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ABSTRACT

Endovascular aortic aneurysm repair promises to provide great advantages over

traditional open surgery. Though this nascent form of treatment has already been

demonstrated to be safer and easier for the patient, there is a strong need for

technological advances which can improve precision and simultaneously reduce the

amount of human effort involved in planning surgery. Computational analysis is

also essential in predicting the future behavior of endovascular stent grafts, because

at this stage there is very little empirical knowledge of long-term stent dynamics.

We present a geometric analysis procedure which aims to address this need. Our

goal is to begin with CT scan data collected from aortic aneurysm patients and to

produce a fully analytical model of the patient’s arterial geometry with minimal

user interaction. The product of this highly automated process can be a powerful

tool for surgery planning and stent design. Furthermore, it provides a basis upon

which computational fluid dynamics and mechanical behavior simulations can be

built. The analytical nature of this representation allows for direct mathematical

analysis or for arbitrarily precise discretization.

Our geometric analysis begins with a voxel segmentation. The segmented data

set is then used as input into a unique robust centerline extraction procedure.

This centerline then serves as the basis for an analytical fitting procedure which

produces a lofted B-spline surface model. After describing this analysis process in

detail, we present results from three input datasets.
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Chapter 1

Introduction
Aortic aneurysm rupture ranks 13th among leading cause of death in the United

States, killing 15,000 people every year. Traditional aortic aneurysm repair in-

volves highly invasive and traumatic surgery. Recently, minimally-invasive repair

techniques have emerged as a viable alternative to open surgical repair. These

techniques can benefit greatly from computational analysis.

1.1 Aortic aneurysms

An aneurysm is a weakening of the wall of a patient’s artery. The arterial lumen,

the space within the artery through which blood flows, becomes enlarged as blood

pressure deforms the arterial tissue. Left unchecked, an aneurysm can rupture, a

lethal event.

The aorta is the main artery leaving the heart. An aneurysm of the aorta is of

exceptional concern; due to the volume and pressure of blood flowing through the

aorta, a rupture is very likely to result in death.

With modern medical imaging techniques, an aortic aneurysm can be detected

before it becomes life-threatening, and the unreliable portion of the blood vessel

can be repaired.

1.1.1 Traditional repair

The conventional method of repairing an aortic aneurysm is a highly invasive one.

An incision is made running the length of the patient’s torso in order to access

the aorta. The aneurysm is cut out and replaced with a graft. A patient typically

1
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Figure 1.1: An aneurysm is a weakening of the arterial wall, causing a bulge

in the artery. Aneurysms of the aorta are likely to be fatal if allowed to grow

unchecked. Image courtesy of Doctor Roy K. Greenberg, Cleveland Clinic.
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spends weeks or months in recovery, and can be at high risk of infection or other

complications.

1.1.2 Endovascular repair

As an alternative to traditional invasive aortic aneurysm repair, engineers and sur-

geons have developed endovascular repair techniques. In endovascular aneurysm re-

pair, a bracing stent is implanted into the patient’s aorta by tools inserted through

a small incision in an artery in the groin. The stent begins in a compressed form.

It is positioned carefully and then unfolded. Once the procedure is complete, the

stent takes on the full force of blood flow, relieving the arterial wall of the pressure.

Endovascular repair has marked advantages over open surgical repair. The

greatly reduced amount of damage to healthy tissue means healing can happen

much more quickly and safely. Patients typically can resume their normal activity

after one or two weeks, and are less likely to develop complications.

Though it is enjoying greater and greater success, endovascular repair is still an

experimental treatment. The technological sophistication of the procedure, though

quite impressive, is still in great need of augmentation.

In planning the endovascular repair surgery, the stent must be designed to

specifically fit the patient’s anatomy. At present, anatomical information is col-

lected via 3-D medical imaging techniques. Scans of the patient are then analyzed

by the surgeon and engineers, who determine the appropriate specifications for a

stent. 3-D printing techniques are sometimes employed to aid in this analysis. The

stent is modeled with computer aided design, and then manufactured according to

these precise parameters.

This planning procedure has two notable weaknesses: geometric complexity and
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Figure 1.2: Renderings of medical scans of an aortic aneurysm patient with a

stent implanted. The stent bears the stresses of blood flow, effecting a repair of the

aneurysm. Images courtesy of Dr. Roy K. Greenberg, Cleveland Clinic.
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Figure 1.3: A rapid prototyping device is sometimes employed to produce a real-

life 3-D model of the patient’s anatomy. This model is used in the design of a stent

tailored to the patient’s arterial geometry. Courtesy of Dr. Roy K. Greenberg,

Cleveland Clinic.
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Figure 1.4: Each stent is designed specifically for the patient it is intended for.

The surgeon prepares a specification describing the geometry required. Courtesy of

Dr. Roy K. Greenberg, Cleveland Clinic.
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user-intensiveness. The amount of measurement a human can perform on a 3-D

scan is limited, so patients with complex and tortuous arterial geometry are poor

candidates for endovascular repair. Currently stents are essentially cylindrical, or

“Y”-shaped with cylindrical branches. Furthermore, determining the specifications

and designing the stent involves a great deal of effort and time from those whose

time is very valuable.

Figure 1.5: Stents used for endovascular aneurysm repair. The design of the

stent is such that it can be collapsed into a very narrow compact form which can be

fed through narrow arteries. Note the relatively simple geometry of current stents.

1.1.3 Convergence

Modern 3-D medical imaging techniques are rapidly improving, in both resolution

and dynamic range, and can now collect far more data than can be usefully pro-

cessed by a human operator. Computational analysis provides a means to make

use of all this information.
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In our work we have sought to leverage processing power in order to simultane-

ously reduce the amount of user effort required in the surgery planning process and

improve the reach of minimally invasive aortic aneurysm repair to more patients.

The scanning step of the surgery planning process involves CT scans of two

imaging modalities: the native scan representing the patient’s anatomy directly,

and the arterial scan performed with a dye injected into the bloodstream, increasing

the contrast of the arterial lumen.

The convergence of these imaging modalities with our computational analysis

techniques has allowed us to generate a fully analytical description of the complex

geometry of a patient’s aorta and its main branches, in a highly automated fashion.

We have developed a centerline extraction procedure which involves minimal user

interaction. The extracted centerline then provides the foundation for a surface

fitting procedure.

The result of this procedure is a compact representation of the patient’s arte-

rial anatomy which can be analyzed directly or discretized with arbitrary precision.

This description can serve as a powerful input for stent design and also for simu-

lation models for stress analysis and computational fluid dynamics.

1.2 Organization

The remainder of this thesis is organized as follows: Chapter 2 briefly reviews

medical imaging techniques and outlines previous work in centerline extraction.

Chapter 3 describes our centerline extraction algorithm. Chapter 4 details our

analytical curve and surface definitions and the fitting procedures. Results of our

analyses are presented in Chapter 5, and we conclude with a discussion of our work

and possible future research in Chapter 6.



Chapter 2

Previous Work
This chapter will first give a brief review of the medical imaging techniques and

then outline the basic concept of centerline extraction. Furthermore it will discuss

previous work relating to the centerline extraction task, enumerating the various

approaches researchers have taken in the past.

2.1 A brief review of medical imaging modalities

The development of modern medical imaging began in 1895 when Wilhelm Roent-

gen discovered that a screen coated with barium platinocyanide would glow when

exposed to the emissions of a Crookes tube. He found that the emissions could

not be the cathode rays he expected because they went straight through physical

objects and traveled far beyond the few centimeters a cathode ray can manage

before absorption. It did not take him long to begin experimenting with a variety

of objects placed in the path of this new type of radiation, which he dubbed the

“X-ray.” He found X-rays could travel through relatively lightweight material eas-

ily but were attenuated by dense material. The most shocking result was found

when his hand fell into the path of the radiation: on the screen he saw the bones

inside his fingers. He could see inside his body.

Before the advent of the X-ray radiograph, it was impossible for a doctor to see

what was happening within a patient without exploratory surgery. It is difficult

to imagine the relative ignorance of the inner workings of a living person, and the

subsequent imprecision in diagnosis and treatment of injury and disease, prior to

this technology.

9
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Medical imaging has advanced greatly since the late 19th century. Paired with

the powerful capabilities of modern computers, the magical abilities of medical

imaging instrumentation have literally allowed a new dimension in analysis, three-

dimensional imaging techniques which have the potential to provide accurate in-

formation about the geometry of the scanned subject. Early 3-D medical imaging

techniques were iterative extensions of 2-D techniques; the images consisted of

series of 2-D images. More advanced and sophisticated 3-D imaging is now capa-

ble of collecting and visualizing the patient’s anatomy in three fully independent

dimensions.

There are four commonly employed 3-D medical imaging modalities in use

today: ultrasonography, computed tomography, magnetic resonance imaging, and

positron emission tomography. It is important to understand that there exists

great variety in implementations and that the technology is constantly advancing,

but each of these four techniques will be briefly explained here.

2.1.1 Ultrasonography

Medical ultrasonography (often called ultrasound or simply US) was invented in

1953 by Inge Edler and Carl Hertz. Their intention was to image the interior of a

human body using sound, and they developed an effective system.

The patient’s inner anatomy is imaged using short-wavelength sound waves.

The speed of sound through any particular medium is dependent on the density

of that medium, and when a sound wave crosses an interface between media of

differing density, a portion of the wave is reflected back. This is much like the

behavior of light at an interface between media of differing indices of refraction.

Ultrasonic receivers measure both the time offsets and the intensities of these
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reflections and construct an image from these data.

Initially, this yielded a two-dimensional ultrasonograph. These 2-D sonograms

are still very commonly used today. However, recent advances have allowed ultra-

sound imaging to reconstruct three-dimensional data. There exist several different

methods for producing volumetric data from ultrasound scans, but they generally

involve collecting multiple 2-D slices as samples of the desired 3-D dataset, and

then extrapolating and interpolating any missing information.

Data collected from 3-D ultrasound is typically either cylindrically sampled

or sampled along a helix. 1 It is often then resampled along a regular grid for

processing and visualization.

2.1.2 CT

Computed tomography (abbreviated CT or sometimes CAT for computed axial

tomography) is an x-ray technique that makes heavy use of computer processing.

It was invented in 1972 by Godfrey Hounsfield. The concept is relatively straight-

forward: an x-ray detector placed opposite from an x-ray emitter can record the

integral of x-ray opacity along the line between the detector and emitter. If enough

data is collected about these integrals, a computer can reconstruct the x-ray opac-

ity at individual three-dimensional points.

After reconstruction is complete, the resulting data is typically in the form

of numerous parallel two-dimensional slices. These can then be processed as a

1It is important to understand that whether the samples are taken at regularly-
spaced points in a cylindrical coordinate system or at regularly spaced points
along a helix, neither dataset is ready for visualization on a rectangular display.
Though each rotation of the helix closely approximates a plane, as does each slice
of a cylinder, a proper resampling step must be performed in order to give the
physician an accurate understanding of the patient’s anatomy.
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three-dimensional voxel grid.

2.1.3 MRI

Conceived in 1970 by Raymond Damadian, magnetic resonance imaging, or MRI,

works on the concept of nuclear magnetic resonance. Electromagnetic radiation of

the correct frequency can cause an atomic nucleus to absorb the incoming energy

and enter an excited state. When the nucleus decays back to the stable state, it

re-emits the captured energy. MRI scanners use radio frequency pulses that cause

this interaction with hydrogen atoms.

Once the atoms are in the excited state, the scanner collects data through RF

detectors that record how long the atoms took to decay and what the relative

density is. This is indicative of the nature of the tissue. The resulting image is

generally displayed as slices similar to CT scan data.

2.1.4 PET

The concept behind positron emission tomography, or PET, was first explored in

the 1950s by Michael Ter-Pogossian. It slowly evolved to its current state, but the

basic idea has remained the same: A dye containing a positron-emitting radioactive

substance is injected into the patient. The positrons emitted by the dye annihilate

with nearby electrons and emit photons. These photons are emitted in pairs and

in opposite directions. Photon detectors pick up the photon emissions and then,

much as in CT scanning, compute a 3-D image of the subject. Again, this data is

generally examined in the form of 2-D slices of the 3-D dataset.
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2.2 Centerline extraction

Our goal in this work is to extract the geometry of the arterial lumen from the

processed output of a CT scanner. We need to select a method of 3D geometric

representation appropriate for this goal. We have chosen to first extract the cen-

terline of the lumen and represent this as a continuous B-spline. The surface of

the lumen is then created using a lofting technique. This approach results in a

concise representation of complex geometry which can be analyzed or discretized

with arbitrary precision.

The concept of a centerline is intuitively simple. The centerline of an elongated

three-dimensional volume is a one-dimensional curve outlining a path along the

center of the volume. If the object’s structure is “treelike,” then the centerline

should also take the form of a branching tree.

However, there is no generally accepted formal definition for a centerline. In

fact, it would not be inaccurate to say that every proposed automated centerline

extraction algorithm is in fact a definition of the term, much as a mathematical

proof-by-construction is simultaneously an algorithm and a proof of existence.

There are, however, commonalities between centerline extraction approaches.

Almost universally, they deal with data of the same form. The data are in the

form of 2-D slices which make up a voxel set. The sampling density is generally

somewhat higher within the slices than between slices, but the format of the data

is basically that of a regular grid of scalar values, with anisotropic resolution.

The significance of each scalar value depends on the imaging modality; however,

it is generally the case that tissues of different type have significantly different types

of values. It is on this basis that the voxel dataset can be segmented. Once the

desired object’s volume has been segmented from the background, it has the form
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of a set of voxels with a binary labeling – each voxel is either “in” or “out.” It is

within the “in” subset that the centerline is sought.

Existing automated centerline extraction algorithms can generally be grouped

into three broad categories: peeling, shortest-path construction, and distance-

based approaches.

2.2.1 Peeling

Peeling algorithms generally consider the centerline to be a subset of the set of

voxels making up the object. Their goal is to remove all voxels which are not

part of the centerline; what remains, then, is the centerline. They get their name

from the analogy to peeling an onion. They are also often referred to as thinning

algorithms [Bru01][GS99].

The iterative step of these algorithms is to remove the outermost layers of vox-

els, while simultaneously maintaining certain invariants. These invariants include

the overall topology of the object, the presence of the voxels at the beginning and

end of the line, and – depending on the particular implementation – continuity of

the voxel set.

3-D peeling algorithms draw inspiration from 2-D peeling algorithms which

were developed to determine skeletons of 2-D shapes. Unfortunately, the complex-

ity rises dramatically when the algorithm is generalized to 3-D. A point whose

removal would not affect the topology of the shape is called a simple point, and in

the two-dimensional case, it is a relatively simple matter to examine each point’s

neighbors and determine the point’s importance. In the three-dimensional case,

the number of cases rises geometrically and one must use rules and classes of cases

rather than tracking each case individually. Moreover, due to the sheer volume of
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points and the requisite numerous iterations, peeling algorithms are computation-

ally expensive.

There have been successful attempts to overcome these difficulties, however. A

great deal of research has been done on how to quickly classify points and perform

thinning in a parallel manner. Ma and Sonka developed what they call a fully

parallel 3D thinning algorithm, which can be applied simultaneously to all voxels

in the object [MS96]. It makes use of a set of deleting templates. If a point’s

neighborhood matches a generalized template after rotation and/or reflection, the

point is judged simple. The templates are structured such that the deletion of

simple points can be performed in parallel.

Ma and Sonka’s algorithm works well on smooth computer-generated data sets,

but falls somewhat short when subjected to noisy real-life input.

2.2.2 Shortest-path construction

Shortest-path construction approaches make use of graph algorithms, particularly

Dijkstra’s shortest-paths algorithm [Dij59]. Dijkstra’s algorithm, given a graph

and a node marked as the source, determines the distance from the source to every

other node in the graph. This distance, measured at every node, is the distance

from source field.

To begin, a graph is constructed with the same topology as the voxel set. Each

node represents a voxel, and is connected by an edge to each node representing

its physical neighbors. The length of each edge is chosen to reflect the physical

distance between voxels.

A beginning voxel and an ending voxel are chosen, and the shortest path

through the graph is computed through their nodes. The resulting series of nodes
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is mapped back to a series of voxels, which represent the centerline through the

object [ZT99].

Without other modifications, this technique has a clear weakness dealing with

objects of high curvature; the shortest path through the object tends to hug the

inner edge of corners, taking the “racing line” through the object, as demonstrated

in Figure 2.1.

"shortest−path"

Lumen boundary

centerline

Dijkstra’s

True
centerline

Figure 2.1: Simple Dijkstra-based centerline algorithms tend to choose center-

lines that get very close to the object’s boundaries in areas of high curvature. This

“cutting-corners” effect is not surprising given that the purpose of Dijkstra’s algo-

rithm is to identify the shortest path. The solid blue curve shows an example of

what a shortest-path construction might yield. Note the significant deviation from

the dotted red line representing the true centerline.

Another obvious shortcoming of simple Dijkstra-based approaches is that they

do not offer a clear extension to allow for bifurcating shapes, or any shape without
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a cylindrical topology. This is, however, often not a material weakness, as there are

many useful cases where the object in question is indeed cylindrical in topology.

There are several ways of dealing with this difficulty. Samara et. al. explored

clustering voxels of similar distance from the source, in hopes of exploiting the

longitudinal shape of a human colon imaged with a CT scan [SFD+99]. The

centerline extracted this way was refined with the volumetric data, attempting to

pull towards the center of the lumen. This helped somewhat, but their results still

showed errors in regions of sharp curvature.

Bitter et. al. also experimented with methods of introducing “penalties” to

Dijkstra-based algorithms, so as to encourage the resulting centerline to avoid

voxels close to the boundary of the object [BKS01]. They increase the complexity

of the graph by splitting each edge into three edges, with two dummy nodes added

in between. The middle of the three new edges carries the same weight as the

original edge, while the other two are available to provide extra weight to any path

that may traverse them. They called this the penalized distance from end field,

and compute the centerline using this more complex graph with good results. See

Figure 2.2 for a visual explanation. Still, it cannot capture tree-like topologies.

2.2.3 Distance-based approaches

Distance-based approaches make use of the distance between a voxel and the

boundaries of the object. There are a wide variety of algorithms which fall into

this category.

Some proposed approaches are based on the medial axis transformation [SPB95].

The medial axis transformation of a volume is the locus of the largest spheres which

fit within that volume. The centers of these spheres are then presumed to lie along
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Figure 2.2: Bitter et. al.’s approach to improving graph-based centerline extrac-

tion involves increasing the number of nodes in the graph by a factor of 27 and

the number of edges by a factor of three. In (A) we see the original distance-from-

source field. Each voxel is represented by a node, connected by an edge to each of

its neighbors. Each edge’s weight represents the distance between two voxels. The

overall cost of a path between two voxels is equal to the distance between them. In

(B) we see the penalized distance from end field, constructed by splitting each edge

of the DSF into three edges, with dummy nodes spliced in. The new edges, drawn

with dashed lines, have their weights set to penalty values chosen by the algorithm.

Thus the overall cost of any particular path is equal to the distance between the

endpoints plus the penalty costs of the new edges.
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the centerline of the object.

Figure 2.3: An example of a maximal sphere. The medial axis transformation

consists of the locus of all such maximal spheres. Figure from [AEIR03].

Like peeling algorithms, medial axis-based algorithms were originally developed

in 2-D, and suffer from problems which are much more easily solved in 2-D than in

3-D. Difficulty arises due to the fact that the number of spheres in the medial axis

transformation is relatively small, and therefore the centerline is sparsely sampled.

There are good ways to resolve the lack of connectivity in 2-D situations, but

ambiguities arise in 3-D which are only worsened by the presence of noise.

Dey and Zhao approximate the medial axis transformation of a 3-D volume

using a Voronoi diagram [DZ02]. A Voronoi diagram is a partitioning of a space

containing marked points, such that each partition contains exactly one marked
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point, and that marked point is the closest marked point to all points within the

partition. Figure 2.4 shows a 2-D Voronoi diagram; in 3-D it would be a partition

of 3-space rather than of a plane.

Figure 2.4: An example of a 2-D Voronoi diagram. Each dot represents a marked

point. The plane is partitioned such that each partition contains exactly one dot,

and that dot is the closest dot to all points within the partition.

They sparsely marked points along the boundary of the object and then filtered

through the results of the Voronoi diagram computation. While they did not take

the step of deriving a centerline from it, they did achieve some success in computing

an approximate medial axis transformation. However, their algorithm was rather
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sensitive to the values of a few certain parameters, and susceptible to noise. A

post-processing smoothing step was required to reduce this problem.

Other distance-based centerline extraction approaches make use of the distance

transform of an edge-detected data set [BSB+00]. The distance transform of a

boolean array (be it a 3-D voxel array, a 2-D pixel array, or even a linear array) is

a labeling of each element with the distance to the nearest true element.

Telea and Wijk [Tv02] developed a centerline extraction algorithm which they

call an augmented fast marching method. It was developed as a 2-D algorithm.

First, the boundary of the object is parameterized, so that the value of a smoothly

varying parameter can be used to signify a particular point along the edge of the

object. Then, the distance transform of the edge-detected object is computed

by iteratively marching inwards from the boundaries. As the algorithm marches

inwards, at each point it records the mean parameter value of the boundaries

from which it originated. This provides a record of the “source” of the distance

transform number at each point. The centerline is then simply the result of a

simple edge detection operation on the image of these parameter values.

Telea and Wijk then extend the algorithm to produce 3-D centerlines in a

different way: rather than attempting to generalize the algorithm to 3-D, they

compute 2-D centerlines for every slice of constant x, y, or z. These slices are then

all intersected to yield a 3-D centerline. This approach works fairly well, although

there is no guarantee of connectedness in the resulting centerline.

2.3 Summary

The problem of centerline extraction has been attacked many times, resulting in

many different approaches. While they can generally be placed into one of three
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Figure 2.5: An overview of Telea and Wijk’s augmented fast marching method.

The procedure begins with an input image (A). First the image is edge-detected

and parameterized (B). In this diagram, the color of the border pixel represents the

value of the parameter. Then the marching process takes place, carrying parameter

values inwards (C). The derivative is computed (D), and finally the derivative is

thresholded to provide an edge detection (E). Image from [Tv02].
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broad categories, each centerline extraction algorithm has specific goals and a par-

ticular form of input for which it is designed. In our case, our goal is to extract the

centerline of the human aorta and main arteries from CT scans, and therefore our

algorithm is geared towards handling bifurcations and tortuous curvatures. Mean-

while, we can rest assured that the source data is collected in a controlled manner,

that the scan is performed with the subject in a controlled orientation, that the

samples contain as little unnecessary noise as possible, and that the voxels are sam-

pled regularly in a well-defined way. While all the outlined approaches provided a

foundation for our work, we specifically drew inspiration from the distance-based

methods in developing our algorithm.



Chapter 3

Centerline extraction
The overall goal of our work is to extract geometric information from biological

CT scan data. The specific goal of this research is to determine the centerlines of

a patient’s aorta and major arteries, and to use that information to construct a

preliminary model of the arterial lumen’s surface.

This chapter will first explain the type of data we receive. It will then provide

an overview of the entire centerline extraction process we have developed, and then

explain each step in detail.

3.1 Our data

The initial data is collected by a CT scan machine. The CT scans are performed

in anticipation of abdominal aortic aneurysm repair. Proprietary processing algo-

rithms are employed within the CT scan machine in order to interpret and sample

the data, and the output is in the form of a three-dimensional regular grid, pre-

sented as a series of horizontal slices perpendicular to the patient’s axis.

Within each slice, sample density is fixed at approximately 1.595 linear samples

per millimeter; the samples are roughly 0.627 millimeters apart. The axial sample

density, however, can vary. We make use of both “3mm” scans and “1mm” scans.

In a “3mm” scan, slices are sampled 3 millimeters apart. The higher-resolution

“1mm” scans are misnamed – in actuality slices are sampled approximately every

0.8 millimeters.

Each scan can also be performed in one of two modalities. A standard scan

performed on a patient who has not been otherwise prepared is known as a native

24
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scan. In a native scan, the recorded intensity value for each sample is representative

of the x-ray opacity of the corresponding portion of the patient’s tissue. An arterial

scan can also be performed. In an arterial scan, an x-ray opaque dye is administered

to the patient, typically via intravenous injection. This dye flows through the blood

vessels and highlights them in the scan by greatly increasing their opacities. In an

arterial scan, the recorded intensity of each sample does not directly represent the

opacity of the inside of the patient’s arterial lumen. Examples of data from each

modality are shown in Figure 3.1.

For each patient, both a native and an arterial scan are performed. Naturally

the arterial scan is performed after the native one. Because the scans are intended

primarily for human use rather than for computerized processing, the native scan is

only a 3mm scan, while the arterial scan is performed at the higher 1mm resolution.

3.2 Overview of procedure

There are seven steps to our centerline extraction process. First is preprocessing,

which conditions the data in preparation for the rest of the process. Next is

segmentation: isolating just the portions of the voxel dataset which are part of

the arterial lumen. After that, the next step is edge detection, in which the voxels

at the borders of the lumen are identified. Then the distance transformation of

the edge detected dataset is computed. From there, the vector gradient of the

distance transform, and then a novel scalar derivative of the vector gradient field,

is calculated. The final step is identification of the centerline of the lumen. The

resulting data is ready for the analytical fitting stage described in the next chapter.

These steps are shown in Figure 3.2.
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Figure 3.1: To improve visualization, CT scans often make use of a contrast dye.

This dye is generally either injected intravenously or taken orally, and is opaque

to x-rays. A scan performed without this dye is called a native scan, and a scan

performed with it is called an arterial scan. Above are examples of native (A) and

arterial (B) CT scan slices. Note the difference in the arterial lumen’s appear-

ance. Note that these images have both been contrast-enhanced to demonstrate the

difference.
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3.3 Preprocessing

As explained above, the two scans we begin with are performed at different reso-

lutions. Naturally, they are also performed at different times. The purpose of the

preprocessing step is to make these two datasets compatible.

Preprocessing involves two substeps. First, the low-resolution native scan must

be upsampled to match the higher resolution of the arterial scan. Second, the two

datasets must be registered to one another. This way, a particular voxel in one

dataset correctly corresponds to the same voxel coordinates in the other dataset.

3.3.1 Voxel resampling

The first preprocessing substep is voxel resampling. The low-resolution native scan

is upsampled to the resolution of the arterial scan. When the dataset is resampled

this way, interpolation is needed to fill in the missing information.

There are many ways this interpolation can be performed. The simplest is

“nearest-neighbor” sampling, where the value of the closest sample is chosen. Such

a simplistic approach – which cannot even be realistically considered to be inter-

polation – tends to result in heavy aliasing artifacts.

A more sophisticated method of upsampling involves using linear interpola-

tion to estimate the value of the image at points between samples. With a 1-D

image, linear interpolation is easy to understand and compute. In 2-D, however,

a naive approach to interpolation requires computation of Euclidean distances to

determine the appropriate weights for the four samples of interest. This problem

is compounded in 3-D. Fortunately, there is a computationally efficient way to

perform multi-dimensional linear interpolation. Bilinear (in 2-D) or trilinear (in
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3-D) interpolation performs the interpolation along one dimension at a time, as

indicated in Figure 3.3.

More sophisticated than linear interpolation is quadratic or cubic interpolation,

performed in a similar manner as bilinear or trilinear interpolation. In our tests,

however, quadratic and cubic interpolation yielded very nearly the same results

as linear interpolation (see Figure 3.4), so the extra processing was not deemed

worthwhile.

3.3.2 Voxel registration

The second preprocessing step is registration. After the native scan is upsam-

pled, the two voxel datasets have the same sample density; but because they were

collected at different times, the coordinates do not necessarily correspond directly.

This mismatch can be due to external movement of the patient, internal movement

of the patient’s organs, or movement of the scanner’s sensing array.

In order to make use of both the native and arterial datasets, it is necessary

that we register them to one another, so that correspondence between points is

known. We perform this registration using a simple maximization algorithm. We

specify the registration quality Q of a particular pair of datasets A(x, y, z) and

B(x, y, z) to represent the closeness of the match:

Q =
∑
x,y,z

√
A(x)B(x) (3.1)

This sum is essentially a convolution of the two datasets, except that the square

root is taken in order to avoid excessively large sums. This matching metric rewards

peaks matching other peaks. It also indirectly penalizes valleys not matching other
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Figure 3.3: Linear interpolation between voxels must be performed in a trilinear

fashion. First, interpolation is performed in the x direction according to the u

parameter (the distance to the nearest sampled x coordinate). This yields four

interpolated samples at the correct x coordinate. Interpolation is then performed

along the y direction between these two samples, according to the v parameter. This

yields two interpolated samples at the correct x and y coordinates. A third linear

interpolation is performed along the z direction according to the d parameter.
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Figure 3.4: Interpolation yields less aliased results than nearest-neighbor sam-

pling. In (A) we see our original low-resolution image which we wish to upsample

to a higher resolution. In (B) we see the results of a simple nearest-neighbor sam-

pling. Notice the aliasing artifacts apparent as jagged boundaries. In (C) and

(D) we see the results of bilinear and bicubic interpolation respectively. Notice the

greatly improved output, and also the very small difference between linear and cubic

interpolation.
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valleys. 1

A simple search is performed through various reasonable translations to identify

the one which maximizes the quality function Q. The translated native dataset is

then used for the rest of the centerline extraction process.

3.4 Segmentation

The second step of the procedure is segmentation. The voxel data we begin with

contains samples over the entire abdomen of the patient. The goal of segmentation

is to isolate only the voxels contained in the region of interest. In our case, these

are voxels within the arterial lumen.

It is generally the case that computers are good at tasks at which humans

are poor, and vice versa. This is no exception; image segmentation is performed

continuously and automatically in the human visual system, but difficult to encode

computationally.

We approach segmentation using three separate substeps: intensity cropping,

intersection, and connected components. These substeps are explained below.

3.4.1 Intensity cropping

Each sample in a CT scan has an intensity representative of that volume’s opacity

to x-rays. Since every type of material has a characteristic opacity, a preliminary

segmentation can be performed simply by cropping according to intensity.

We perform this intensity cropping procedure on both input datasets. It is an

interactive step requiring user input. The user is presented with the dataset in

1Consider the case where a peak is matched with a valley. The small value of
the product minimizes the peak’s potential contribution to the overall registration
quality number.
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slice form, as no usable volumetric rendering is yet possible. Simultaneously, a

histogram representing intensity frequency in the slice is displayed.

The user must select upper and lower intensity bounds on the histogram. The

user is provided with realtime feedback demonstrating the results of such a cropping

operation. Because of the feedback, and because each type of tissue is represented

as a local peak in the histogram, this operation only takes a few seconds for the

user to perform. Once the two bounds have been inputted by the user, the intensity

cropping computation is performed very quickly. These bounds are quickly and

easily entered by clicking on an image of the intensity histogram for one slice, and

the same bounds are applicable to the remainder of the voxel dataset.

Unfortunately, simply performing intensity cropping does not yield a properly

segmented volume in either the native or arterial scans. In the native scan, we

found that the abdominal viscera tended to have similar intensities to the arterial

lumen. Meanwhile, in the contrast scan, we found that the more opaque lumen

actually closely matched the intensity of the patient’s bones.

3.4.2 Intersection

In order to further improve on the segmentation achieved with simple intensity

cropping, we then make use of the additional information we have. The cropped

native scan consists primarily of a union of the abdominal organs and the arterial

lumen. The cropped arterial scan, meanwhile, consists primarily of a union of the

skeletal structure and the arterial lumen. The intersection of these two volumes,

then, represents a volume much closer to the isolated arterial lumen.

In the intersection step, we take the intensity-cropped arterial scan and remove

all voxels not present in the intensity-cropped native scan. As shown in Figure 3.7,
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Figure 3.5: Pictured above are four examples of intensity cropping. In each

case, the intensity histogram is shown next to the image of a slice. The portion

of the histogram within the user-specified intensity bounds is highlighted in light

gray. In (A) we see a slice of the original dataset and the corresponding histogram

of intensities. In (B) we see the patient’s bones are clearly revealed by cropping

a particular range of intensities. In (C) we segment the air inside the patient’s

lungs. In (D) we segment the water inside the body. Note that the arterial lumen

shows up clearly in this image, but there still remains much other tissue.
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Figure 3.6: Intensity cropping alone provides insufficiently precise segmentation.

In the native scan (A), the abdominal viscera provide too much distraction. In the

contrast scan (B), the situation is better, but still there is much distraction due

mainly to the patient’s bones.
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the result is a voxel dataset without a great many of the distractions noted in the

previous subsection.

3.4.3 Connected component

The third and final substep in the segmentation process is computing a connected

component. In order to eliminate the distractions in the intersected dataset, we

note that the distractions are primarily spatially separated from the region of

interest. Thus, if we define a neighbor relation on the voxel set and use it to

isolate connected components, one such component will contain the closely isolated

arterial lumen.

In practice there is no reason to run a complete “blob-finding” algorithm. In-

stead, we seed the processing with user input. The user specifies one point which

is within the arterial lumen, and then our procedure computes the connected com-

ponent containing that point using an optimized flood-filling algorithm.

In empirical testing, we found that using 18-connected neighborhoods, where

two voxels must share either a face or an edge in order to be considered neighbors,

worked best. We also tested 6-connected neighborhoods (where neighbors must

share a face) and 26-connected neighborhoods (where neighbors must share a face,

an edge, or a point); the former proved insufficient for our data and the latter

showed no improvement over 18-connected neighborhoods despite the increased

computation.

Our optimized flood-filling algorithm exploits the fact that the overall shape

of the region of interest is largely cylindrical, with the axis in the z direction.

Ordinarily, 2-D flood filling is much more efficient than 3-D flood filling due to

the greatly reduced degree of recursion. We make use of this fact by requiring
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Figure 3.8: The final segmentation step is computing the connected component.

We must collect one piece of information from the user: the coordinates of a voxel

within the lumen. In (A) we see an example of how this data might be inputted;

the user is shown a slice of the intersected dataset, and must select a point in the

interior of the lumen. The arrow shows an example of a point the user might select.

In (B) we see the resulting connected component. Notice that the lungs partially

remain, but nearly all other distractions have been eliminated.
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Figure 3.9: The three common neighboring relations used with voxel datasets.

The simplest, the 6-neighborhood, simply consists of voxels which share a face with

the voxel in question, or in other words has only one coordinate which differs by

one. The 18-neighborhood consists of voxels which share either a face or an edge,

or differ by one in one or two coordinates. The 26-neighborhood consists of voxels

which share a face, an edge, or a point; they can differ by one in any or all three

coordinates.
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the submitted interior point to lie on the topmost slice, and then by performing a

two-pass flood fill.

In the first pass, the flood fill is performed slice-by-slice, from smallest to largest

z. To begin, the topmost slice is filled using the user-inputted point as a seed.

Then, we iterate through the rest of the slices. Each slice’s flood fill is seeded

using those points whose neighbors on the previous slice were part of the connected

component. The result is a subset of the actual connected component, because this

pass cannot follow an artery in the upwards direction.

The second pass is a more traditional iterative flood fill. Because of the ex-

tremely large number of samples, a recursive algorithm is not appropriate. Instead,

we pass over the entire voxel array repeatedly, expanding on the connected com-

ponent, until a pass occurs in which no changes are made. The results can be seen

in Figure 3.8.

3.5 Edge detection

At this point in the process we have a segmented voxel dataset. The next step is

to perform an edge detection, identifying the voxels at the borders of the volume.

This identifies the contours which characterize the shape of the arterial lumen.

There are a great many edge-detection algorithms which have been developed

by the machine vision community, primarily for use on 2-D images. These range

from extremely simple thresholded spatial derivatives to complex iterative proce-

dures with derivations based in statistical analysis.

These algorithms are intended for use on photographs or other complex input

images. We have an advantage in this situation, as our data is more structured

than arbitrary photographs. We have already performed a complete binary seg-
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mentation, and therefore have a simpler problem to solve – we need only to mark

voxels at the borders of the segmented lumen.

This is straightforwardly done by iterating over each lumen voxel’s neighbors.

If any of them are not within the lumen, it is marked as a border. This process is

performed efficiently in linear time. The results are shown in Figure 3.10.

3.6 Distance transformation

3.6.1 Definition

The distance transformation is a very useful tool in image processing in general.

It transforms a boolean image B into a gray-level image DT . Mathematically, the

3-D distance transform DT is a scalar field which satisfies the Eikonal equation:

|∇DT | = 1 (3.2)

With the boundary conditions:

B(i, j, k) = 1 =⇒ DT (i, j, k) = 0 (3.3)

B is generally an image where the majority is marked as false, and a few

special image elements are marked as true. These true elements are called features.

Essentially, the value of each voxel in DT contains the answer to the question, “How

far from this image element is the nearest feature?”

3.6.2 Efficient computation

As the distance transformation is a global operation, it is generally quite resource-

intensive to compute. A näıve implementation runs in time quadratic in the num-
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Figure 3.10: Shown here are slices from the connected-component dataset adjacent

to the corresponding slices of the edge-detected dataset. Notice that the borders of

the lumen are well marked with a minimum of noise.
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Figure 3.11: The distance transformation labels every voxel with a number indi-

cating the distance to the nearest feature. In (A) we see an example of an image

with features marked in black. In (B) we see the distance transformation over-

laid. This particular distance transformation was computed using the Manhattan

distance metric.



44

ber of image elements. This complexity is simply unacceptable in most 3-D cases.

In our case, with hundreds of millions of samples, we needed a much more efficient

algorithm.

We implemented a multiple-pass distance transformation algorithm. The algo-

rithm is based on the observation that an n-dimensional distance transformation

can be efficiently computed from multiple n− 1-dimensional distance transforma-

tions.

For the sake of simplifying the explanation, let us consider the case where a

Manhattan distance metric is being used in the computation of a 2-D distance

transformation.

We begin with the 2-D image, and compute the distance transformation for

each row separately. For every pixel, we then know the distance to the nearest

feature on the same row. To determine the distance from a pixel to the nearest

feature overall, we simply scan the column. Each pixel in the column represents a

distance to a feature – the value of the pixel plus the distance along the column.

Simply choosing the minimal sum yields the correct distance transformation value

for that pixel.

By extending this concept to 3-D and to Euclidean distances, we can efficiently

compute the distance transformation of our edge-detected voxel dataset. With an

m×n× p array, computational complexity is O(mnp× (n+ p)). Assuming a cube

array of n elements, distance transform computation is performed in O(n
4
3 ) time.

3.7 Vector gradient field

The next step of the centerline extraction process is very straightforward: the

gradient field of the distance transformation is computed.
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Figure 3.12: An example of multiple-pass Manhattan distance transformation

computation. In (A) we see the original input image. Features are marked with

black. In (B) we see a 1-dimensional distance transformation, computed only hor-

izontally. This can be computed very efficiently by simply scanning each row once.

In (C) we compute the 2-D distance transformation value for a particular pixel

marked with gray. Every element in the pixel’s column is considered; the poten-

tial distance transformation value is the sum of the distance to the element being

considered and the value of the element being considered. Clearly, the choice with

the minimum sum is two elements downwards, with a distance of 2 and a value of

0. Thus, we mark the final distance transform value as 2 in (D). This process is

repeated for each pixel. An analogous process computes a 3-D distance transform

from multiple 2-D distance transforms.
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Figure 3.13: Slices from the edge-detected dataset shown with the correspond-

ing slices of the distance transformation. Values outside the lumen are omitted

for clarity. Brighter values indicate higher distance transform values. Note that

the intensities in these images are not opacities, but rather gray scales represent-

ing values of the distance transformation. Brighter intensities represent greater

distances.
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The mathematical definition of the gradient operator ∇ of a 3-D scalar field F

is as follows:

∇F =
δF

δx
x̂ +

δF

δy
ŷ +

δF

δz
ẑ (3.4)

Difficulty arises when computing a 3-D numerical gradient, however. In 1-D a

numerical derivative is easy to compute:

∇F (i) =
δF

δx
x̂ ' F (i + 1)− F (i) (3.5)

This computes the 1-D derivative at the boundaries between samples, since it

is symmetric about the point i + 1
2
.

In 2-D, neighborwise differences can only yield such symmetry about the corners

of samples, so the 2-D derivative must be computed along a coordinate system

rotated 45 degrees relative to the original one, as shown in Figure 3.14.

In three dimensions, there is no such convenient transformed coordinate system

that allows the gradient to be computed neighborwise while maintaining symmetry.

For this reason, we chose to sacrifice the neighborwise computation in favor of

maintaining symmetry. The 3-D gradient is approximated as:

∇F (i, j, k) '

(F (i + 1, j, k)− F (i− 1, j, k))x̂+

(F (i, j + 1, k)− F (i, j − 1, k))ŷ+

(F (i, j, k + 1)− F (i, j, k − 1))ẑ

(3.6)
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Figure 3.14: The 1-D gradient at the point indicated in (A) can be taken to be

the value e− d. The gradient is thus measured between points, and so is measured

along a coordinate system translated half a sample relative to the original dataset.

The 2-D gradient measured at the point indicated in (B) can be taken to be the

value (l− g)û + (h− k)v̂, where û and v̂ are unit vectors forming an orthonormal

basis for a coordinate system 45 degrees rotated relative to the original dataset.
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3.8 Scalar derivative field

We now wish to compute a derivative field of this vector gradient field. This deriva-

tive computation is a means to the end of identifying voxels where the gradient of

the distance transform changes rapidly, as these voxels comprise the centerline.

There are several standard methods for differentiating a vector field However,

our case is special due to the structure of the vector field. The distance transform

satisfies the Eikonal equation, which stipulates that the gradient must always be

of unit magnitude. Our vector field is thus rigidly structured; neighboring vectors

can differ only in direction.

Our problem is thus reduced to the identifications of sharp changes in direction

of the vector field. This allows us to conveniently represent the derivative field as

a scalar field, permitting efficient storage and visualization.

Noting that the dot product of two unit vectors is equal to the cosine of the

angle between them, we compute this scalar derivative of the vector field using

neighborwise dot products. This novel approach of using the dot product as a

scalar derivative of a unit vector field gives us quite good results.

3.9 Centerline identification

At this point we have a scalar derivative field, represented as a voxel array of the

same dimensions as the original input. Let us revisit what each processing step

computes.

The first two steps are very straightforward. The segmentation step simply

eliminated distractions from the dataset, leaving only the arterial lumen. The

edge detection step identified the borders of the lumen.
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Figure 3.15: Here we see the scalar derivative of the gradient field. Four slices

from the dataset are shown. Lighter shades indicate a higher derivative value.

Notice that the center of the arterial lumen is clearly marked with a high derivative.



51

The remaining steps’ results carry an unobvious significance. The distance

transformation encodes how close each voxel was to the wall of the lumen. The

gradient of this field, then, encodes the direction of steepest ascent, which repre-

sents the direction from any voxel to the nearest portion of the lumen wall. The

scalar derivative field measures heterogeneity of this direction, which is high only

at the borders and at the centerline.

From the results of the edge detection step, we already have records of the

locations of the borders of the arterial lumen. Thus, a very simple thresholding

procedure performed on the scalar derivative field, followed by a boolean subtrac-

tion of the borders, yields an accurate reconstruction of the arterial centerline, as

shown in Figure 3.17.

3.10 Summary

We have developed an efficient centerline extraction procedure. It is highly auto-

mated, requiring minimal user input and a relatively low level of user expertise.

The user input is collected prior to performing the computationally intensive steps,

so the process can be easily run in the background after data collection. The end

result is an accurate centerline well-suited for analytical fitting.
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Figure 3.16: A simple thresholding of the scalar derivative field yields an accurate

reconstruction of the arterial centerline.
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Figure 3.17: The results of our highly automated centerline extraction procedure.

In (A) we see the original contrast dataset, and in (B) we see the identified arterial

centerline.



Chapter 4

Analytical fitting
At this point in our data analysis, we have extracted the arterial centerline from

abdominal CT scan data. However, our overall goal is to determine the complete

geometry of the aortic lumen, including its surface and that of major branches.

In order to make this information as useful as possible, we fit the lumen to an

analytical model. Such a model compactly represents a large amount of geometry,

and can be discretized with arbitrary precision for the purposes of rendering and

simulation.

This chapter presents the analytical fitting processes. It first presents a brief

overview of parametric curve and surface representation. It will then detail the

procedure for fitting an analytical model to the identified centerline from the previ-

ous chapter. It concludes with a description of our surface-fitting procedure which

yields us an efficient and useful model of the arterial lumen.

4.1 Centerline fitting

The first step towards an analytical model of the lumen is producing an analytical

expression of the lumen’s centerline. This can then be used to trace and loft an

analytical surface.

The centerline data which results from our final centerline identification step

is in the form of a voxel array. Voxels which make up the arterial centerline are

marked as such. One desirable property which this centerline does not exhibit

is thinness; an ideal centerline is only a single voxel thick. Due to our centerline

extraction algorithm, our centerline is generally several voxels thick. Our centerline

54
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fitting algorithm must take this into account.

Our approach to centerline fitting involves a “marching” procedure. We begin

at the top of the aorta and iterate downwards, using a flood-fill type of algorithm.

Because of the highly structured narrow form of the centerline voxel dataset, this

type of approach reliably iterates along the direction of the lumen, and accurately

determines the geometric properties of the centerline.

4.1.1 Centerline marching

The concept behind the centerline marching algorithm is best visualized as a prop-

agating wave front. The front begins in the topmost slice and at every iteration

propagates along the centerline. As it travels down the centerline, it clearly main-

tains a cohesive structure. In fact, the structure of the advancing wave front follows

the centerline structure closely enough that a split of the front into more than one

connected subcomponent happens at the point where the centerline splits due to

a branch.

We exploit this predictable behavior of the marching procedure to extract the

geometric knots from which we can produce a B-spline model of the centerline.

We simply monitor the center-of-mass of the marching wave front. Each recorded

center-of-mass is a geometric knot. When the wave front divides, the largest por-

tion is kept and the remaining connected subcomponents begin new branches.

In keeping with the desire for a compact representation, we do not use every

recorded center-of-mass in subsequent computations; such a model would be little

more than a numerical record. Instead, we select key knots periodically which are

then used in the remainder of the fitting procedure. This selection of key knots

is adjusted if it causes difficulties, but it is always a relatively small amount of
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Figure 4.1: The wave front during centerline marching clearly follows the struc-

ture of the centerline.
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Figure 4.2: By monitoring the center-of-mass (indicated with white dots) of the

advancing wavefront, we derive a series of geometric knots around which to build

a spline-based centerline model.
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information.

4.1.2 Spline fitting

We have chosen to use uniform cubic B-splines to represent the arterial geometry.

This type of analytical curve adequately satisfies our requirements of conciseness

and precision. Mathematical details and characteristics of B-splines are described

in Appendix A.

Fitting an existing set of geometric knots to a B-spline curve is not as simple as

applying the B-spline basis functions to the geometric knots as if they were control

points. A B-spline does not function as an interpolant when used this way. While

the knot vector of a nonperiodic B-spline will ensure the curve passes through the

first and last control points, in general the curve will not pass through any other

control points. For an example, see Figure 4.3.

To fit a B-spline to a set of existing geometric knots, we must solve for a

series of control points that generate a curve passing through the geometric knots.

We implement a B-spline curve-fitting algorithm based on the observation that the

curve’s location is always a linear combination of the relevant control points. Thus,

if we apply constraints specifying the value of the parameter u at each geometric

knot, we can write out an easily solved linear system relating the control points to

the geometric knots. This fitting process is described in more detail in Appendix

B.

The resulting analytical centerline is shown in Figure 4.4, overlaid on the orig-

inal data from the intensity-cropped arterial scan. This analytical centerline pro-

vides a good basis for the construction of an analytical surface model.



59

Figure 4.3: This nonperiodic cubic B-spline does not pass through any control

points (indicated by squares) aside from the first and last. This means that one

cannot use geometric knots as control points and hope for an adequate representa-

tion of the source shape. Instead, one must solve for a set of control points which

yields a spline of the correct shape.
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Figure 4.4: B-spline curves fitted to the centerline, displayed against the intensity-

cropped arterial dataset. Notice that the curves closely follow the arterial lumen.

Even when examined closely as on the right, because of the spline representation,

the curve is smooth, as would actually occur in the real arterial structure.
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4.1.3 Branches

Each branch of the arterial lumen is represented as a separate list of recorded

centroids, forming a separate set of geometric knots. To ensure that the centerline

of the entire lumen is representative of the correct arterial geometry, it is important

that the centerlines of all branches form a single continuous structure without gaps.

In order to achieve this continuity, we use a simple procedure to “stitch” child

branches to their parents. Each branch (except for the first) is given one additional

geometric knot placed ahead of the rest. This knot is selected from the parent’s

centroid list.

The stitching procedure selects the additional knot based on two parameters:

the distance of the potential knot from the head of the branch, and the direction

from the head of the branch to the potential knot. The first parameter is fairly

clear; one would not want to add a knot which is far from the rest of the branch.

The second parameter is intended to avoid the situation where the new knot

drastically changes the final geometry of the branch. It is encoded as the dot

product of the vector from the head of the branch to the new knot with the initial

tangent vector of the branch.

These two parameters are balanced against one another using an empirically-

determined regularization parameter. See Figure 4.5 for an example.

4.2 Surface fitting

While the focus of our work has been on centerline extraction, we also developed

a preliminary surface fitting procedure. The goal of this procedure is to produce

an analytical representation of the surface of the arterial lumen. Such a surface
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Figure 4.5: (A) The blue branch needs to be stitched to the red branch. A point

on the red branch must be chosen to place at the head of the blue branch’s list of

knots. (B) Selecting the knot based solely on closeness can give the child branch

an unnatural bend at the end. (C) Selecting the knot based solely on direction can

cause topologically incorrect results. (D) Balancing both requirements yields an

appropriate joint.
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model can be of great utility in applications involving visualization, simulation,

and prosthetic design.

Our surface fitting procedure leverages the accurate analytical centerline to

compute an analytical surface appropriate for the topology of the lumen. Each

arterial branch is represented as a lofted B-spline surface. The surface is defined

by a series of two-dimensional slices, each encoded as a periodic B-spline. These

slices are analogous to a set of geometric knots of a curve; the surface is rendered

by interpolating between the slices with B-splines. Again, we employ an inverse-

spline algorithm, as described in Appendix B, in order to derive appropriate control

geometry to achieve interpolation.

We compute these slices by constructing coordinate systems at key points peri-

odically placed along the centerline. This coordinate system is then used to drive

a marching algorithm which locates the surface boundary.

4.2.1 Generating a local orthonormal basis

At each desired slice location, we generate a local orthonormal basis. For a good

representation of the surface, the slice would ideally exist in the plane orthogonal

to the axis of the lumen. Fortunately, we have the centerline of the lumen in an

analytical form, and it is a straightforward matter to generate an orthonormal

coordinate system basis that will place the slice orthogonal to the centerline.

We begin with a unit vector tangent to the centerline. This vector is easily

determined from the analytical centerline representation. We compute this vector

and label it ŵ.

To compute the remaining two basis vectors, û and v̂, we first choose an arbi-

trary reference vector; in our implementation we use x̂ = 〈1, 0, 0〉 as this reference
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vector. The cross product ŵ × x̂ gives us a vector guaranteed to be orthogonal to

the centerline; we normalize this vector and label it û. Then, the cross product

ŵ × x̂ yields v̂. This process is shown in Figure 4.6.

Note that there is a potential weakness in this approach. Always using 〈1, 0, 0〉

as our reference vector has the potential to cause difficulty if the centerline tangent

vector ŵ is close to parallel or antiparallel to 〈1, 0, 0〉. The magnitude of the

cross product is very small. Because of the limits of the floating point processor’s

registers, this means that the direction is not specified with high precision. If ŵ is

equal to either 〈1, 0, 0〉 or 〈−1, 0, 0〉, the situation is worse; the cross product has

a magnitude of zero and hence no direction.

Fortunately, this latter situation is so highly improbable as to never occur in

practice. The former situation is encountered occasionally, but the loss in precision

is acceptable for our purposes. Moreover, there is an advantage to using the

same reference vector when generating all the local bases: it simplifies the lofting

procedure because it ensures that the local û and v̂ vectors would be continuous

if computed continuously along the centerline. This makes interpolation between

slices easier because each slice’s local basis vectors correspond to its neighbors’

basis vectors. Figure 4.7 shows the results of the orthonormal basis generation

procedure.

4.2.2 Slice marching

Once a local orthonormal basis has been computed, we determine the boundaries of

the slice by making use of data collected during the segmentation step of centerline

extraction.

Our algorithm simply marches radially outward from the centerline of the lumen
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Figure 4.6: An orthonormal basis is generated around the centerline. (A) A unit

vector tangent to the centerline (shown in red) is computed and labeled ŵ The unit

vector in the x direction is chosen as a reference. (C) The cross product of ŵ and

x̂, once normalized, gives us the local basis vector û. (D) The cross product of

ŵ and û gives us the local basis vector v̂. (E) The result is an orthonormal basis

consisting of the three vectors û, v̂, and ŵ.
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Figure 4.7: Orthonormal bases generated along the centerline. In (A) we see the

analytical centerline shown in red, with the tangent vectors displayed in yellow.

These are used as the local ŵ vectors. In (B) we see the orthonormal bases built

around these tangent vectors. Blue represents the û vector, and green represents

the v̂ vector. Note that the orientation of the local bases is continuous along the

curve. This will simplify the lofting process later on.
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until it reaches the end of the segmented volume. The boundary between the final

internal voxel and the first external voxel is then marked as a geometric knot.

This marching step is performed several times in several directions, each evenly

spaced around the unit circle. Each direction is chosen as an angle θ, and d̂(θ),

the unit vector in the marching direction, is computed with the simple formula:

d̂(θ) = ûcosθ + v̂sinθ (4.1)

This direction is expressed as a linear combination of û and v̂, and so is guaran-

teed to lie in the plane orthogonal to the centerline. Figure 4.8 shows an example

of eight evenly-spaced marching directions.
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Figure 4.8: With the given û and v̂ vectors, the marching direction vector d̂(θ) is

computed for eight values of θ.
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4.2.3 Lofting

With all the slices computed, we have a complete analytical description of the

arterial lumen’s surface. The slices define the lofted surface. To construct the

entire surface, we merely interpolate between these slices using nonperiodic B-

splines. The interpolation technique is very similar to that used within each cross-

sectional slice.

To evaluate the lofted surface for rendering, each point on each cross-sectional

curve is treated as a geometric knot on a longitudinal curve. One such longitu-

dinal curve exists for every value of the section curves’ parameter u. The lon-

gitudinal curve is one-dimensional in terms of its parameter v, so the result is a

two-dimensional surface indexed by parameters u and v. The lofting process is

described in more detail in Appendix C. By efficiently solving for the longitudinal

B-splines in realtime we can render the surface of the arterial lumen.

4.2.4 Slice placement refinement

When constructing the cross-sectional slices for lofting, the placement of slices

affects the geometry of the resulting lofted surface. A sufficiently pathological

placement of slices can create a completely unusable surface. The biggest problem

arises when the geometry of the lumen is such that two cross-sectional slices in-

tersect, as shown in Figure 4.9. The intersecting slices create a malformed lofted

surface which does not correctly represent the arterial geometry.

In order to prevent this problematic situation, we implemented a simple refine-

ment step. To simplify computation, we replace each slice with the smallest disc

which fully contains it. We then perform pairwise intersection tests on all pairs of

circles, identifying pairs which intersect. One member of each intersecting pair is
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selected for recomputation.

To recompute a slice, we first relocate it, selecting a nearby position on the cen-

terline. Then we repeat the local orthonormal basis generation and marching steps

with the new slice placement. This process is repeated until all slice intersections

are eliminated.

Figure 4.10 demonstrates the effect of this slice placement refinement procedure.

Figure 4.9: When two cross-sectional slices intersect (A), they create a malformed

lofted surface which cannot represent the true shape of the lumen. If slices do not

cross (B), the correct shape is represented.
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Figure 4.10: Prior to refining the placement of slices, a tortuous centerline often

results in incorrect surface geometry due to intersecting cross-sectional slices, as

shown on the left. Slice placement refinement selects slices which do not interfere,

allowing the fitted surface to have the correct smooth topology, as shown on the

right. These surfaces are rendered with a Blinn-Phong reflection model.
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4.3 Summary

We have presented a robust procedure to fit one-dimensional spline curves to the

centerline. The results of the centerline fitting procedure are shown in Figure 4.11.

This curve alone is a potentially very useful construct. It provides an accurate

way to measure the length of a portion of the patient’s anatomy. It also provides

a powerful basis for the fitting of a surface model to the arterial lumen. We

have exploited this and developed a surface fitting procedure which yields a fully

analytical model of the surface of the lumen. As described in the conclusion, these

results can then serve as input for the design of the endovascular stents, as well

as simulation models for stress analysis and computational fluid dynamics. The

geometric results are shown in Figure 4.12.
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Figure 4.11: The final analytical description of the centerline.
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Figure 4.12: The lofted surface which analytically represents the arterial geome-

try.



Chapter 5

Results
In cooperation with Doctor Roy K. Greenberg and his staff at the Cleveland Clinic,

we were able to test our centerline extraction and analytical fitting procedures on

CT scans performed on actual patients. This chapter will discuss our results and

present a summary of the work conducted.

5.1 Results

We tested the system described in this thesis on data from three aortic aneurysm

patients. In an anonymizing step, all patient-identifying information is removed

from the data; we identify our three datasets simply by a one-letter code name.

Here we show results from Patient J, Patient M, and Patient B.

5.1.1 Patient J

In applying our procedures to Patient J’s CT scans, we met with a good deal of

success. The analytical centerline is well-behaved and closely follows the aorta and

its major branches. The centerline is shown superimposed on the intensity-cropped

arterial CT scan in Figure 5.1.

The analytical surface is also well-behaved and closely fits the actual geometry

of Patient J’s arteries. The surface is shown rendered in wireframe in Figure 5.2

and rendered as a surface with a shading model in Figure 5.3.
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Figure 5.1: The analytical centerline computed for Patient J, superimposed on

the intensity-cropped arterial CT scan.
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Figure 5.2: The final analytical surface computed for Patient J. In (A) we see a

view of the intensity-cropped arterial scan. In (B) we see the same view with the

analytical surface superimposed. In (C) and (D) we see the same from a different

viewing angle.
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Figure 5.3: The analytical surface representing Patient J’s arterial lumen, ren-

dered with a Blinn-Phong material to show the 3-D geometry.
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5.1.2 Patient B

Our initial results with the data from Patient B were not nearly as encouraging. At

the end of the segmentation step, we found that the segmented volume appeared to

only contain the superior portion of the aorta. Upon close comparison between the

segmented volume and the intensity-cropped arterial scan, we further found that

the segmented volume did not contain the complete volume of even the portion of

the aorta which it did represent.

The culprit was poor registration. The segmentation step described in Chapter

3 depends on a registration between the native and arterial data sets, and this was

difficult to attain. Even the best registration we were able to achieve left a great

many mismatched voxels. This meant that the narrow inferior arterial branches

simply disappeared during the voxel intersection processing, as the disparity be-

tween the two scans was larger than the blood vessels themselves.

In order to continue with our testing, we performed a segmentation of the

intensity-cropped arterial scan by hand, which we then used in place of the inter-

sected volume. To this we applied the remainder of our system, beginning with

connected-component computation and proceeding all the way through analytical

surface fitting. Our success was similar to that we had with data from Patient J.

The results are shown in Figures 5.4, 5.5 and 5.6.
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Figure 5.4: The analytical centerline computed for Patient B, superimposed on

the intensity-cropped arterial CT scan.
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Figure 5.5: The final analytical surface computed for Patient B. In (A) we see a

view of the intensity-cropped arterial scan. In (B) we see the same view with the

analytical surface superimposed. In (C) and (D) we see the same from a different

viewing angle.
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Figure 5.6: The analytical surface representing Patient B’s arterial lumen, ren-

dered with a Blinn-Phong material to show the 3-D geometry.
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5.1.3 Patient M

We also experienced segmentation difficulties with the data from Patient M. As

with Patient B, the intersected volume proved unusable. Again, we performed a

manual segmentation of the intensity-cropped arterial scan and used the result in

place of the intersected volume.

Despite Patient M’s especially tortuous arterial geometry, the centerline ex-

traction procedure worked quite well, as shown in Figure 5.7. The surface fitting

procedure also yielded good results, due in large part to the slice placement re-

finement step described in Chapter 4. The results are shown in Figures 5.8 and

5.9.
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Figure 5.7: The analytical centerline computed for Patient M, superimposed on

the intensity-cropped arterial CT scan. Note the especially tortuous path the cen-

terline must take.
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Figure 5.8: The final analytical surface computed for Patient M. In (A) we see a

view of the intensity-cropped arterial scan. In (B) we see the same view with the

analytical surface superimposed. In (C) and (D) we see the same from a different

viewing angle.
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Figure 5.9: The analytical surface representing Patient M’s arterial lumen, ren-

dered with a Blinn-Phong material to show the 3-D geometry.



Chapter 6

Conclusion and future work

6.1 Discussion

In this thesis we have presented a well-structured efficient procedure for the con-

struction of a geometric representation of the arterial anatomy of a human patient.

We begin with CT scan data which is already commonly collected for patients with

aortic aneurysms, and we produce a fully analytical model of the arterial lumen’s

centerline and surface.

We have presented an efficient, robust, and highly automated centerline ex-

traction procedure. It leverages two imaging modalities in order to simultaneously

reduce error and reduce the amount of user intervention necessary. In fact, the user

input is limited to specifying four scalar values and one two-dimensional vector,

all of which require little thought or skill to determine. The result is a proce-

dure which neatly balances the capabilities of a human with the capabilities of a

computer, and generates an accurate centerline well-suited for analytical fitting.

We then defined a procedure for performing this analytical centerline fitting.

Our fully automated fitting process generates an accurate, smooth, concise ana-

lytical description of the centerline in B-spline form. This analytical centerline is

useful on its own for purposes such as visualization and measurement, but primarily

serves as the basis for our analytical surface fitting procedure.

This surface fitting procedure makes use of the analytical centerline description

to produce a lofted spline surface description which is appropriate for the elongated

topology of the arterial lumen. It produces a fully analytical representation of

the lumen’s surface. This can either be used in its analytical form, or can be
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rendered or otherwise discretized at any desired resolution. These qualities make

this analytical description useful as input for future CAD systems for the design

of arterial stents, and for future simulation systems which perform stress analysis

and computational fluid dynamics to predict the behavior of the stent and vascular

tissue.

6.2 Future work

There are several clear avenues along which our work can be improved. We briefly

discuss four potential improvements.

6.2.1 Registration and radiologist cooperation

In testing our procedure on different datasets, we found that the most significant

difficulty appeared at the beginning of the process, during segmentation. In partic-

ular, problems often appear during the resampling and registration steps in which

the native and arterial datasets are matched. This weak point completely failed

on two of our three sets of input data.

Because the native scan is performed at a lower resolution than the arterial scan,

the native scan must be resampled to match the arterial scan. This upsampling

step by necessity produces more information than it is given as input. Though

interpolation is done in an intelligent manner, there is no way to guarantee the

accuracy of the interpolation, and thus the interpolated values cannot be said to

precisely represent reality.

Naturally, the error inherent in resampling causes difficulty in registration.

There is an additional source of registration difficulty, however; the bodily move-

ment of the patient between the two scans can be so extreme as to completely
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prevent any reasonable registration.

The data we worked with was collected prior to the development of our ge-

ometric analysis procedures. In the future, it would be advantageous to involve

the radiologist responsible for collecting the data. For example, if the native scan

could be performed in the same high-resolution “1mm” mode used for the arterial

scan, the resampling step could be eliminated. Furthermore, if the arterial scan

could be performed immediately after the native scan, with the patient instructed

to limit bodily motion as much as practical, the voxel registration step would be

much more likely to provide good results. X-ray-opaque inks or markers could also

be used to place registration marks on the patient’s anatomy.

We envision that each of these improvements in scanning will become standard

procedure in the future. Obviously by improving the foundation of the entire

geometric analysis, one could improve the results of every subsequent processing

step.

6.2.2 Hole robustness

Our analysis methods are generally resistant to noise in the input data set. By

employing two imaging modalities and utilizing their intersection, we reduce the

effect of noise in a single scan. Also, by analyzing sets of points rather than

individual points, we allow for noisy geometry to be smoothed out.

However, the effect of sampling noise cannot always be eliminated. There is

one type of artifact to which our analysis is particularly sensitive. If the flood-

filled volume contains any missing voxels – “holes” – the centerline loses its one-

dimensional structure around the hole. The distance transformation peak must

avoid the border around the hole, and the only way in which this can be done
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uniformly is to form a “balloon” surrounding the hole. This causes the centerline

to take on the form of a two-dimensional surface around the hole (Figure 6.1).

Figure 6.1: The ballooning effect produced due to a hole in the segmented lumen

volume. The centerline must avoid the hole and so cannot maintain its simple

one-dimensional structure. Instead, the centerline travels around the hole in all

directions, forming a two-dimensional surface.

If the ballooning artifact is small, it does not materially affect the analytical

centerline; during the marching step, the wavefront tends to remain continuous

and the centroid stays in the middle of the lumen. If it is large, however, this

cannot be relied upon.
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While improving the segmentation can help reduce the number of holes, it

would still be worthwhile pursuing some modifications to the centerline extraction

procedure to make it more robust when holes are present.

6.2.3 Slice placement

The selection of cross-sectional slice locations along the centerline materially af-

fects the geometry of the resulting lofted surface. In our work we have chosen an

extremely simplistic approach in which we place slices at regular intervals along the

parameter of the centerline, and then adjust these positions if the cross-sectional

slices are at risk of intersecting. The results are acceptable but not ideal. It would

be worthwhile to explore a more sophisticated slice placement method based on

the curvature of the centerline and the shape of the lumen’s cross section.

6.2.4 Bifurcations

Properly modeling the branching of arteries is essential to the goal of analytically

representing the arterial geometry of a patient. Currently we model each branch

separately as a lofted surface and simply consider their boolean union to represent

the arterial geometry. This is a good beginning but it must be improved upon.

A more sophisticated bifurcation model would take into account the observation

that the juncture between two arteries exhibits continuity to at least the first

derivative along a portion of the interface, while exhibiting creasing behavior along

the remainder of the interface, as shown in Figure 6.2.

The need to describe the shape of the lumen precisely must be balanced with

the need to do so concisely and in a manner resistant to noise. Perhaps artificial

slices could be generated at the beginning of each branch to enforce the correctly-
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Figure 6.2: The the junction of two blood vessels, a portion of the interface ex-

hibits continuity of at least the first derivative, while the remainder exhibits creasing

behavior.

shaped joint. Such an approach could yield surfaces which share a portion of their

geometry, allowing each branch to be stored separately while still modeling the

connection.

6.3 Summary

As discussed in Chapter 1, endovascular aortic aneurysm repair is rapidly becoming

a strong and attractive alternative to traditional open surgery. In order to fully

realize the benefits of this type of surgery, several aspects of the procedures must be

improved. Surgery planning must become a less intensive process for the surgeon.
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Methods for accurately representing complex anatomy must be robust. Lastly,

using this information, accurate predictions of the future behavior of the stent and

arterial tissue must be made.

We have presented a highly automated geometric analysis procedure which

begins to address these needs. We begin with CT scan data collected from aortic

aneurysm patients and produce a fully analytical model of the patient’s arterial

geometry. This analytical model is a compact representation of complex geometry,

and can be mathematically analyzed or discretized for rendering or finite element

analysis with arbitrarily high precision.



Appendix A

A brief review of B-splines
B-splines are commonly used both in numerical analysis and in geometric modeling,

and are therefore well-described by the literature. Here we present a very brief

review of the mathematical formulation of the B-spline. For more information, the

reader is referred to a text such as [BBB87].

A B-spline is a univariate parametric curve. The curve itself can exist in any

number of dimensions, but it is a function of a single parameter, typically desig-

nated u. The curve’s shape is determined primarily by a control polygon compris-

ing a series of control points. The curve’s position at any value of the parameter

is a weighted average of these control points. See Figure A.1 for an example.

The curve is defined as:

P (u) =
n∑

i=0

ViNi,k(u) (A.1)

V0 through Vn are the control points. k is the order of the curve (one greater

than the degree). Ni,k is the blending function, defined as:

Ni,1(u) =


1 if ti ≤ u < 1i+1

0 otherwise

Ni,k(u) =
(u−ti)Ni,k−1(u)

ti+k−1−ti
+

(ti+k−u)Ni+1,k−1(u)

ti+k−ti+1

(A.2)

t0 through tk+n are the elements of the knot vector, a nondecreasing series of real

numbers. The knot vector matches the series of control points to the parameter,

and also defines the range of the parameter u. If the knots are evenly spaced, the

curve is called a uniform B-spline, and can be much more efficient to compute due

to all blending functions being translations of each other.
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The structure of these blending functions is such that they are nonzero only over

a span of k knots, that they always sum to unity, and that they are polynomials

of degree k − 1 and are therefore Ck−2 continuous.

This mathematical formulation yields several desirable properties. The curve

remains within a convex hull defined by the control polygon and the order (Figure

A.2). The curve is smooth and exhibits Ck−2 continuity unless knot or control point

multiplicities collapse the convex hull. Since each control point has local control,

affecting only the nearby portion of the curve (Figure A.3), this formulation is

frequently used for design purposes.

In order to represent a closed curve, a uniform B-spline can be made periodic

simply by treating the control point indices as a periodic series. And in order

to more intuitively represent an open curve, a B-spline’s knot vector can include

multiplicities at the beginning and end, forcing the curve to pass through the first

and last control points.
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Figure A.1: An example of a cubic nonperiodic B-spline. The control points are

indicated by blue squares. The control polygon is drawn in gray, and the spline

curve is drawn in red.
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Figure A.2: A B-spline remains within a convex hull defined by the control polygon

and the order of the curve. The convex hull is shown in yellow for four different

orders of B-spline. Notice that the region of local control grows as order increases.
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Figure A.3: A B-spline provides local control; moving a single control point only

affects nearby portions of the curve.



Appendix B

B-spline fitting
As shown in the previous appendix, a B-spline is not a reliable interpolant of its

control points. In general, the curve does not pass through the control points unless

required to by the structure of the knot vector. B-splines do have advantages over

traditional interpolants, however, so it is worthwhile to implement a technique

which permits the use of B-splines to interpolate between collected data points.

This technique would begin with a series of geometric input points, and com-

pute the locations of control points which guarantee that the B-spline will pass

through the given input points. This task is, in a sense, the inverse of the task of

rendering a spline, and is therefore often called the spline inversion problem.

It should be noted that a simple set of geometric points does not fully describe

a B-spline. Therefore, a spline inversion procedure must make further assumptions

in order to produce a stable result. A fair assumption to make is that each input

point is a geometric knot, and therefore falls at the beginning of a span of the

curve.

The spline inversion procedure used in our work begins with the observation

that the position of each geometric knot depends only on the positions of k − 1

control points. If one assumes that each geometric knot occurs at the beginning

of a span, the weights of the control points are fixed.

For example, for a closed cubic uniform periodic B-spline, the position of the

curve at the beginning of span i is equal to:

Pi =
1

6
Vi−1 +

2

3
Vi +

1

6
V(i + 1) (B.1)
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From this observation, one can construct a linear system representing the spline

inversion problem using the geometric knots P :



2
3

1
6

1
6

1
6

2
3

1
6

. . . . . . . . .

1
6

2
3

1
6

1
6

1
6

2
3





V0

V1

...

...

Vm


=



P0

P1

...

...

Vm


(B.2)

This nearly tridiagonal system is easily solved for the positions of the control

points V . With slight modifications, this approach can be used to invert other

types of splines. For more information, the reader is referred to [WAG77].



Appendix C

Lofted B-spline surfaces
Splines are one-dimensional curves. An analytical surface is function of two pa-

rameters. There are numerous methods of representing surfaces using splines. In

this work, we use a technique called lofting. A 3-D lofted surface is defined by a

series of control curves. The lofting process interpolates between these curves to

produce an entire surface.

This is a simple but powerful method of describing a surface analytically. The

first parameter dictates the position along the control curves, and the second pa-

rameter dictates the position between control curves. For an elongated structure

such as those dealt with in our work, such a parameterization is elegant, as it

allows one to independently address the position around a cross-sectional slice and

the position along the centerline.

The method of interpolation can vary according to the application. In our

work, it made good logical sense to use the B-spline inversion technique outlined

in the previous appendix. Each cross-sectional slice is used as a control curve, and

the values of all slices at a particular value of the parameter u are used as control

points for a nonperiodic axial spline indexed by the parameter v.
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Figure C.1: An example of a lofted surface. The border of the surface drawn in

red interpolates the six white control curves. Though in this example they are, in

general the control curves do not need to be planar. The lofted surface is parame-

terized in two dimensions by u and v.
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