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ABSTRACT

We introduce a new perceptual metric for efficient, high quality, global illumina-

tion rendering. The metric is based on a rendering-by-components framework in which

the direct, and indirect diffuse, glossy, and specular light transport paths are separately

computed and then composited to produce a high quality image. The metric predicts

the perceptual importances of the computationally expensive indirect illumination com-

ponents with respect to image quality. To develop the metric we conducted a series of

psychophysical experiments in which we measured and modeled the perceptual impor-

tances of the components. An important property of this new metric is that it predicts

component importances from inexpensive estimates of the reflectance properties of a

scene, and therefore adds negligible overhead to the rendering process. This perceptual

metric should enable the development of an important new class of efficient global-

illumination rendering systems that can intelligently allocate limited computational re-

sources, to provide high quality images at interactive rates.
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Chapter 1

Introduction

Global illumination effects, while necessary for improved realism, are often omitted

because of their high computational cost. Traditionally, global illumination simulations

have only been available from computationally intensive off-line systems or low quality

interactive alternatives. The goal of our research is to enable the production of high

quality global illumination renderings at interactive rates by approaching the rendering

problem from a perceptual standpoint.

We propose that an efficient approach to providing global illumination effects is to

decompose the global illumination simulation into direct and indirect components. By

quantifying the perceptual importance of each of these components, we can construct

a perceptual quality metric that can be used to efficiently allocate computational re-

sources and maximize image quality within system constraints. We ultimately envision

an adaptive system which attempts to predict the relative importance of the pure indirect

components, and adaptively allocates resources to their independent simulation before

compositing with a direct illumination solution for display. Such a system is schemati-

cally shown in Figure 1.1. In this system, viewpoint and scene specific material statistics

are obtained during the initial direct illumination simulation (step 1). These statistics are
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Step 1: 

Gather viewpoint-specific material 

statistics while computing direct 

illumination solution.

Step 2: 

Compute indirect importance values 

of indirect reflection components.

Step 3: 

Determine resource allocation.

Indirect

Diffuse

Indirect

Specular
Indirect

Glossy

Indirect

Diffuse
Step 4: 

Render indirect components

Indirect

Diffuse
Indirect

Specular

Indirect

Glossy

Step 5: 

Composite and display

Indirect
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Specular

Indirect

Glossy

Direct

Figure 1.1: Using the perceptually based, adaptive rendering system system we propose,

material statistics gathered during a direct illumination pass guide resource allocation for

the independent approximation of indirect illumination components. A direct illumina-

tion solution in combination with approximated indirect illumination components are

composited to produce an optimal global illumination image given an overall resource

budget.
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then filtered through a perceptual metric in order to predict the relative importance an

actual observer would assign to each indirect component (step 2). The optimal alloca-

tion of computational resources is found using the relative perceptual importances and

prior knowledge of how each indirect illumination approximation technique converges

over time (step 3). Finally, the indirect components are computed using the computa-

tional resources assigned (step 4), and composited with the direct illumination solution

before being displayed (step 5). This entire process would be repeated every frame in

an interactive system, although evaluation of the perceptual metric and computational

breakup optimization might benefit from being run asynchronously in order to minimize

temporal artifacts which may arise.

In order to develop the required perceptual metric for a rendering by components

framework, we first conducted a series of experiments in which subjects ranked the

quality of global illumination images rendered using different combinations of direct

and indirect components. Using the data provided by these experiments, we derived a

ranking of the perceptual importance of each of the components. We then constructed

a model that can predict these importance values by measuring the physical reflectance

properties of the objects visible in a particular image. We formulated a perceptual metric

that can be used to predict the visual quality of different global illumination renderings

from knowledge of the physical scene characteristics and the illumination components

used in the rendering. Finally, while we have yet to build a working implementation of

our proposed rendering by components framework, we explored various approaches to

performing triage in order to determine the optimal resource allocation for rendering the

various indirect reflection components.

We believe this new metric will enable the development of an important new class

of efficient global-illumination rendering systems that can intelligently allocate com-
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putational resources between the components of the global illumination simulation to

provide high quality renderings at interactive rates.

Chapter two reviews previous perceptually-based rendering techniques and chapter

three introduces our novel rendering by components approach. Chapter four describes

the perceptual experiments that were conducted and the process by which resulting data

is used to compute image quality and indirect component importance values. In chapter

five we discuss the process by which we developed a series of perceptual metrics capable

of predicting indirect component importance values using material statistics. Finally,

chapter six explores the steps that remain before the proposed rendering by components

framework can be realized.



Chapter 2

Previous Work

This chapter reviews previous perceptually based attempts to accelerate rendering sys-

tems. Existing work in the field falls into three categories: (1) algorithms that leverage

the compression of luminance values resulting from the application of tone mapping

operators, (2) more sophisticated rendering techniques for static environments based on

complex visual system metrics, and (3) a recent set of work that takes advantage of

limitations of the human visual system with respect to motion when rendering static

walkthrough sequences and dynamic environments. Each of these sections will be dis-

cussed in turn.

2.1 Tone Reproduction in Rendering

The human visual system is able to perceive luminance values between 10−5 to 105 cd
m2 ,

while conventional CRT and LCD displays can only reproduce luminance values be-

tween approximately 1 and 100 cd
m2 . Tone reproduction operators have been developed

to map real world luminance values onto display luminance values, taking into account

the limits of the particular display device and the visual state of the scene and display

5
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observers. This mapping is applied such that the visual experience of viewing the dis-

played image is as close as possible to the experience of a standard observer viewing the

actual scene.

Various tone reproduction operators, which strive to match overall brightness [TR93]

or apparent contrast and visibility [War94], have been developed. Considerable research

on tone-mapping operators exists but goes beyond the scope of this thesis. Ramasub-

ramanian [Ram00] provides an excellent summary of such work. Adaptive rendering

systems benefit greatly by using tone-mapped screen luminance values instead of raw

radiance values for refinement criteria, since large variance in raw samples is often visu-

ally undetectable once tone mapped due to the inherent dynamic range compression that

takes place. Using tone-mapped luminance values allows adaptive techniques to avoid

wasting computational effort in refining such visually undetectable noise.

Tamstorf and Jensen [TJ97] incorporated a simple tone reproduction operator into

an adaptive sampling technique, which used confidence intervals [Pur87] in order to

remove nonuniformly distributed noise resulting from Monte Carlo sampling. By con-

tinuing sampling until displayed luminance values are within a given tolerance of an

estimate, they were able to reduce noise and achieve homogeneous image quality. The

authors presented this acceleration technique as an alternative to computationally inex-

pensive filtering techniques because filtering invariably introduces unpredictable errors

in the form of blurring. Unfortunately, the drawback of any approach based on tone-

mapping operators is that results should not be used with display types which have a

different dynamic range.

Gibson and Hubbold [GH97] incorporated Tumblin and Rushmeier’s tone-mapping

operator [TR93] into their progressive radiosity algorithm. They developed a method

that estimates ambient illumination of a scene in order to establish a view-independent
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real-world adaptation level necessary for applying the tone-mapping operator. Path ra-

diance values are first converted to displayed color values. A nonlinear transformation

function then converts these values from a quantitatively linear scale (CIE XYZ) to the

perceptually linear domain (CIE LUV). At this point they are able to use a perceptually

based, just noticeable difference (JND) threshold to terminate patch refinement by com-

puting the Euclidean distance between colors. Similar applications of the tone-mapping

operator and JND thresholds are used to optimize form-factor computation and a poste-

riori mesh optimization portions of their radiosity algorithm.

Gibson and Hubbold [GH00] improved on their previous work [GH97] by devel-

oping a voxel-based, uniform grid structure for accelerating visibility testing during ra-

diosity simulations. They applied a perceptual technique that identified energy transfers

not adversely effected by this efficient but inexact alternative to traditionally computa-

tionally expensive form-factor computation. They found that 98% of energy transfers

performed during the course of a radiosity simulation do not require accurate visibility

testing, resulting in a 50 times speedup without a reduction in image quality.

Hedley et. al. [HWP97] applied a similar tone reproduction metric to that used by

Gibson and Hubbold [GH97] in order to form a perceptual basis for thresholding when

discontinuity meshing during the adaptive subdivision stage of their radiosity algorithm.

Using this technique, they were able to remove subdivisions in areas of low illumination,

while leaving most subdivisions in brighter regions where shadow boundaries are more

noticeable. This produces more compact meshes necessary for interactive radiosity and

dynamic mesh updating techniques, while limiting the introduction of visible artifacts.

Walter et. al. [WHSG97] took advantage of the nonlinear response of the human

visual systems (HVS) to luminance changes in the mesh decimation phase of their view-

independent density estimation technique. By applying a simple tone-mapping operator
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in order to obtain display luminance values, a conservative initial mesh is progressively

decimated by removing vertices provided that the resulting change in luminance is below

a perceptually based threshold. Walter et. al. formalize this step in a manner that allows

the reuse of previous geometric simplification techniques. Reduced meshes maintain

as much accuracy and detail as possible, while being small enough to be displayed at

interactive rates.

Prikryl and Purgathofer [PP99] developed a perceptually based termination heuris-

tic for accelerating stochastic radiosity algorithms. The authors were not satisfied with

the technique presented by Myszkowski [Mys98], which used a representative set of

viewpoints, and the Daly [Dal93] visual difference predictor (VDP), to establish a ter-

mination criterion for radiosity techniques. VDP’s encapsulate advanced models of the

human visual system, and will be discussed in Section 2.2. They argue it is difficult to

construct small, representative sets that minimize VDP computational overhead, while

containing enough representative viewpoints necessary for accurate evaluation of ter-

mination criteria. They developed a true view-independent technique for terminating

radiosity simulations, using Gibson and Hubbold’s [GH97] method for estimating am-

bient scene illumination in conjunction with the tone-mapping operators of Tumblin and

Rushmeier [TR93] or Ward [War94].

Prikryl and Purgathofer present a heuristic that predicts the iteration at which maximum-

displayed luminance change falls below a perceptually based threshold, using interpo-

lated sample data. While this technique works fairly well, they found pixel computa-

tions with high initial variance were terminated too quickly, while their approximation

heuristic tended to overestimate the proper stopping iteration later in radiosity simu-

lations. They suggested various solutions to these problems which take into account

variance in obtained data. By avoiding application of more sophisticated VDP’s, their
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technique only leverages limitations of the HVS with respect to the contrast sensitivity

function (CSF).

2.2 Visual System Metrics in Rendering

The human visual system is an incredibly complex system exhibiting many nuances that

can be leveraged for accelerating rendering algorithms. Several perceptual metrics have

been developed that strive to predict HVS response to stimuli. Ahumada [Ahu93] and

Ramasubramanian [Ram00] provide excellent reviews and reference lists of the compu-

tational image quality metrics developed by the vision science and computer graphics

fields. Nonlinear response, contrast sensitivity, disparate chromatic and achromatic spa-

tial acuity, masking effects, and many other effects have been incorporated in various

combinations into these models. Initially developed in order to determine if two im-

ages are perceptually indistinguishable, these models have grown to provide local dis-

crepancy information and have been applied to guide adaptive sampling algorithms, in

addition to many other rendering techniques.

A number of techniques have been developed which accelerate still image genera-

tion through the application of a visual metric. Unfortunately, far fewer techniques for

accelerating view independent algorithms have been studied.

Mitchell [Mit87] developed an adaptive anti-aliasing technique, which guides nonuni-

form sampling techniques based on how the HVS perceives noise as a function of con-

trast and color. An initial coarse, nonuniform sampling of the image plane provides

the data necessary to determine if further sampling is necessary at each pixel, based

on contrast variation. Regions of the image that require additional sampling are iso-

lated through the evaluation of a contrast sensitivity function and the use of separate
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thresholds for each color channel. Red, green, and blue contrast levels are weighted

independently in a crude approximation of the HVS’s wavelength-specific contrast sen-

sitivity functions. This technique successfully isolates aliasing noise to regions of an

image that contain higher spatial frequencies where noise is less visible.

Meyer and Liu [ML92] developed a spatial subdivision method for accelerating ray

tracing, based on the limited color spatial acuity of the HVS. By working in the AC1C2

color space and using a K-d structure to store sample pixel data, they were able to

reduce color calculations by limiting the depth in the tree at which each channel is

sampled, based on channel-specific acuity of the HVS. Consequently, achromatic image

detail was computed at a higher resolution than that used for the computation of either

chromatic channel. Psychophysical testing demonstrated that the resulting reductions in

the number of rays used to compute chromatic channels do not have as severe an effect

on image quality as do similar reductions in the number of rays used to compute the

achromatic channel. Unfortunately, adaptive rendering techniques based on this method

only afford modest improvements in speed through reduction of color computation.

Bolin and Meyer [BM95] developed a ray-tracing algorithm that exploits limitations

of the HVS in the intensity, spatial, and temporal domains, by synthesizing images

directly into the frequency domain. Their three-stage vision model first simulates the

spectral sensitivities of the cones in the human eye. Contrast sensitivity is emulated

by scaling response values using an amplitude nonlinearity function. Cone signals are

subsequently transformed to an opponent color space. Finally, a spatial filter is applied

to the achromatic and chromatic channels.

The developed HVS model was used to guide sampling by selecting the next image

block to be sampled, using a quad tree subdivision method and controlling the spawning

of indirect rays that intersect other objects in the environment. Variation in luminance
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results in higher sampling rates in regions with lower average intensity, thus taking ad-

vantage of the HVS’s nonlinear contrast sensitivity. Monochromatic differences receive

higher sampling rates than chromatic differences, resulting from differences in the cutoff

thresholds of the perceptual spatial frequency response for these channels. Finally, be-

cause a spatial frequency representation of the rendered image is directly computed from

samples taken, visual masking effects are partially leveraged by reducing the number of

subsequent rays spawned in regions where higher spatial frequency detail is observed.

Gaddipatti et. al. [GMY97] suggested using a wavelet-based perceptual metric to

compare intermediate images in the termination evaluation portion of adaptive sampling,

image synthesis algorithms. They also incorporated the frequency response portion of

the HVS through the use of a contrast sensitivity function (CSF). This differed from

previous work, which used mean squared error (MSE) techniques, since their method

took into consideration variation in images at specific locations, orientations, and scales.

Compared images are split into subimages, using a dyadic subdivision of the im-

ages’ frequency spectrum. A simple structure detection scheme identifies scale-coherent

structures (edges, corners, ridges, etc.). Coefficients of the wavelet transformation are

modulated, using the CSF in order to take into account frequency response to the HVS.

Mean squared distances between modulated coefficients of the compared images are

combined, providing a single scalar value as a measure of the differences of the im-

ages. This approach ignores masking effects, and the single scalar measure of distance

prevents its application to any nonuniform adaptive sampling technique.

Neumann et. al. [NMP98] developed an alternative approach to comparing images

which is more sensitive to differences in color, while avoiding the costs associated with

Fourier space transformations and the limitations of wavelets associated with previous

image comparison techniques. In their approach, average CIE LUV color differences of
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quasirandomly chosen rectangles in input images are used to compute a single percep-

tual distance measure. Rectangle size and number are chosen based on view distance.

Errors are weighted using rectangle size and the contrast sensitivity function. Overall,

this was an ad hoc technique, which used very simplistic approximations of a limited

number of HVS characteristics.

Bolin and Meyer [BM98, BM99b] developed an adaptive sampling algorithm that in-

tegrates an improved version of the Sarnoff Visual Discrimination Model (VDM) [Lub95].

During image refinement, boundary images are constructed, using the current image ap-

proximation and an estimate of its error. These upper and lower boundary images are

fed into their improved vision model to obtain a visual difference map, which in turn is

used to determine the next sample location.

Bolin and Meyer’s adapted Sarnoff VDM was improved in order to run efficiently,

thus allowing it to be used to direct sampling and terminate image refinement once no

visible errors are present. The vision model was also extended to handle the significant

effects of chromatic abberation and variations in achromatic and chromatic contrast sen-

sitivity as a function of spatial frequency. Unfortunately, this adaptive rendering tech-

nique incurs substantial overhead, due to evaluation of their image quality model after

each sample is taken.

More recently, Bolin and Meyer [BM99a] presented an enhanced version of their

adaptive sampling algorithm [BM98, BM99b], which addresses the computational ex-

pense involved by limiting the number of times the visual metric is applied. By per-

forming a preliminary low-density sampling of an image prior to initiating their adaptive

sampling algorithm, considerable computational overhead is avoided when large sam-

ple variance is expected at initial low sampling rates. Further computational savings are

achieved during the iterative refinement process by sampling all regions of intermediate
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images which contain noise above a user specified threshold before reapplying the vi-

sual error metric. Unfortunately, these advances do not provide the order of magnitude

improvements necessary for use in an interactive setting.

Ramasubramanian et. al. [RPG99] developed a new framework for perceptually

based rendering. Their method reduces the computational costs associated with pre-

vious techniques that require the evaluation of expensive VDP’s, by precomputing the

expensive, spatially dependent components of such models. Ramasubramanian et. al.

suggest direct illumination solutions capture most of the higher spatial frequency and

contrast content in a scene, thus validating the use of a composite of a direct illumination

solution with an ambient image (in order to incorporate spatial frequency in regions not

receiving direct illumination) so as to construct their initial elevation factor map. During

indirect illumination computation, an inexpensive luminance-dependent threshold map

is generated, using a composite of the current indirect illumination approximation and

the precomputed direct illumination solution. Elevating this threshold map by the pre-

computed elevation factor map provides a set of luminance contrast thresholds that are

then used to steer subsequent sampling.

Walter et. al. [WPG02] presented a technique for accelerating any algorithm that

uses per-pixel error thresholds. While the technique described by Ramasubramanian

et. al. [RPG99] is able to substantially accelerate rendering global illumination solu-

tions, their approach requires a preprocessing step that prohibits its use for time-critical

direct illumination and interactive environments. Walter et. al. present an alternative

method for generating elevation factors based on the spatial frequencies and base con-

trasts present in material textures, by preprocessing all scene textures using an inexpen-

sive, discrete cosine transform (DCT) method based on the JPEG standard. They show

how such elevation factors can easily be stored and looked up using existing texture
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mip-map techniques. These values can be combined with luminance masking based on

Weber’s law, in order to improve the performance of adaptive shadow testing, irradiance

caching, and path-tracing algorithms. Possibly the most interesting feature of this ap-

proach is its freedom from rendering an initial image, allowing its immediate application

to dynamic environments.

Myszkowski [Mys98] studied the applicability of the Daly VDP [Dal93] in deciding

on a stopping condition for progressive radiosity and Monte Carlo techniques, in addi-

tion to driving adaptive mesh subdivision in radiosity computations. He studied multiple

scenes in order to determine the optimal spacing of intermediate images for comparison

in his path-tracing termination technique. If a view-independent solution is desired, a

set of representative views is used. Myszkowski used the Daly VDP, despite the fact

that more advanced vision models exist [FPSG97, GMY97], since such advanced mod-

els return a single scalar value as a measure of the differences between two images. In

contrast, the Daly VDP returns a perceptual difference map, providing local predictive

ability required by adaptive refinement techniques.

Many previous adaptive refinement techniques rely on energy-based error metrics,

which do not necessarily correspond to visible improvements in image quality. By ap-

plying the Daly VDP to intermediate images, Myszkowski was able to leverage Weber’s

law-like amplitude compression, an advanced contrast sensitivity function model, and

masking effects, all which limit visual acuity, in order to terminate the applied simula-

tion technique. Unfortunately, his brute force implementation of the Daly VDP, which

required evaluation at every iteration, incurs substantial computational expense.

Recently, a few authors have developed novel applications of visual system metrics

that do not precisely fall into the categories of adaptive sampling or view-independent

algorithms.
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Volevich et. al. [VMKK00] explored a view-independent technique for accelerat-

ing the convergence of progressive global illumination solutions. While previous per-

ceptually based work has sought to directly integrate VDP’s into the refinement stage

of image generation, Volevich et. al. state that such integration incurs considerable

computational expense, since the selected perceptual metric must be computed during

each iteration, negating any performance improvements such perceptually aware tech-

niques provide. They suggest an alternative approach, which uses a VDP to select the

order in which, and the related switchover points between, a pool of global illumina-

tion techniques which are applied when rendering a global illumination solution. They

applied the technique to a series of environments in order to determine the order and

switchover points for applying deterministic direct lighting (DDL), hierarchal progres-

sive radiosity (HPR), and density estimation photo tracing (DEPT) methods, using the

Daly VDP [Dal93] during an initial preprocessing step.

Dumont et. al. [DPF03] developed a perception-based decision theoretic methodol-

ogy for realistic rendering at interactive rates. While they applaud previous perception-

based techniques, the authors suggest that the demands of interactive rendering prohibit

the evaluation of expensive VDP models in order to remove all noticeable noise in ren-

dered images. In an interactive setting, they suggest one cannot strive to produce an

image that is visually indistinguishable from the gold standard; rather, one must attempt

to render the highest quality image within the given constraints.

They outline a perceptually based decision theoretic framework, which forms the

backbone of a texture cache management scheme necessary for producing global illu-

mination effects at interactive rates. Optimal texture resolutions are determined through

a triage technique that minimizes cost while maximizing utility. Since they use extensive

hardware techniques, such as environment maps, to provide approximations of specular
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and glossy reflections, texture memory and texture processing quickly become limited

commodities, further justifying their cache management scheme.

It should be noted that while the foundation of the perceptual basis of their decision

methodology considers luminance sensitivity, contrast sensitivity, and visual masking

effects, they currently have not leveraged temporal effects on contrast sensitivity inher-

ent in any interactive environment.

2.3 Leveraging Spatiotemporal Effects

More recently, a great deal of research has attempted to incorporate temporal effects on

HVS acuity into rendering systems. The HVS experiences decreased contrast sensitivity

with increasing motion; however, the eye exhibits a miraculous tracking ability, which is

able to significantly increase the acuity of objects of attention. Perceptually based algo-

rithms, which leverage these effects, can significantly accelerate the rendering process

required for accurate simulations in interactive and real-time settings.

Myszkowski et. al. [MRT99, MK00] were the first to develop and apply a spa-

tiotemporal perceptual metric for the purpose of accelerating the rendering of antialiased

walkthrough sequences. They developed a hybrid rendering technique, which used ex-

pensive raytracing techniques to render key frames, and inexpensive image-based ren-

dering (IBR) techniques to construct in-between frames. Using their approach, a fixed

set of key frames are optimally placed in order to minimize the number of pixels in

in-between frames that cannot be properly derived from key frame data due to visibility

problems. Next, an animation quality metric (AQM) is used to guide in-between frame

computation. Their AQM is an extended version of Erickson’s static image quality met-

ric [RE98], which incorporates the spatiovelocity CSF.
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Myszkowski et. al. apply models of the HVS’s increased sensitivity to distortions in

image regions with low image flow (IF) velocities, using ray-tracing techniques to com-

pute pixel values of in-between frames when IF velocity values fall below a specified

threshold. Ray-tracing techniques are also applied in order to compute strong specular

effects and glossy reflectance when the AQM indicates more accurate computation is

required. Like most IBR techniques, ray-tracing is used to fill in remaining holes in in-

between frames. Finally, a novel perception-based antialiasing technique was explored

that, using information about the IF, allows traditionally super-sampled keyframe pixels

to be replaced with raw pixels derived using IBR or single sample ray-tracing tech-

niques.

Myszkowski et. al. [MTAS01] developed a perceptually guided global illumination

technique for rendering dynamic environments. Their approach concentrated on taking

advantage of the generally high temporal coherence in the indirect component. Sparse

samples of indirect illumination across a number of local frames are combined with

a dense sampling of direct illumination and specular effects at each frame to produce

high-quality interactive animation sequences.

The approach of Myszkowski et. al. works as follows. First, the appropriate number

of photons for each frame in the current frame segment (collection of frames from which

indirect illumination photo samples can be used) is estimated. Photon sampling is then

conducted for all frames. The maximum segment size (number of frames forward and

backwards in time) is refined, based on temporal variations in indirect lighting using

energy-based criteria. The average number of photons per frame is adjusted, based on

the response of an AQM previously presented by Myszkowski et. al. [MRT99, MK00].

Finally, spatiotemporal reconstruction and spatial filtering are employed to construct

an indirect illumination image. Direct illumination and specular effects are computed
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at each pixel, using a standard ray tracer, and combined with a constructed indirect

illumination solution to produce a single animation frame.

Haber et. al. [HMYS01] also took advantage of spatiotemporal effects on percep-

tual importance in their interactive walkthough system. Indirect diffuse illumination

is first computed during a preprocessing step. As a user walks about an environment,

sampling of direct illumination and other view-dependent lighting effects is guided us-

ing an extended version of the attention-driven perceptual metric developed by Itti et.

al. [IKN98]. Cached samples are splatted on the screen using a technique similar to

the render cache developed by Walter et. al. [WDP99]. In addition, the vision metric

is applied to determine regions of interest that require further sampling. Because indi-

rect diffuse illumination is computed during an initial preprocessing step, this approach

is limited to static environments. However, unlike the technique developed by Yee et.

al. [YPG01] mentioned below, since camera position is interactively controlled by the

user, they argue they are unlikely to suffer from degraded quality resulting from repeated

viewing experiences.

Yee et. al. [YPG01] developed a method for accelerating global illumination com-

putation in prerendered animations by taking advantage of spatiotemporal limitations

of the HVS. Their approach leverages decreased contrast sensitivity as image velocity

increases, while adapting to the compensation for such loss of sensitivity due to motion

through the smooth pursuit tracking capabilities of the eye.

When applying the technique of Yee et. al., an error tolerance map, based on the

velocity-dependent contrast sensitivity function, is constructed using a rapid image es-

timate of the scene. This map is augmented by the viewers predicted visual attention,

using a saliency map to compute an Aleph map. The Aleph map is a complete esti-

mate of the spatiotemporal sensitivity of the HVS, and is used to terminate the global
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illumination rendering technique used to compute displayed images.

While eye-tracking hardware exists, the authors opted to extend Itti et. al’s [IKN98]

computational model of stimulus-driven visual attention, by including a fourth conspicu-

ity channel for motion when producing saliency. By opting to use a software-based

approach, no extra work is necessary to allow simultaneous viewers of animated se-

quences. Unfortunately, they found visual attention was often poorly predicted, once

viewers were shown the same animation sequence multiple times, resulting in visible

artifacts in inaccurately predicted regions of interest.

2.4 Summary

This chapter reviewed previous applications of tone-mapping operators and perceptual

metrics used to improve the performance of various rendering algorithms. These were

categorized into systems that use tone-mapping operators, static environment visual

metrics, and more advanced visual metrics that take into account temporal effects on

visual acuity.

The first set of algorithms control image refinement using tone-mapped luminance

values instead of sample radiance values. Display devices are unable to reproduce the

full range of observable real world luminance values. Tone-mapping operators must be

applied to sample data in order to match the subjective experience of viewing a real

scene by mapping real world luminance values to the limited range of a particular dis-

play device. The compression of luminance variance that results is often not visually

detectable. Rendering algorithms, which take advantage of this tone-mapping process,

can accelerate the rendering process.

The second set of algorithms further accelerate the rendering process by applying
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visual system metrics that incorporate nonlinear response, wavelength and frequency-

specific contrast sensitivity functions and masking effects that nonuniformly limit visual

acuity across the image plane.

Finally, a third set of algorithms applied more recently developed visual metrics

that model temporal effects and tracking behavior on visual acuity. These algorithms

strive to accelerate rendering systems in order to facilitate their application in dynamic

environments and static walkthough sequences.

This thesis will take an entirely different approach to applying perceptual constraints

to image generation by adopting a rendering-by-components approach to the global illu-

mination problem. While some previous work has split the rendering process into direct

and indirect components, this is the first work to split indirect illumination into three

pure component channels, and study how the relative perceptual importance of each of

the various indirect reflection components can be applied to rendering systems.



Chapter 3

Perceptual illumination components

In global illumination rendering, the radiance of a pixel in the rendered image can be

determined by finding the intersection between the pixel’s view ray and a surface, and

calculating the sum of the energy emitted by the surface and the energy reflected in the

direction of the view ray. This can be expressed as:

Lout(x) = Lemission︸ ︷︷ ︸
energy emitted

+
∫ incoming

directions

Ω
Lre f lected∂ω︸ ︷︷ ︸

energy re f lected

(3.1)

3.1 Rendering by components

Heckbert [Hec90] was first to analyze the subdivision of photon paths into components.

Figure 3.1 illustrates the various paths by which photons can travel from a light (L) to

the eye (E) by reflecting off diffuse (D) and specular (S) surfaces. Extension of this

terminology with the inclusion of a fifth term (G) is necessary in order to incorporate

the remaining set of glossy surfaces. All paths contributing a person’s visual experience

can be characterized by the regular expression L(D|G|S)∗E, where |’s are logical OR’s

and * indicates zero or more reflections. By including an additional symbol ? signifying

an optional reflection, ray tracing can be characterized as a subset of all possible photon

21
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Figure 3.1: Selected photo paths from light (L) to eye (E) by way of diffuse (D) and

specular (S) surfaces. Additional glossy (G) surfaces, while not shown, also exist.

paths which are matched by the expression LD?S ∗E. Similarly, radiosity simulations,

which only capture indirect diffuse and direct diffuse illumination, can be expressed as

LD ∗E. Finally, caustic paths, which are the set of paths which must reflect off one

or more specular surfaces before reflecting off a diffuse surface toward the eye, are

matched by the expression LS+DE where + matches one or more reflections. Heckbert

notation provides two insights. First, many interesting photon path sets can be expressed

using regular expressions, and second, the set of all possible photon paths, which equate

to a full global illumination solution, can be broken up into components and evaluated

individually.

The starting point of our work is the insight that the global illumination simulation

process can be successfully modeled by calculating light transport along direct and in-

direct illumination paths and combining the results. This allows the integral term in

Equation 3.1 to be subdivided into direct and indirect components:

∫ incoming
directions

Ω
Lre f lected∂ω =




∫
Ω Ldirect∂ω +

∫
Ω Lindirect∂ω

(3.2)

The indirect component can be further defined as the sum of the contributions from
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Figure 3.2: (a) Direct and indirect (b) diffuse, (c) glossy, and (d) specular illumination

three pure indirect transport paths (indirect diffuse, LD+E, indirect glossy, LG+E, and

indirect specular, LS+E) and a fourth set of hybrid paths that account for the interactions

between the pure component paths. If the hybrid path interactions are negligible, the

overall expression for the indirect component can be approximated as:

∫
Ω

Lindirect∂ω ≈




∫ indirect
Ω Ldiffuse∂ω +

∫ indirect
Ω Lglossy∂ω +

∫ indirect
Ω Lspecular∂ω

(3.3)
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Figure 3.2 illustrates the (a) direct, (b) indirect diffuse, (c) indirect glossy, and (d) indi-

rect specular illumination components.

3.2 Perceptual illumination components

The key idea explored in this thesis is the observation that the different direct and indi-

rect illumination components are probably not of equal importance with respect to their

contributions to the visual quality of global illumination renderings. Speculation is often

made about the relative importance of the different components, but to our knowledge,

there have not been any attempts to formalize these assertions, to quantify the perceptual

importances of the direct and indirect components in global illumination rendering, or

leverage such variation in importance when rendering.

Rendering by components has another potential benefit: increases in coherency re-

sulting from individual consideration of indirect reflection components may allow more

efficient rendering techniques which converge more quickly to be developed. While

higher sampling frequencies are necessary for capturing view dependent specular and

glossy effects, indirect diffuse illumination can successfully be evaluated at far lower

sampling frequencies and combined using interpolation techniques in order to fill in

unsampled regions [WH92]. This stems from the observation that spatial changes in in-

direct diffuse illumination are gradual. By concentrating sampling on a subset of image

pixels, the resulting accuracy for such pixels will be higher than that produced when

spreading out the same total number of samples evenly across the entire image plane.

Furthermore, interpolation techniques which then must be applied to fill in unsampled

regions will produce results free of the noise that plagues naive sampling techniques.

Similar techniques can be developed to leverage path coherency when rendering in-
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direct glossy and specular components. For example, one approach to approximating

indirect glossy illumination might build on widely accepted importance sampling tech-

niques. Since an indirect glossy approximation technique can ignore all indirect diffuse

reflections, sampling will concentrate closer to the primary reflection direction, resulting

in reduced noise and faster convergence.

Unfortunately, the rendering by components framework we explore has limitations.

Unlike traditional global illumination solutions, the framework as described ignores all

hybrid path contributions. Caustics (LS+DE) arise when one or more specular surfaces

result in the focusing of light onto a diffuse surface before it is reflected toward an

observer. Since such paths include both diffuse and specular reflections, they will be

excluded by any pure indirect reflection component. Similarly, specular reflections of

surfaces receiving only indirect diffuse illumination will not be captured (LD+SE) by

any pure indirect reflection component. This situation arises when an area of a scene

which receives only indirect diffuse illumination is reflected by a mirror or glass surface

a night. If both the area of the room in question and its reflection are located on the

image plane simultaneously, a visible discontinuity will arise. Fortunately, the generic

rendering by components framework does not limit us from including such exotic paths

during image generation. Separate indirect reflection components for each of these sets

of paths could be computed and composited with pure indirect components if desired.

The following chapter describes a series of psychophysical experiments we con-

ducted in order to measure and model the effects of the different illumination compo-

nents on the perceived quality of a set of global illumination images.



Chapter 4

Experiments

The goal of this thesis is to develop a new perceptual metric for efficient, high-quality,

global illumination rendering that can predict the consequences for visual image quality

of approximations to full global illumination simulations. Having adopted the rendering

by components framework described in the previous chapter, our task is first to measure,

and then to model how the different illumination components affect judgments of image

quality. To accomplish this we have conducted a series of psychophysical experiments.

4.1 Stimuli

To measure how different illumination components affect perceived image quality, we

needed to define and render a set of images to be used in the experiments. Ideally we

would like these images to be representative of typical global illumination renderings so

our results can be applied beyond the specific conditions of our experiments. For this

reason we rejected the idea of rendering abstract environments and instead generated

images from detailed models of two real scenes. Ideally a larger set of test scenes would

be used during testing, but currently it is difficult to obtain models with realistic material

26
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Figure 4.1: Office and kitchen scenes

properties. Therefore, creation of both models was necessary for this research. Example

images are shown in Figure 4.1. Light choice and properties were chosen to best reflect

actual lighting in these environments. Two area lights were used in the office environ-

ment, while the more than 70 small lights in the kitchen environment were represented

with point lights. Ward [War92] and Phong [Bli77] materials were chosen and tuned

to best approximate observations of real world surface reflectance. We believe together

the office and kitchen scenes span a significant portion of the range of typical interior

environments we encounter in the world, with the office scene having relatively uniform

illumination and mostly matte surfaces, and the kitchen scene having more dramatic

variations in illumination and a larger proportion of glossy and specular surfaces.

To construct test image sets for our experiments, we rendered six views of each scene

using a custom component-based Monte Carlo path tracer. Figures 4.2 and 4.3 show

these views, which were chosen to be representative of viewpoints that a real observer

might occupy, and to show a range of different objects and materials (i.e. avoiding views

of blank walls, ceilings, desktops, etc.).
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For each view, we generated separate renderings of the direct and indirect diffuse,

glossy, and specular illumination components. We created eight composite images of

each view by combining all permutations of the three indirect components with the

baseline direct component. In addition, for each view we generated a ”gold standard”

full global illumination rendering, so in total there were nine images in each of 12 test

sets (6 viewpoints per scene x 2 scenes). Figure 4.4 shows the set of composite images

for one view of the kitchen scene.

Due to limitations physical display size and any particular software interface would

impose on the ranking task, we conducted experiments using printed images. Each

image was rendered at 512×512 pixels and printed at 4”×4” using a Kodak XLS 8600

dye sublimation printer. Each image was then mounted on 1/4” foamboard to allow

easy manipulation.

Since the rendering-by-components framework is based on the idea that good ap-

proximations to full global illumination renderings can be achieved by combining sep-

arate simulations of the direct and pure indirect illumination components, one issue

we were interested in exploring was whether the hybrid indirect paths neglected by the

framework, have a significant effect on visual image quality. This was our rationale

for including the gold standard in each test set. By comparing the quality ratings given

to this full global illumination rendering and the pure component “silver standard” (a

composite of direct, pure indirect diffuse, glossy, and specular), we can determine the

perceptual importance (or lack thereof) of the hybrid paths.
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Figure 4.2: Viewpoints tested in the office scene
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Figure 4.3: Viewpoints tested in the kitchen scene



31

Figure 4.4: A complete set of composites plus the gold standard image for a single

viewpoint of the kitchen scene.
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From informal observations we expect that the contribution of the hybrid paths to

visual image quality will be small in most scenarios because as is shown in Figure 4.5,

there is very little visual difference between the gold and silver standard images. For

radiometric purposes, by comparing pixel intensities using a difference image, we see

that energy provided by hybrid paths is almost nil as is shown in Figure 4.6.

An example of light transport not captured in the silver standard is the reflection

of the indirect diffusely illuminated ceiling off the windows in the kitchen scene as

shown in viewpoint K2 in Figure 4.3. Another example of hybrid paths are caustics,

which occur when specular surfaces focus light onto diffuse surfaces to producing vis-

ible highlights. While such effects are not captured by pure indirect components, the

rendering-by-components framework we describe would allow for the inclusion of ad-

ditional indirect components. From our experience caustics are rarely significant con-

tributors in natural environments, and do not make any significant contribution in the

test scenes we chose. For these reasons, we leave more accurate modeling of caustic

path importance to future work.

In computing the indirect components, we needed to set a cutoff for path depth. Too

severe a cutoff could result in large errors in radiance estimates, while too lax a cutoff

would be inefficient. We chose to set the cutoff at four bounces. We found that images

with greater path depths were visually indistinguishable from the four-bounce images.

Figure 4.7 illustrates this point. Additional illumination resulting from inclusion of light

transport involving four bounces is barely visible in the rightmost image when compared

to the previous image.
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Figure 4.7: Accounted luminance contributions by successive bounces exhibit dimin-

ishing returns. Additional luminance resulting from including a fourth bounce is barely

detectable.

4.2 Equalizing contrast and hue

One consequence of the rendering-by-components and compositing approach, is that

including or excluding components from a composite can introduce contrast and hue

differences with respect to the other composites in a set. Composites which include

fewer indirect components have darker darks or higher contrast, while composites which
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Figure 4.8: (a) Direct illumination image. (b) Contrast equalized version of (a). (c) Full

global illumination solution. Notice the contrast differences between (a) and (c) and the

similarity of (b) and (c).

include more indirect components often appear warmer. Figure 4.8 illustrates this prob-

lem. Image (a) only contains direct illumination. Notice that image contrast is greater

than in (c), the full global illumination solution. Previous research [Fai98] has shown

contrast discrepancies can bias participant responses. In order to prevent such bias, we

developed a contrast equalization technique which minimized this artifact.

In any set of composites, the full global illumination solution (gold standard) has

the lowest contrast. This results from dark shadows which are filled with low indirect

illumination. In composites which contain subsets of indirect illumination, these re-

gions are darker or completely black in the case of composites only containing direct

illumination, and when viewed appear to have higher image contrast. By adding an

“ambient” image to the other composites in the set, it is possible to minimize contrast

differences. To accomplish this we first calculated an albedo image that represented the

diffuse colors of the surfaces visible from that viewpoint. For each composite image

+ albedo image combination, we used a binary search method to find a scaling factor

for the albedo image that minimized contrast differences with respect to the full global
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illumination solution.

Image contrasts were calculated using a scale-dependent local contrast measure

that [Pel91] has shown is well correlated with perceived contrast. First, we derived a

luminance image from RGB values by the technique described in [Poy96], where lumi-

nace (L) at a pixel is defined as:

L = 0.2125 ·R+0.7154 ·G+0.0721 ·B (4.1)

where R, G, and B are the intensity of the red, green, and blue channels. Next we

constructed an image pyramid and calculated pixel contrast Ci, j at different spatial scales

using the equation:

Ci, j =
L′

i, j −Li, j

L′
i, j

(4.2)

where Li, j is the luminance of pixel i at pyramid level j and L′
i, j is the luminance of the

pixel in a bi-linearly upsampled version of the next highest pyramid level. To combine

the contrast measures at different spatial scales, it is necessary to weight the contrasts

at each level by the factor Wj = Bw·Bh
Cw·Ch

where Bw and Bh are the image dimensions at

the base level and Cw and Ch are the dimensions at the current mip-map level j. Thus a

summary contrast measure of the image can be defined as:

C =
n

∑
j=0

m

∑
i=0

Wj ·Ci, j (4.3)

where m is the number of samples in level j and n is the number of pyramid levels. The

contrast equalization process works as follows. First, the gold standard image contrast

is computed. Next, each composite is contrast equalized against the gold standard by

adding a scaled version of an ambient image such that both images have equal image

contrast. The albedo scale factor is determined using a standard binary search technique.

The effectiveness of this contrast equalization technique can be seen in Figure 4.8

by comparing image (b), the contrast equalized version of (a) with image (c), the full
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Figure 4.9: (a) Direct illumination, (b) contrast equalized version, (c) contrast equalized

using hue shifted albedo image, and (d), full global illumination solution. Notice the

hue differences between (a,b) and (d), and the similarity of (c) and (d).

global illumination solution. One area of future exploration would be to weight the

contrast at each mip-map level using the contrast sensitivity function. This would likely

enable more accurate contrast equalization resulting from more accurate simulation of

the human visual systems frequency-dependent contrast sensitivity. The current contrast

equalization technique is highly sensitive to contrast at the lowest mip-map level, and

as a result has trouble equalizing contrast in some circumstances. Knowledge of the

viewer distance to and the print size of the resulting experimental images is required

before applying such frequency-dependent weighting techniques.

Another side effect of the compositing process was a hue shift between images con-

taining different combinations of indirect illumination components. To minimize this

artifact we hue shifted the albedo image by scaling it by the average hue of a composite

of the three pure indirect components. This was done before contrast equalization so any

luminance changes in the albedo image due to hue shifting would be compensated for

during calculation of the albedo scale factors. Figure 4.9 shows an example of this hue

shift artifact and how our procedure minimizes this artifact while equalizing contrast

with respect to the full global illumination solution.
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4.3 Procedure

To measure the relationships between the presence of different illumination components

and visual image quality we ran a series of ranking experiments [Gui54]. The procedure

is illustrated in Figure 4.10. During each trial, a subject was given the set of composite

images for one viewpoint. The subject was then asked to place the images in order from

lowest to highest by perceived quality. Subjects were informed that image differences

might be subtle and to relax and take their time. While no strict sorting method was re-

quired, a simple divide and conquer method was suggested. Subjects were encouraged

to pickup and move around the images as much as they liked. Before running through

actual trials, subjects were run through three practice trials consisting of randomly se-

lected smaller sets of images, allowing them to discover the differences across images

and decide what their effect on image quality meant to them. Throughout each exper-

iment, the subjects were asked to elaborate on what visual discrepancies they noticed

and the effects each had on the ranking task. We randomized the order in which each

subject received the sets, and the initial ordering of images within each set ranked. The

“office” and “kitchen” ranking experiments were conducted in two sessions on different

Figure 4.10: Ranking a set of images
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days under equal lighting conditions. Ten subjects participated in the experiments. Both

expert (computer graphics graduate students) and non-expert (university graduates and

undergraduates) participated. All were naive to the design and goals of the experiments,

and all had normal or corrected to normal vision.

4.3.1 Results and Preliminary Analysis

The data generated by the experiments consisted of the rank orderings produced by

each subject for each image set. Rank data is strictly ordinal by nature which presents

significant limitations in terms of quantitative analysis and modeling [Gui54]. For

example, while average rankings may indicate that one image is consistently perceived

to be of higher quality than another, rankings alone cannot specify how much higher in

quality one image is than another. To place the images on an interval scale that allows

us to quantify the contributions to quality of the different illumination components, we

applied Thurstonian scaling techniques from visual psychophysics [Tor58].

In Thurstonian scaling, the variance in the rank position given to an image by dif-

ferent subjects is used to derive rank distributions for each image. The overlap in these

distributions is taken as a measure of the psychological distance between the images

with respect to visual quality. By determining these parameters for all the images in a

set, a perceptually-linear interval scale that indicates the relative differences in quality

between the images can be derived.

Using the technique described above, we derived perceived quality scales for each

of the 12 image sets (6 viewpoints per scene × 2 scenes). The scales are summarized

in Figure 4.11. There are several preliminary observations that we can make about this

data.

• First, across all the viewpoints there is a fairly consistent ordering of the different
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Figure 4.11: Experimental results: quality scores for the different composites. While

significant variation in quality across viewpoint is evident, general trends in the ordering

of the composites can be seen.

composite images, with direct-only images judged to be lowest in quality, and the

silver and gold standard images judged to be highest. Gold standard images are

often assigned slightly lower quality scores than the highest ranking composites.

We conjecture this is because indirect hybrid lighting masks image detail provided

by other lighting components.

• Within the broad middle range, the presence of the indirect diffuse component ap-

pears to be an important factor, with images that include indirect diffuse generally

being ranked higher than those that exclude it. Additionally, the indirect glossy

and specular components appear to have smaller modulating effects within these

larger trends. It is only in views where specular surfaces such as large windows
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take up a large portion of the image plane (e.g. viewpoint K2 in the kitchen as

shown in Figure 4.3) that indirect specular importance exceeds that of indirect

diffuse.

• Finally, there are also clearly significant variations in the perceptual importances

of the different components across viewpoints and scenes that will need to be

accounted for by our metric.

4.4 Determining the perceptual importances of the illu-

mination components

The scaling procedure we applied in the previous section allowed us to calculate per-

ceived quality scores for the composite images in each set. The next step toward our

goal of developing a metric that can predict these scores, is to relate them to the pres-

ence or absence of the different indirect illumination components, and derive measures

of the perceptual importance of each component with respect to perceived quality.

We do this by performing a linear regression on the quality scores in which the score

(Q) is modeled as the linear combination of the components. This model takes the form:

Qi = ai +ai,d · ID+ai,g · IG+ai,s · IS (4.4)

where ID, IG, and IS are binary variables that indicate the inclusion or exclusion of the

indirect components, and ai,d , ai,g, and ai,s are weights returned by the regression that

quantify the perceptual importance of each component in viewpoint i.

We performed separate regressions for each viewpoint in each scene. Figure 4.12 a

and b summarize the perceptual importance factors returned by the regressions for the

office and kitchen scenes. We can observe several trends in this data.
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Figure 4.12: Computed perceptual importances for the office and kitchen scenes. Note

that indirect diffuse generally has the largest effect on image quality. It is clear that the

considerable variation across viewpoints must be taken into account by any perceptual

metric.

• First, in all but one viewpoint, the indirect diffuse component (ID) has the highest

perceptual importance. This is consistent with informal observations and com-

ments made by the subjects that they did not like images containing large black

regions (which would be the case for shadowed areas).

• Next, the regression showed that the indirect glossy (IG) and indirect specular

(IS) components were of lower and roughly equal perceptual importance, with

some variation across viewpoints. This result is also consistent with observations

and subject reports that the absence of reflections on surfaces that should have

them (e.g. windows, monitors, etc.), is disturbing and reduces the visual quality

of the image, but at the same time, surface reflections that mask underlying detail

(such as the reflections on the marble countertop in the kitchen scene), are also

sometimes judged to reduce image quality.

• Finally, a t-test was conducted which compared perceptual quality scores of silver



44

and gold composites. A t-test determines whether the mean of of two groups

are statistically different from each other by judging the difference between their

means relative to the spread of variability of their scores. The results from this

test indicated the addition of the hybrid paths did not have a significant effect on

perceived image quality. Thus we can conclude that under the conditions studied

their perceptual importance is low. This result provides further support for the

rendering-by-components framework.

At this point we have taken several important steps toward our goal of developing

a perceptual metric for global illumination rendering-by-components. Through the ex-

periments we have measured the relationships between perceived image quality and the

presence or absence of the different illumination components. From our subsequent

analysis we have derived values for the perceptual importance of each of the compo-

nents with respect to the measured quality scores. What remains to be done is: 1) to

find a method by which we can predict the perceptual importances of the components

from some indicator of the physical properties of a scene, and 2) to formulate the metric

so we can predict and/or specify the visual quality of a rendering by knowing the scene

characteristics and the illumination components used. This work will be described in

the following chapter.



Chapter 5

Formulating the metric

From our experiments, we have derived measures of the perceptual importances of the

three pure indirect illumination components. To proceed with formulating a perceptual

metric that can be used to guide the rendering process, we need indicators that specify

how the physical characteristics of the scene are related to the perceptual importance

of the different illumination components. While the perceptual importance of these

components are ultimately a complex function of scene geometry, lighting, and mate-

rial properties, we believe that it is possible to construct useful indicators of component

perceptual importance based on material properties alone. Our reasoning is as follows.

In a scene without specularly reflecting materials, the illumination contribution of the

indirect specular path would be null, and therefore the perceptual importance of that

component should be zero. Similarly, in a scene with more matte than glossy materials,

the indirect diffuse component will on average have greater influence on the scene radi-

ances than the glossy component, and therefore its influence on the final appearance of

the image, and its perceptual importance, are likely to be greater. Similar arguments in

support of material-based indicator variables can be constructed for the other illumina-

tion components. Undoubtedly one can create scenes where these principles will break

45
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down, but we believe that this approach will be useful for a wide range of scenes.

One distinct advantage of employing material-based indicators, is that indicator val-

ues can be calculated online during computation of the direct illumination component.

Since any global illumination rendering system will have to compute the direct compo-

nent anyway, this approach adds negligible overhead to the rendering process and should

be of great advantage for implementing interactive systems.

5.1 Defining the indicators

As inputs to the perceptual metric we intend to develop, several material statistics-based

indicators must be explored and chosen. Our goal is to accurately predict the perceptual

importances of the indirect illumination components, while adding as little overhead

as possible in order to be incorporated into an interactive system. Considering these

requirements, we explored several indicator variables.

The first indicator variable, lobe counts, reports the percentage of pixels at which the

intersected object’s material includes a diffuse, glossy, or specular reflecting lobe. 1 A

greater presence of a particular lobe may be enough to accurately predict the increased

importance of a particular indirect component which include reflections off such sur-

faces.

Unfortunately, presence alone may not be enough to accurately predict the percep-

tual importance for all indirect components, especially those which include surfaces

which vary greatly in absolute reflectance. In a second indicator, image reflectivities,

we extended the previous indicator to take into account lobe reflectance by measuring

the percentage of total image reflectance contributed by each indirect component. This

1See Figure 3.2 and Section 3.1 for examples of material lobes and an explanation
of their relation to surface reflection.
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calculation can be summarized as:

X{d,g,s} =
Σ#pixels

i
ρi,{d,g,s}

Σ#pixels
i

ρi,d +ρi,g +ρi,s

(5.1)

where ρi, j is the reflectance at pixel i resulting from including component j.

Finally, in an attempt to introduce a notion of locality, we explored a third indicator

variable, pixel reflectivities, where percentage reflectance is considered on a pixel basis,

and averaged across an entire image. This calculation can be summarized as:

X{d,g,s} =
1

#pixels
·Σ#pixels

i

ρi,{d,g,s}
ρi,d +ρi,g +ρi,s

(5.2)

Figure 5.1 shows the three indicator variables across different views in the office and

kitchen scenes.

5.2 Indicator response functions

Before we can construct and test different metrics, we must define response functions

for the indicators that specify how sensitive the metric is to any particular indicator. We

experimented with three types of response functions. The simplest was a linear function

of the form,

f1(x) = b1 +b2 · x (5.3)

Here sensitivity to the indicator is controlled by the constant b2 which is fixed for all

values of an indicator.

The second response function we tested,

f2(x) = b1 −b
1

x+1
2

(5.4)

is also linear for low and moderate indicator values, but asymptotes to a ceiling to limit

the influence of large values.
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Figure 5.1: Indirect diffuse (red), glossy (green), and specular (blue) indicator response

for office and kitchen scenes.
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Finally we also experimented with an s-shaped response function of the form,

f3(x) = b
−1
x where we define f3(0) = 0 (5.5)

In addition to limiting the response to large values, this function also limits the influence

of small values that might be contaminated by sampling noise. Examples of these three

response functions are illustrated in Figure 5.2.

5.3 Modeling perceptual importance

We are now ready to construct and test different metrics for predicting the visual quality

of component-rendered global illumination images. Since our experiments have shown

that the perceptual importance of the components varies across viewpoint and scene, we

need to include these factors in our metrics.

Using the indicator variables and response functions defined above, we first attempt

to model the perceptual importance ai, j of the jth indirect illumination component for

viewpoint i as:

âi, j = w1, j +wd, j · fi(xi,d)+wg, j · fi(xi,g)+ws, j · fi(xi,s) (5.6)
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In this model xi,d , xi,g, and xi,s are diffuse, glossy, and specular indicator values for view-

point i, w1, j, wd, j, wg, j, and ws, j are weights determined by regressing on the perceptual

importances, and the ˆ symbol indicates we are modeling an experimentally obtained

value.

5.4 Selecting the appropriate model

Using this general model, we ran a series of regressions to find the combination of indi-

cators and response functions that optimally predicted the perceptual importance factors

we measured in the experiments. Of the three indicators we tested, the regressions

showed that the second indicator, image reflectivities, provided the best prediction of

the experimental results.

The lobe counts indicator worked reasonably well for the specular component, but

failed to predict the importances of the diffuse and glossy components. This result is

understandable. A lobe counts indicator does not take into consideration variation in

surface reflectance across samples. Since there is little variation in reflectivity across

specular surfaces throughout both test scenes this indicator captured enough viewpoint

information necessary to accurately predict indirect specular importance. In contrast,

sampled diffuse and glossy surfaces had considerably more reflectance variation, and as

a result all importance models based on lobe counts indicators performed poorly. The

performance of the pixel reflectivity indicator was similar to, but slightly worse than the

image reflectivity indicator.

Of the three response functions we tested, the regressions also indicated that the sim-

ple linear response function yielded the best-fitting models. While overall, this model

was reasonably good at predicting the perceptual importances of the different compo-
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nents, its ability to predict the importance of the indirect glossy component was poor

relative to the others. We believe this is because glossy materials have a wide range of

appearances, from almost matte to almost mirror-like. We found that by defining sepa-

rate high gloss and low gloss indicators, we were able to produce a model that was better

at predicting the perceptual importance of the indirect glossy component. In order to di-

vide glossy materials in two halves, we first needed to match Phong and Ward glossy

reflections. We constructed a simple scene consisting of a glossy sphere in a checkered

environment. The checkered background was chosen to produce sharp reflections with

high gloss materials and blurry reflections with low gloss materials. First, a series of

images were rendered by varying the Phong exponent for the sphere from 1 to 163840.

Next, a similar set of images were rendered by using a similar Ward material where lobe

width varied from 0.01 to 0.30. Rendered images were placed in two rows from high

gloss (sharp reflections) on the left to low gloss (blurry reflections) on the right. By

sliding the row of images corresponding to Phong materials across the row of images

corresponding to Ward materials, we were able to align the images such that reflection

contrast was most nearly matched in every column. We experimented with various di-

visions for high and low gloss materials and found that the best fit occurred when Ward

materials with lobe widths > 0.05, and Phong materials with exponents < 320 were

used to calculate the low gloss indicator (xlg). Materials with lobe widths ≤ 0.05 and

exponents ≥ 320 were used to calculate the high gloss indicator (xhg) [War92, Bli77].

Figure 5.3 illustrates this calibration and division process. High contrast reflections pro-

duced by high gloss materials are shown on the left, while blurry reflections produced

by low gloss materials can be found on the right. It should be noted that Phong exponent

and Ward lobe width are inversely related.

An expanded form of the model which subdivides low and high gloss indicators is
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Figure 5.3: Breaking up low and high gloss

shown below. Since we have decided to use linear response functions for the indicators,

the fi() terms in Equation 5.6 can be dropped, because the constants contained in these

terms can be folded into the indicator weights wi, j. Also it is not necessary to explicitly

include the specular indicator variable in this formulation, because when considering

image reflectivity xi,d + xi,g + xi,s = 1, and therefore xi,s can be derived from the other

two variables. This produces the simplified expression:

âi, j = w1, j +wd, j · xi,d +whg, j · xi,hg +wlg, j · xi,lg (5.7)

Finally, we found that we could further improve the model’s ability to predict the per-

ceptual importances of the different components by adding a factor r2 that is a statistical

measure of the reliability of the data we are attempting to model. Since we are model-

ing perceptual importances that are themselves derived from regressions on the quality

scores measured in the experiments, there will be higher r2 values associated with view-

points where these regressions provided a better fit to the quality scores. The higher r2

values indicate that the reliability of the perceptual importance estimates are better for

those views. Adding r2 allows us to desensitize the regression process to viewpoints for

which importance data is less accurate. Incorporating this factor into the model produces
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the expression:

âi, j = w1, j +(1− r2) ·w2, j + r2 ·
[
wd, j · xi,d +whg, j · xi,hg +wlg, j · xi,lg

]
(5.8)

In viewpoints where initial regressions provided poor fits, the 1− r2 term will approach

1 and as a result an average term w1, j will dominate. For viewpoints where initial

regressions provided the best fits, the r2 term will dominate and as a result the metric

will be more sensitive to indicator values. With this model we were able to predict more

than 70% of the variance in the perceptual importances of the components we measured

in the experiments.

Unfortunately, these r2 values would not normally be available to a rendering algo-

rithm, since they are the product of the analysis of the data from the ranking experiments.

If we want to use this model in our final metric we need to be able to estimate r2 from

other, more accessible data. We found that the following expression:

r̂2
i = c1 + cd · xi,d + chg · xi,hg + clg · xi,lg (5.9)

is a good estimator of the r2 values we obtained from our analysis of the experimental

data. In this model, xi, j are the same indicators used by the overall perceptual metric,

while c1, cd , chg, and clg are weights fit using original r2 values obtained while modeling

image quality.

By estimating r2 values and calculating the indicator values for each viewpoint in

each scene, we were able to run regressions to determine the weights (wi, j) in Equa-

tion 5.8 that best model the perceptual importance of the indirect illumination compo-

nents for each scene. These parameters are tabulated in Appendix A.

We found that the model’s predictive power improved slightly when we excluded

viewpoint six of the office scene. In this particular viewpoint, the contrast adjustment

procedure (described in Section 4.1) added a significantly larger ambient term to the
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Figure 5.4: Computed and predicted r2 values and perceptual importances for the office

and kitchen scenes.

images than in the other cases, as a result of initial high image contrast measures. We

suspect this large addition of ambient illumination distorted experimental measures of

perceptual importances of the illumination components for this view, and made it an

outlier in subsequent analysis and models. We believe future work which improves upon

our contrast measuring technique by applying the contrast sensitivity function when

weighting contrast across spatial frequencies will avoid this distortion resulting most

likely from oversensitivity to contrast at higher spatial frequencies.

Figure 5.4 illustrates the predictive abilities of the models we have developed. Fig-

ure 5.4a compares observed r2 values(solid line) and those predicted (dashed line) by
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Equation 5.9. Figures 5.4b and 5.4c show the correspondence between the experimen-

tally measured importances (solid lines) and the importances predicted by Equation 5.8

(dashed lines) for the office scene. In Figure 5.4c viewpoint six has been removed.

Finally, Figure 5.4d shows the correspondence between the measured and predicted im-

portances for the kitchen scene. It is clear from the close correspondence between the

solid and dashed lines in these graphs, that the models are very good at predicting the

perceptual importances we measured in our experiments, and therefore should perform

well as the foundation of our perceptual quality metric.

5.4.1 Formulating the perceptual metric

Given the model for the perceptual importance of the different illumination components

defined in Equation 5.8, we can now finally formulate our full perceptual quality metric

as:

Q̂i = ai + âi,d · ID+ âi,g · IG+ âi,s · IS (5.10)

where Q̂i is the quality score predicted by the metric for an image of viewpoint i, (defined

by some composite of illumination components), âi, j’s are the perceptual importances of

the different indirect illumination components, and ai is a general offset approximately

equal to the quality of a composite consisting only of direct illumination.

5.5 Using the metric

In the previous section we formulated a new perceptual metric for predicting the vi-

sual quality of component-rendered global illumination images. In this section we will

demonstrate the metric’s predictive abilities and illustrate how the metric could be used

in an interactive rendering system.
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Figure 5.5 shows two sets of component-rendered images of the office scene. Each

of the images is positioned with respect to the visual quality scale Q̂ predicted by the

new perceptual metric. There are several factors to observe in this figure.

• First, is the correspondence between the quality values (Q̂) predicted by the metric

for these images, and the values measured in our experiment (Q), indicated by

the X’s below each scale. The similarity of the measured and predicted values

is a confirmation that the metric is indeed capable of modeling the perceptual

importances of the different illumination components and their contributions to

perceived quality.

• Next, the metric’s ability to quantify the quality of these images can also be con-

firmed by noticing the correspondence between the locations of the images along

the quality scale and the similarities and differences in their visual appearances.

Notice that on the upper scale the composites D+ ID and D+ IDGS placed near

the high end of the scale are both similar to each other in visual quality, and are of

distinctly higher quality than the composites D and D+ IGS that the metric placed

near the lower end of the scale. Similarly, the relatively equidistant positions of

the images on the lower scale, accurately reflect the moderate increments in visual

quality that can be observed by comparing adjacent images on the scale.

• Finally, the power of the metric to predict view-specific differences in the per-

ceptual importance of the illumination components can be seen by comparing the

central pair of images on each scale. On the upper scale, because of the material

characteristics of the objects in this view, the metric correctly predicts that the

indirect diffuse component makes a much greater contribution to quality than the

glossy or specular components; thus composite D+ ID is of substantially higher
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quality than composite D+ IGS. However, for the view shown on the lower scale,

where the material characteristics are substantially different, adding the the in-

direct diffuse component D + ID does not produce as great an improvement in

image quality, and conversely, adding the indirect glossy and specular compo-

nents D+ IGS produces a relatively greater improvement than it did for the other

view.

The three capabilities described above confirm that our new metric can accurately

predict both the perceptual importances of different illumination components, and the

resulting perceived quality values of component-rendered images.

5.6 A perceptually-based component renderer.

Figure 5.6 illustrates how our new metric could be used in an interactive global illumi-

nation rendering system. Assuming there are not sufficient resources to complete full

global illumination rendering in real time, a user could specify whether to optimize sys-

tem performance to a constant quality level, or a constant frame rate. Given these user

preferences, novel viewpoints could be rendered by first gathering information about the

materials visible in the current view as part of an initial direct illumination pass. Then

calculating indicator values and the perceptual importance of the indirect illumination

components. Lastly, dynamically allocating system resources to the computation of the

different components (as shown by the pie chart on the lower right of Figure 5.6); and

compositing the components for display. Taking advantage of frame-to-frame coherence

in estimating the importances and allocating resources would be likely to lead to even

further improvements in performance. Unfortunately dynamic allocation of compu-
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Figure 5.6: A hypothetical perceptual component rendering system.

tational resources using perceptual importances is a nontrivial problem. Possible solu-

tions will be explored in Chapter 6.



Chapter 6

Conclusions/Future Work

Based on our experiments we have developed a new perceptual metric for efficient, high

quality, global illumination rendering. Using the rendering-by-components framework,

the metric can predict the perceptual importances of the indirect illumination compo-

nents, and their contributions to the visual quality of the resulting image. We have

demonstrated the predictive capabilities of the metric and have shown how it could be

used in a global illumination rendering system.

An important aspect of this perceptual metric compared to others that have previ-

ously been developed, is that because it is based on simple measures of scene reflectance

values that can be gathered during calculation of the direct illumination component, it

adds negligible overhead to the global illumination rendering process. This should make

it attractive for use in interactive rendering systems.

A major goal of our research is to use such a perceptual metric to adaptively allocate

resources for rendering the indirect components in an interactive setting. In order to

build a system that achieves this goal it will be necessary to develop scalable approxi-

mation techniques for computing indirect illumination components and apply triage to

determining the optimal resource allocation for rendering indirect illumination compo-
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Figure 6.1: Possible optimal resource allocations for predominantly diffuse (left) and

predominantly specular (right) viewpoints within the same scene. For image-based so-

lutions, as visible material statistics change, it is likely optimal resource allocations will

exhibit significant changes as well.

nents. It should be noted that resource allocations have been shown to be viewpoint and

scene dependent, and will need to be computed on the fly for walkthrough and interac-

tive systems, as illustrated in Figure 6.1.

6.1 Applying a Decision Theoretic

The use of decision theoretics in rendering systems are not new. Dumont et. al. [DPF03]

used a decision theoretic for their texture cache management scheme in which they adap-

tively degraded mip-map quality in order to maintain interactive system performance.

Our work differs from their approach in that we propose subdividing the rendering of in-

direct illumination into components and adaptively allocating resources to the rendering

of each.



62

Our intention is to formulate a rendering-by-components framework such that it can

be implemented using any number of orthogonal1 indirect approximation techniques.

Unfortunately, this requirement disallows applying the same triage approach used by

Dumont et. al. in which a maximal quality solution is degraded until system constraints

are met. While sampling-based indirect approximation techniques ideally converge to

correct solutions over time, it is impossible to specify when solution quality is max-

imized due to their asymptotic convergence nature. Fortunately, three possibly valid

alternative approaches to triage exist.

The simplest approach, hill climbing, is an iterative technique that can be applied

by beginning without allocating any computational cycles to any of the indirect com-

ponents. Additional computational cycles are iteratively allocated to the approximation

technique that will most benefit from increased computational resources. This process

continues until all computational cycles have been allocated. This iterative approach is

illustrated in Figure 6.2.

A second approach to triage requires searching for the optimal resource allocation

by transitioning between complete resource allocations using more intelligent search

methods such as simulated annealing. Such techniques are more likely (or in the case of

simulated annealing, guaranteed) to find the optimal resource allocation instead of get-

ting stuck in a local maximum, as illustrated in Figure 6.3. In addition, if one begins the

search process at a state close to the optimal solution, faster convergence will take place.

Assuming viewing positions change slowly from frame to frame as a user explores an

environment, and visible material statistics are a function of viewpoint, changes in such

data can safely be assumed to be continuous. Since our perceptual metric is based on

visible material statistics, it follows that deviation of optimal resource allocation from

1When compositing indirect components to produce global illumination images, no
two indirect reflection components are allowed to capture the same energy transfer.
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Figure 6.2: An example of an iterative hill climbing approach to resource allocation.

Additional resources are allocated until an overall budget has been exhausted.

frame to frame will be small, or more simply put, the optimal resource allocation will

most likely be very similar to that from the previous frame. By starting with the last

known optimal resource allocation, it is likely that significantly faster convergence can

be achieved.

Finally, it may be possible to solve analytically for the optimal resource allocation.

It should be noted that none of these hypotheses have been tested within the scope of

this thesis.
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Figure 6.3: When searching for the optimal distribution of resources, hill climbing ap-

proaches can get stuck in local maximum. When applied properly, simulated annealing

techniques are guaranteed to find the optimal solution.

6.2 Cost Quality Functions

In order to conduct triage, cost-quality functions for each approximation technique will

be required. Cost-quality functions measure perceived quality of an approximated in-

direct component after a specified number of computational cycles have been utilized.

While cost-quality curves for a particular indirect approximation technique may vary

slightly across viewpoints, they are likely to retain similar shape and size. A series of

psychophysical rating experiments could be run in which subjects rate the perceived

quality of a series of approximations of an indirect illumination component which are

computed using varying budgets. Linear interpolation, or more advanced fitting meth-
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ods, can then predict the perceived quality of an approximated indirect component for a

given allocation of computational resources. Figure 6.4 provides an example of a cost

quality function, and how one might interpolate sampled quality data in order to predict

approximate solution quality in between sampled budget allocations. We suggest fu-

ture work verify the effects on image quality that result from using intermediate indirect

component approximations.

In order to take into consideration approximation convergence rates in addition to

predicted perceptual importance values, we suggest future research combine these mea-

sures by scaling each cost-quality curve by the perceptual importance of the particular

indirect illumination component using the perceptual metric. For example, if individuals

are likely to find indirect diffuse illumination significantly more important than the other

indirect components, it follows that a decrease in quality of an indirect diffuse approxi-

mation will result in a larger decreases in overall image quality than those which result

from equal decreases in quality of the other indirect component approximations. Our re-

search has shown that perceptual importance is a function of viewpoint and scene, thus

we suggest performing this scaling operation every frame following evaluation of the

perceptual metric, before the optimal resource allocation is found. Figure 6.5 illustrates

this scaling process.

6.3 Additional Future Work

While our research has concentrated on modeling the perceptual importances of the pure

indirect diffuse, glossy, and specular illumination components, it is important to note

that our rendering-by-components framework allows for future systems to approximate

global illumination solutions using larger sets of indirect approximation techniques. Ad-
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into consideration the quality of approximated components as they improve over time.
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Figure 6.5: In order to incorporate perceptual importance data, cost-quality curves might

be scaled before solving for the optimal resource allocation.

ditionally, while we outlined a system which must perform triage every frame, running

triage asynchronously at a reduced frame rate and interpolating resource allocations for

in between frames should be explored. Not only would this remove the requirement that

triage be completed fast enough to facilitate interactive rates, an asynchronous approach

would force changes in resource allocations to be gradual, possibly reducing any tempo-

ral artifacts that may result from changing computational resource allocations over time.

Computational budgets provided by either approach must then guide approximation of

indirect illumination components in the proposed rendering by components framework.

The results of these approximation techniques combine with a direct illumination solu-
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tion to form an optimal global illumination solution given system constraints.

In addition to developing triage and approximation techniques, a number of tasks

remain before the rendering-by-components framework we envision becomes a reality.

Improvements to the material-based indicators used to estimate the importance of the

indirect glossy component should be explored, in addition to finding more meaningful

ways to divide the wide range of surface reflectance properties that are currently defined

as glossy. Previous work at Cornell’s Program for Computer Graphics [PFG00] might

provide a useful starting point. Unfortunately, parameters used in the current metric are

viewpoint independent, but must be tuned for a particular scene. As a next step, it would

be interesting to generalize the metric so it can automatically adapt to different scene

characteristics. Finally, there is always much more work to be done to increase our un-

derstanding of human perception to develop more sophisticated and effective perceptual

metrics for global illumination rendering and other aspects of computer graphics.

While it is clear there is much work to be done, we believe the perceptual metric

and associated rendering by components framework discussed in this thesis will enable

the development of an important new class of efficient global-illumination rendering

systems that can intelligently allocate limited computational resources between compo-

nents of the global illumination simulation to provide high quality renderings at interac-

tive rates.



Appendix A

Parameters used in the metric

Predicted r2 values:

c1 cd chg clg

6.07 -5.26 -8.52 -4.74

Predicted importance factors: office scene

w1 w2 wd whg wlg

Indirect Diffuse: -3097.21 2566.22 3206.90 0 2911.57

Indirect Glossy: 5344.02 -4439.80 -5529.39 0 -5026.76

Indirect Specular: 1730.64 -1446.58 -1789.08 0 -1630.97

Predicted importance factors: kitchen scene

w1 w2 wd whg wlg

Indirect Diffuse: -0.509 0.80 1.08 0.49 1.70

Indirect Glossy: -12.12 11.20 13.28 21.64 6.37

Indirect Specular: 5.45 -4.97 -5.54 -7.66 -3.65
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