at different spatia scales. Each of these features for each of these channels is computed at multiple scales and then processed with an opera
tor, N(.), that mimics the lateral inhibition effect. That is, features that are similar and near each other cancel each other out. Feature maps
that have outstanding features are emphasized while feature maps which have competing features or no outstanding features are suppressed.
For example, asingle white square in adark background would be emphasized, but a checkerboard pattern would be suppressed. The sum of
the feature maps for each channel after they have been processed for lateral inhibition resultsin a conspicuity map. The conspicuity maps are
processed themselves for |ateral inhibition and then summed together to obtain a single saliency map that quantifies visual attention. The
model of Itti, et al., has been tested with real world scenes and has been found to be effective [13].

The model of Itti, Koch and Niebur does not include motion as a conspicuity channel. We include motion as an additional conspicuity chan-
nel in our implementation. We added in the motion with minimal changes to the attention model. The next section describes the process of
obtaining the spatiotemporal error tolerance map by building on the knowledge presented here. The two components necessary for spa
tiotemporal sensitivity calculation, motion and spatial frequency are computed, as is the saliency map necessary for quantifying visual atten-
tion.

5 IMPLEMENTATION

Our process begins with arapid image estimate of the scene. Thisimage estimate serves both to i dentify areas where spatiotemporal sensitiv-
ity islow and also to locate areas where an observer will be most likely to look. Such an image may be quickly generated using an OpenGL
rendering, or aray traced rendering of the scene with only direct lighting. We have typically used OpenGL to render estimates for our work
and use the estimate only for the computation of the Aleph Map and the saliency map. Before they are used, the image estimates are con-
verted from RGB into AC,C, opponent color space, using the transformation matrices givenin [2].

Our computation proceeds in four mgjor steps: 1) motion estimation, 2) spatial frequency estimation, 3) saliency estimation and 4) comput-
ing the Aleph Map. We will discuss each of these steps in detail in the following section. We use the following notation in our description. A
capital letter suchas‘A’ or 'C;’ or *C,’ denotes a channel and a number in parenthesis denotes the level of scale. Thus, ‘A(0)' would corre-
spond to the finest scale of a multiscale decomposition of the achromatic channel of the AC,C, color space. For conciseness, a per-pixel
operation, e.g. A(X,y) isimplied. Appendix A graphically depicts an overview of the process.

5.1 Motion Estimation

Velocity is one of the two components needed to estimate the spatiotemporal sensitivity of the human visual system. We implemented two
different techniques to estimate image plane velocity. One makes use of the image estimate alone and the other makes use of additional
information such as geometry and knowledge of the transformations used for movement. The latter model is gppropriate for model-based
image synthesis applications while the former can be used even when only the image is available, as in image-based rendering. In both of
these techniques, the goal is first to estimate displacements of pixels AP(x,y) from one frame to another, and then to compute the image
velocity from this pixel displacement, using frame rate and pixel density information.
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Figure 6: An outline of the computational model of visual attention. An abridged version of the process is shown for the achromatic intensity channel.
The conspicuity maps of intensity, color, orientation and motion are combined to obtain the saliency map. Bright regions on the map denote areas of
interest to the visual system.



5.1.1 Image Based Motion Estimation

Image-based motion estimation is useful only when consecutive images are available. In this technique, the achromatic ‘A’ channels of two
consecutive image frames are decomposed into multiscale Gaussian pyramids using the filtering method proposed by Burt and Adelson [4].
The Gaussian pyramid created in this section may be reused later to estimate both saliency and spatid frequency.

We now briefly describe the census transform [37], alocal transform that is used to improve the robustness of motion estimation. The census
transform generates a bitstring for each pixel that is a summary of the local spatial structure around the pixel. The bits in the bitstring corre-
spond to the neighboring pixels of the pixel under consideration. The bit is set to 0 if the neighboring pixel is of lower intensity than the pixel
under consideration. Otherwise, it is set to 1. For example, in the 1D case, suppose we have a pixel ‘5 surrounded by other pixels
{1,6,5,1,7}. The census transform for the pixel ‘5" would then be “0101.” Performing the census transform allows us to find correspondences
in the two images by capturing both intensity and local spatial structure. It also makes motion estimation effective against exposure varia-
tions between frames (if areal world photograph was used). Comparisons can then be made between regions of census transformed images
by cal culating the minimum Hamming distance between two bit strings being compared. The Hamming distance of two bit strings is defined
as the number of bits that are different between the two strings and can be implemented efficiently with asimple XOR and bit counting.

The A(0,1,2) levels of the pyramid are passed through the census transform. The three levels were picked as a trade off between computa-
tional efficiency and accuracy. An exhaustive search would be most accurate but slow, and a hierarchical search would be fast but inaccu-
rate. We perform an exhaustive search on the census transformed A(2), which is cheap due to its reduced size, to figure out how far pixels
have moved between frames. Subsequently, the displacement information is propagated to level 1 and athree-step search heuristic (see page
104 of Tekalp [27]) is used to refine displacement positions iteratively. The three-step heuristic is a search pattern that begins with a large
search radius that reduces up to three times until alikely match isfound. The results of level 1ispropagated to level 0 and athree-step search
again conducted to get our fina pixel displacement value. Our implementation estimated motion for two consecutive 512x512 framesin the
order of 10 seconds per frame on a 500 Mhz Pentium |11 machine.

5.1.2 Model Based Motion Estimation

Model-based motion estimation (Agrawala, et. al.[1]) is useful when geometry and transformations of each object in the scene are available.
In this technique, we first obtain an object identifier and point of intersection on the object for every pixel in frame N, using either ray casting
or using OpenGL hardware projection (Wallach et. al. [29]). We advance the frame to N+1, apply the dynamic transformation to the moving
objects in the scene, and project each image point onto the viewing plane corresponding to the (N+1)th frame. The distance of pixel move-
ment is the displacement needed for calculating the image velocity. Due to the discretization of the color buffer (256 values per color chan-
nel), the OpenGL based motion estimation had discretization artifacts. For simplicity’s sake, we used the ray casting motion estimation data
for motion estimation. Our implementation of the ray casting scheme ran in 6 seconds on a Pentium I11 500 Mhz machine for a 512x512
image of a 70,000 polygon scene.

Figure 7 compares the two motion estimation techniques. One drawback of using an image-based technique is that the algorithms cannot cal-
culate pixel disparities across regions of uniform color. The model-based mation estimation technique is unaffected by the lack of textures
and is less noisy than image based techniques.

We convert the pixel displacements AP(x,y) computed by either of the two techniques into image plane velocities v, using the following
equation.

- APXY)
V(X Y) Fixels Per Degree Frames per Second 2

In our setup, our values were 30 frames per second on a display with a pixel density of 31 pixels per degree.

5.2 Spatial Frequency Estimation

The remaining component needed to cal culate spatiotemporal error sensitivity is the spatial frequency content of the scene. We applied the
Difference-of-Gaussians (Laplacian) Pyramid approach of Burt and Adelson [4] to estimate spatial frequency content. One may reuse the
Gaussian pyramid of the achromatic channel if it was computed in the motion estimation step. Each level of the Gaussian pyramid is upsam-
pled to the size of the original image and then the absol ute difference of the levels is computed to obtain the seven level bandpass L aplacian
pyramid, L(0..6).

L(i) = [A@) —Adi + 1) ©)

The Laplacian pyramid has peak spatial frequency responses at 16, 8, 4, 2, 1, 0.5 and 0.25 cpd (assuming a pixel density of around 31 pixels
per degree). Using amethod similar to that followed by Ramasubramanian, et al., [26], each level of the Laplacian pyramid is then normal-
ized by summing all the levels and dividing each level by the sum to obtain the estimation of the spatial frequency content in each frequency
band:
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Figure 7: Comparison of Image-Based and Model-Based Motion Estimation. Two consecutive frames (&) and (b) are shown with the boomerang moving
to the right from (&) to (b). Motion-blurred image in (c) shows the direction of motion. The results obtained using image-based motion estimation are
shown in (d) and using model -based motion estimation is shown in (€). Model-based motion estimation (€) is less noisy and more accurate than image-
based motion estimation (d), which explains why (€) has a smooth motion estimation and (d) has a splotchy motion estimation.
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5.3 Saliency Estimation

The saliency estimation is carried out using an extension of the computational model developed by Itti, et al ., [13][16]. Our extension incor-
porates motion as an additional feature channel. The saliency map tells us where attention is directed to and is computed via the combination
of four conspicuity maps of intensity, color, orientation and motion. The conspicuity maps are in turn computed using feature maps at vary-
ing spatial scales. One may think of features as stimuli at varying scales, conspicuity asasummary of a specific stimulus at al the scale lev-
els combined and saliency as a summary of all the conspicuity of al the stimuli combined together. Figure 6 illustrates the process visually.

Feature maps for the achromatic (A) and chromatic (C4,C,) channels are computed by constructing image pyramids similar to the L aplacian
pyramid described in the previous section. A Gaussian pyramid is constructed for each channel and following Itti, et al., we obtain the fea-
ture maps in the following manner:

X(center, surround) = |X(center) — X(surround)| (5

where X stands for A,C4,C, and (center,surround) € {(2,5), (2,6), (3,6), (3,7), (4,7), (4,8)}. The numbers correspond to the levels in the
Laplacian pyramid.

Motion feature maps are created by applying a similar decomposition to the velocity map generated in the motion estimation section. We
perform the computation this manner in order to minimize the changes to the computational model of Itti, et al.

Orientation feature maps are obtained by creating four pyramids using Greenspan's [11] filter on the achromatic channel. Greenspan’s filter
was tuned to orientations of (0, 45, 90 and 135 degrees) and indicates what components of the image lie a ong those orientations. We gener-
ate atotal of 48 feature maps, 6 for intensity at different spatial scales, 12 for color, 6 for motion, and 24 for orientation for determining the
saliency map.
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Next, we combine these feature maps to get the conspicuity maps and then combine the conspi cuity maps to obtain asingle saliency map for
each image frame. We use a global non-linear normalization operator, N(.), described in [16] to simulate lateral inhibition and them sum the
maps together to perform this combination. This operator carries out the following operations:

1. Normalize each map to the same dynamic range
2. Find the global maximum M and the average m of al other local maxima
3. Scale the entire map by (M-m)?

The purpose of the N(.) operator is to promote maps with significantly conspicuous features while suppressing those that are non-conspicu-
ous. Figure 8 illustrates the action of the N(.) operator on three generic maps.

c N(A) N(B) N(C)

Before N(.) Operator (a) After N(.) Operator (b)

Figure 8: Action of the N(.) lateral inhibition operator on three generic maps A, B and C. The left half (a) shows the maps after step 1. Theright half (b)
shows the maps after steps 2 and 3. Map A and C have competing signals and are suppressed. Map B has a clear spike and is therefore promoted. In this
way, the N(.) operator roughly simulates the lateral inhibition behavior of the visual system. When N(.) is applied to festure maps, A,B,C represent the
levels of the corresponding L aplacian pyramid of the feature. When applied to conspicuity maps, A,B and C represent channels such asintensity or color.

We apply the N(.) operator to each feature map and combine the resulting maps of each channel’s pyramid into a conspicuity map. We now
get the four conspicuity maps of intensity, color, orientation and motion. We then compute the saliency map by applying N(.) to each of the
four conspicuity maps and then sum them together. We will call the saliency map S(x,y) with the per pixel saliency normalized to a range of
(0.0... 1.0) where 1.0 represents the most salient region and O represents the least salient region in the image. In our implementation, the
saliency computation for a 512x512 image frame is completed in 4 seconds on a 500 Mhz Pentium |11 machine. Figure 9 shows the saliency
map computed for one of the animation image frames

Image (a) Saliency Map (b) Superimposed (c)

Figure9: Saliency map visudization (see color plate). Inimage (a) the yellow and blue top on thel&ft is spinning rapidly. The entire image in motion due
to changes in camera position. The computed saliency map is shown in (b) and (c) graphically depicts the modulation of the saliency map with theimage.
Brighter areas denote areas of greater saliency. Attention is drawn strongly to the spinning top, the paintings, the ceiling sculpture, the area light and the
couch. These areas undergo strict motion compensation. The floor and ceiling are not as salient and undergo | ess compensation.
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5.4 Aleph Map Computation

At this stage, we will have the weights for spatial frequency from the bandpass responses R;(x,y) (equation 4) with peak frequencies p; =
{16,8,4,2,1,0.5,0.25} cycles per degree, the image plane pixel velocities v;(x,y) (equation 2), and the saliency map S(x,y). We now have all
the necessary ingredients to estimate the spatiotemporal sensitivity of the human visual system. The first step is to obtain the potential opti-
mal retinal velocity vg from the image plane velocity v, with the use of the saliency map S(x,y):

VR(XY) = V(X y) =min(S(X, ¥) - V;(X, ¥) *+ Vigin Viax) (6)

where vy, isthe drift velocity of the eye (0.15 deg/sec [17]) and vy, iS the maximum velocity beyond which the eye cannot track moving
objects efficiently (80 deg/sec [7]). It isadight modification of equation (1), where we replace the 82% tracking efficiency with the saliency
map. We assume here that the visual system’s tracking efficiency islinearly proportional to the saliency. We use this velocity to compute the
spatiotemporal sensitivities at each of the spatia frequency bands p;. For this computation, we use Kelly’s experimentally derived contrast
sengitivity function (CSF):

2 —(4ncyp)/Pmax
CSF(p,vg) = k- Cy:Cy- Vg~ (21pcy) € 7
k =61+ 7.3|Iog((c2 . VR)/3)|3 (8)
Pmax = (459)/(02 : VR+ 2) (9)

Following the suggestions of Daly [7], we set c;=1.14, ¢;=0.67 and c,=1.7. These parameters are tuned to CRT display luminance of 100 cd/
2
m-.

The inverse of the CSF intuitively gives us an elevation factor that increases our tolerance of error beyond the minimum discernible lumi-
nance threshold in optimal viewing conditions. We calculate this elevation factor for each of the peak spatia frequencies of our Laplacian
pyramid p; € {16,8,4,2,1,0.5,0.25} cpd:

CSFyax(VR) .
- if (pi > pmax)
fi(piaVR) - CSF(piaVR) (10)
10 otherwise
CSFy, (Vi) = Pmax (11)
Max\ 'R 211201

where vg isthe retinal velocity, CSF is the spatiotemporal sensitivity function, CSFy,4(Vg) is the maximum value of the CSF at velocity Vg,
and pyax IS the spatial frequency at which this maximum occurs.

Findly we compute the Aleph Map, the spatiotemporal error tolerance map, as aweighted sum of the elevation factors f;, and the frequency
responses R; at each location (x,y):

R(xy) = YR xf (12

The computation of equations (10) - (12) are similar to the computation of the threshold elevation map described in [26] with the difference
that the CSF function used here is the spatiotemporal CSF instead of the spatial only CSF. Figure 10 shows the error tolerance map X (X,y)
for an image frame of a dynamic scene. This map captures the sensitivity of the human visual system to the spatiotemporal contents of a
scene. X (X,y) has values ranging from 1.0 (lowest tolerance to error) to at most 250.0 (most tolerance to error). The total time taken to com-
pute the Aleph Map, including motion estimation, saliency estimation and error tolerance computation is approximately 15 seconds for a
512x512 image on a Pentium I11 550 M hz machine,

In the next section, we show the gpplication of the Aleph Map to efficiently compute global illumination in adynamic environment.

6 APPLICATION AND RESULTS

The Aleph Map developed in the previous sections is general. It operates on image estimates of any animation sequence to predict the rela
tive error tolerance at every location of the image frame and can be used to efficiently render dynamic environments. Similar to earlier, per-
ceptually-based acceleration techniques [2][3][23][26], we can use this map to adaptively stop computation in a progressive global
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Image (a) Aleph Map (b)

Figure 10: Spatiotemporal sensitivity visuaization (see color plate). Image (&) and its corresponding error tolerance map, the Aleph Map (b). Note that
the spinning top in the bottom right has reduced tolerance to error although it has textures and is moving. Thisis due to the information introduced by the
saliency map, telling the algorithm to be stricter on the top because the viewer will more likely focus attention there. The red beams are treated strictly
because there are no high frequency details.

illumination algorithm. To demonstrate the wider usefulness of this map, we have applied the map to improve the computational efficiency
of RADIANCE.

The irradiance caching agorithm is the core technique used by RADIANCE to accelerate global illumination and is well documented by
Ward [31][33][34]. As suggested by its name, the irradiance caching technique works by caching the diffuse indirect illumination component
of global illumination [34]. A global illumination lighting solution can be calculated as the sum of a direct illumination term and an indirect
illumination term. Indirect illumination is by far the most computationally expensive portion of the calcul aion. Irradiance caching addresses
this problem by reusing irradiance values from nearby locations in object space and interpolating them, provided the error that results from
doing so is bounded by the evaluation of an ambient accuracy term. The ambient accuracy term opqc Varies from 0.0 (no interpolation,
purely Monte Carlo smulation) to 1.0 (maximum ambient error allowed). Hence, by reusing information, the irradiance caching algorithm is
faster than the standard Monte Carlo simulation of the global illumination problem by severa orders of magnitude, while at the same time
providing a solution that has bounded error.

The ambient accuracy term is user supplied and gives a measure of the tolerated error. RADIANCE uses this term uniformly over the entire
image, and thus does not take advantage of the variation of sensitivity of the human visual system over different parts of the image. Our
application of the Aleph Map to the irradiance caching agorithm works by modulating the ambient accuracy term on a per pixel basis.
Hence, if the Aleph Map alowsfor greater error for that pixel, alarger neighborhood is considered for interpol ation and hence the irradiance
cache is used more efficiently. In order to use the Aleph Map with the irradiance cache, we need to use a compression function to map the
values of X(x,y) onto (oiacc.- 1.0) for use as a perceptual ambient accuracy term. The following equation accomplishes this compression:

- —% 3
1
R—1+——

Xace

where X, is the adapted map used in lieu of the original ambient accuracy term oip .. The X—1 term merely accounts for the fact that X
starts from 1.0 and increases from there. The equation ensures that X, is bounded between oia o and 1.0. Hence, in regions where attention is
focused and where there are no high frequencies to mask errors, X ;=0 and in areas where the errors will be masked, X, asymptotically
approaches 1.0. Computation of X, is carried out only once, at the beginning of the global illumination computation of every frame. How-
ever, should astricter bound be desired, one may opt to recompute X (x,y) and hence recompute X , at intermediate stages of computation.

We demonstrate the performance of our model using atest scene of a synthetic art gallery. The scene contains approximately 70,000 primi-
tives and 8 area light sources. It contains many moving objects, including bouncing balls, a spinning top and a kinetic sculpture that demon-
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strates color bleeding on a moving object. Figure 11 compares two still frames from the reference solution and the perceptually accelerated
solution.

Reference Solution (a) Perceptual Solution (b)

Figure 11: Image comparison from frame 0 of the Art Gallery sequence (see color plate). The image on the | ft is the reference image and the image on
theright is the image generated with the perceptually enhanced irradiance cache technique.

Figure 12 shows the root mean square error between two equal time solutions and the reference solution in Figure 11 (a). In Figure 12, the
left image relaxes the ambient accuracy to 1.0 throughout the image uniformly and the right has a base ambient accuracy of 0.6 tolerable
error modulated by the Aleph map. The Aleph Map guided solution has alower base error tolerance, meaning that where it is important, the
algorithm spends more time on cal culating the solution.

Figure 13 shows the performance improvement resulting from the use of the Aleph Map. In most of the frames, we achieve a 6x to 8x
speedup over standard irradiance caching. Using spatial factors only we achieve a 2x speedup. A marginal improvement over spatial sensi-
tivity is obtained if the Day motion compensation heuristic is used in conjunction with spatiotemporal sensitivity. Note that all these
improvements are compared to the speed of the unaugmented irradiance caching technique, which is an order of magnitude more efficient
than simple path tracing techniques. In addition, the speedup was found to be largely independent of the number of samples shot. Another
video sequence, the pool sequence, was found to exhibit a similar speedup of 3x to 9x speedup depending on the amount of moving objects
and textures in parts of the sequence. The images for the pool sequence are found in Figure 14.

In this demonstrati on, we maintained good sampling protocols. The sampling density for each irradiance value isleft unchanged, but theirra-
diance cache usage is perceptually optimized. Figure 15 shows the locations in the image at which irradiance values were actually computed.
Bright spotsindicate that an irradiance value was cd culated while dark regions are places where the cache was used to obtain an interpolated
irradiance value. This also explains why the speedup is independent of the number of samples shot, because the spacing of the irradiance
cache is optimized, not the number of samples per irradiance value.

In static scenes where only the camera moves, the irradiance cache can be maintained over consecutive frames. Our technique was found to
perform well even when such interframe coherence is used. Our results from a proof of concept test (Figure 16) show that even under this sit-
uation the use of X, improves the computation speed.

In viewing the Art Gallery sequence, it was discovered that repeated viewings can cause the viewer to pay more attention to unimportant
regions. In doing so, the viewer deliberately chose to ignore attention cues and focus on unimportant areas such as the ceiling. This intro-
duces a top-down behaviora component to visual attention that is not accounted for in our model. The pool sequence had unambiguous
salient features (the pool balls) and was not as susceptible to the replay effect.

Visual sensitivity falls rapidly as afunction of fovea eccentricity [8]. An experiment incorporating foveal eccentricity into the model was
performed, and significant speedup was achieved. However, the animations generated with the use of foveal eccentricity tended to be useful
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Uniform error tolerance (a) Aleph Map guided error tolerance (b)

Figure 12: Equal time error comparison. The image (a) on the left shows the root mean square error between the reference solution and an image with
uniform ambient accuracy of 1.0. The image (b) on the right shows the root mean sguare error between the reference solution and an Aleph map guided
solution with a base ambient accuracy of 0.6. Both solutions took approximately the same amount of time to render. White indicates a larger error and
black indicates less error from the reference solution.

only in the first few runs of the animation, as viewers tended to look away from fovea regions once they had seen the animation a number of
times.

Animportant point to note isthat the Aleph Map is general and adaptable. For example, it can be converted to aphysically based error metric
[26] viaa multiplication with the luminance threshold sensitivity function.

AL = R (X, y) X ALqy, (L) (14)

where AL is the luminance threshold, L is the adaptation luminance calculated as the average luminance in a 1 degree diameter solid angle
centered around the fixating pixel and ALty is the threshold vs. intensity function defined in Ward-Larson, et al. [32]. In video compression
and telephony, it can be used to optimize compression simply by compressing more rigorously when X (x,y) is high and less when it is low.
In geometric level of detail selection, one may opt to use coarser models when spatiotemporal error tolerance is high and a detailed model
where tolerance is low.

In this paper, atwo part vision model is presented to the graphics community, the first part quantifying visual attention and the second part
quantifying spatiotemporal error tolerance. Both parts were validated extensively by their authors as described in their respective papers
[71[13]. In order to examine the effectiveness of our hybrid model, the Aleph map was tested by calculating the luminance threshold using
equation (14) for each pixel in the reference image and multiplying the threshold with a unit random number. The resulting noise map was
added to each frame of the reference solution to obtain the sub-threshold noisy image sequence which was viewed by a panel of observersfor
discrepancy. The noise was found to be visible when still frames are viewed but not when the images are in motion during a video sequence.
Figure 17 outlines the process used to test the Aleph Map. The Aleph map assisted irradiance caching was also tested on other scenes with
comparable results and speedups.

Our implementation does not include color and orientation in the sensitivity computation, although those factors are considered in the com-
putational model of visual attention. We aso do not implement contrast masking (Fewerda, et. a. [9]) as it is not well understood how
motion affectsit. Omitting it simplifies our model and makes it more conservative, but it is better to err on the safe side. We also have chosen
to treat each component of the visual system as multiplicative with each other and the results have shown that it works, but the human visual
system isnonlinear and has vagaries that would be hard to model.

7 CONCLUSIONS

A modé of visual attention and spatiotemporal sensitivity was presented that exploited the limitations of the human visual system in perceiv-
ing moving spatial patterns. When applied to animation sequences, results indicated an order of magnitude improvement in computation
speed. The technique has many applications and can be used in image based rendering, global illumination, video compression and video
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Speedup Comparison
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Figure 13: Speedup over Irradiance Cache for the Art Gallery sequence. The total number of ray triangle intersections per pixel are compared. The Aleph
Map enhanced irradiance cache performs significantly better (6-8x) than the unaugmented irradiance cache. Spatial factors contribute to an average of 2x
speedup while Day (full) motion compensation gives marginally better results. The spatial only solution corresponds to applying the technique of
Ramasubramanian et. al. [26] (less the masking term) to irradiance caching. These speedup factors are multiplied to that provided by irradiance caching,
a technique far faster than straight Monte Carlo pathtracing. Image frames were computed using an ambient accuracy setting of 15% and an ambient
sampling density of 2048 samples per irradiance value at aresolution of 512x512. Note that with these settings the reference solution is almost but not
completely converged. For comparison purposes, a reference solution and a perceptually accelerated solution are rendered at a higher resolution
(640x480) and a sampling density of 8192 samples per irradiance value (Aleph Map Hi Res). As seen on the graph (Aleph Map vs. Aleph Map Hi Res),
the acceleration is largely independent of the number of samples shot, because the perceptual solution changes only the spacing of the samples but not the
sampling density.

telephony. This work will be useful and beneficial in all areas of graphics research where spatiotemporal sensitivity and visud attention are
used.
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Figure 14: Pool Sequence Visua Comparison. The top row shows images from the pool sequence computed using plain vanilla irradiance caching. The
middle row was rendered with Aleph Map enhanced irradiance caching, except that the retinal velocity computed using equation (1). The bottom row
shows the images rendered using the Aleph Map as described in this paper, with the retinal velocity derived using the saliency map. The full
compensation offers an average of a 3x speedup over the reference solution. The sdiency compensation offers an average of 6x speedup over the
reference solution.



Reference Sampling Density (a) Perceptual Solution Sampling Density (b)

Figure 15: Sampling patterns for frame O of the Art Gallery sequence. The bright spots indicate where the irradiance value for the irradiance cache is
generated and the dark spotsindicate where an interpolated irradiance value is used.
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Figure 16: Timing comparison with interframe coherence. Coherence is achieved by flushing the irradiance cache when the age reaches 10 frames. The
spikes denote when a cache filling operation is performed. The X Map enhanced irradiance cache (even when no coherence is available, e.g. frame 0)
performs better than the irradiance cache with interframe coherence.
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Reference Solution (a)
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Enlarged version of Noisy Reference Solution (d)

Figure 17: The Aleph Map was tested by using the reference solution (a) to construct a sub-threshold noise map (b) and adding the two to obtain a‘noisy
reference solution’ (c) (see color plate). The process is repeated for al frames of the reference solution. The noise can be seen in (d) when theimage is
till but is difficult to discern during a video sequence of the noisy reference solution.
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Appendix A - Flowchart of Aleph Map Computation
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