
Implementing the Render Cache and the Edge-and-Point Image
On Graphics Hardware

Edgar Velázquez-Armendáriz
Department of Computer Science

Cornell University

Eugene Lee
Department of Computer Science

Cornell University

Bruce Walter
Program of Computer Graphics

Cornell University

Kavita Bala
Department of Computer Science

Cornell University

Figure 1: Sample scenes rendered using the GPU version of the Edge-and-Point Image. From left to right: Cornell Box, Chains, Mackintosh
Room, David Head and Dragon with Grid.

ABSTRACT

The render cache and the edge-and-point image (EPI) are alterna-
tive point-based rendering techniques that combine interactive per-
formance with expensive, high quality shading for complex scenes.
They use sparse sampling and intelligent reconstruction to enable
fast framerates and to decouple shading from the display update.

We present a hybrid CPU/GPU multi-pass system that acceler-
ates these techniques by utilizing programmable graphics process-
ing units (GPUs) to achieve better framerates while freeing the CPU
for other uses such as high-quality shading (including global illu-
mination). Because the render cache and EPI differ from the tradi-
tional graphics pipeline in interesting ways, we encountered several
challenges in using the GPU effectively. We discuss our optimiza-
tions to achieve good performance, limitations with the current gen-
eration hardware, as well as possibilities for future improvements.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.7 [Computer Grpahics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture

Keywords: graphics hardware, interactive rendering, sparse sam-
pling, silhouette and shadow edges

1 INTRODUCTION

Rendering, including expensive shading effects such as global illu-
mination, is still too expensive for interactive applications. Interest-
ing non-local effects like soft shadows, glossy reflections, and in-
direct illumination can only be included by using highly simplified
approximations of varying quality and cost. One potential solution

is to adapt expensive rendering to run directly on the graphics hard-
ware as is done in hardware ray-tracing [4] and hardware photon
mapping [5]. While promising, these systems are still limited in the
quality and scene complexity they can handle at interactive rates.

An alternate approach is to introduce an intelligent display pro-
cess that decouples expensive shading from the image framerate.
We implement two such intelligent display algorithms, the render
cache [12, 13] and the edge-and-point image (EPI) [1]. These point-
based approaches scale to complex scenes by exploiting image co-
herence to achieve interactive performance with expensive, slow
shading. By decoupling shading from display they bridge the gap
between expensive shaders and fast display allowing high quality
shaders to run asynchronously producing results at whatever rate
they can.

The render cache stores a fixed size cache of shading results as
colored 3D points and reprojects and filters them to approximate
each frame. It also prioritizes where future shading points (sam-
ples) should be computed to maximize image quality. The edge-
and-point system builds on the render cache by adding explicit
tracking of important discontinuities like silhouettes and shadow
boundaries. These edges are then used for edge-respecting interpo-
lation and inexpensive anti-aliasing to greatly improve image qual-
ity.

In this paper we present a multi-pass rendering system that accel-
erates the render cache and EPI by adapting them to take advantage
of modern programmable GPUs. Because these algorithms consist
of many components each of which differs somewhat from standard
hardware rendering, we encountered many challenges in adapting
to the various programming limitations imposed by GPUs. We will
discuss the speedups we achieved, and GPU related optimizations
and limitations.

In the next section we briefly review related work. Section 2
gives a brief overview of the render cache and the EPI. Section 3
presents the GPU implementation strategies and how we handled
hardware limitations. Our results are in Section 4 and lastly in Sec-
tion 5 we conclude and propose future improvements.

To appear in the Graphics Interface 2006 conference proceedings



Shader

Silhouette
edge finder

Point projector Edge raster &
occlusion culling

Reachability
Pixel classification

Interpolation
Anti-aliasing

Edge and
Point Image

Output Image & priorities

Camera updates

3D Shading samples

Visible objects

Request samples

3D edges

2D points 2D edges

Filtered depthNew 3D points

Feedback info

Asynchronous
shader

Synchronous
edge-and-point system

CPU GPU

Predicted
occupancy image,
points ID, age,
image IDRequest

samples

Point Cloud

Shadow edges

Figure 2: Overview of the GPU system architecture.

1.1 Related work

There has been considerable recent interest in intelligent display
processes that automatically exploit spatial and temporal coherence
to allow interactive use of shading algorithms that would otherwise
be too slow for interactive use. Some examples also use graph-
ics hardware, including the shading cache [11], corrective texturing
[9], tapestry [7], and adaptive frameless rendering [2]. In a non-
interactive context, irradiance caching [8] stores irradiance samples
sparsely on objects to speed up the shading of dynamic scenes that
use global illumination.

Pighin [3] explored using edges to improve image reconstruc-
tion from sparse points for progressive update of a still image. The
edge-and-point renderer and the silhouette shadow maps [6] each
explore image representations that combine sharp discontinuities
with sparse samples for different goals. Silhouette shadow maps
embed approximate edges to reduce artifacts from limited resolu-
tion shadow maps.

Another promising approach is to accelerate traditionally slow
shading algorithms by mapping them to graphics hardware, for ex-
ample, implementing ray tracing [4] or photon mapping [5] on pro-
grammable GPUs. Szirmay-Kalos et al. presented approximate ray
tracing using distance impostors [10] as a way to generate estimated
reflections, refractions and caustics using specially addressed envi-
ronment maps. Since these can be used to produce shading samples
for the display process, we view these approaches as orthogonal and
complementary to the work presented here.

2 ALGORITHM OVERVIEW

In this section we will briefly review the main components of the
render cache and edge-and-point image (see Figure 2). For more
detail refer to their original papers [12, 13, 1]. Both algorithms use
a fixed size cache of colored 3D points to store recent shading re-
sults. In each frame these points are projected on the image plane
and the resulting image is processed by several filters to reduce po-
tential visual artifacts such as gaps and occlusion errors. Feedback

data from this process is used to prioritize the location of new shad-
ing results to improve future images. The edge-and-point image
includes additional steps to compute discontinuity edges such as
silhouettes and shadow boundaries, to rasterize these edges, and it
also includes additional filters to improve image quality using these
edges.

2.1 Point cloud and projection

Each point caches the result of a shading computation and consists
of a 3D location, a color, an age, and the pixel to which it most
recently projected (its image id). These points are stored in a fixed
size cache called the point cloud that is slightly larger than the num-
ber of pixels. For each frame, these points are projected onto the
current image plane using z-buffering. The projection also stores 4
bits of sub-pixel location information with each projected point for
later EPI use.

Because of dynamic changes such as camera motion, there will
not usually be a one-to-one mapping between points and pixels. A
depth cull filter removes points that likely should have been oc-
cluded except that no foreground point mapped to that pixel. It also
creates an interpolated depth image used during edge rasterization.

2.2 Edge finding and rasterization

The EPI method tracks two kinds of edges: silhouette edges and
shadow edges. Silhouette edges are view-dependent and need to
be recomputed each frame. Shadow edges are view-independent
and are only recomputed when their associated light, blocker, or
receiver moves. For each frame, the relevant edges are found and
then rasterized onto the image. Each time an edge crosses a pixel
boundary, that intersection is stored with 1/8 of a pixel precision
into a bit mask. Pixels are treated as squares for this operation and
since they share boundaries only two 8 bit masks have to be stored
per pixel.

2.3 Image filters

Once the points have been projected and the edges rasterized, a
series of image filters are applied: pixel classification, reachability,
interpolation and anti-aliasing.

The system classifies each pixel either as empty, simple or com-
plex based on the edge crossings recorded on its boundaries. Empty
pixels have zero or one crossings, simple pixels have exactly two
intersections and all others are classified as complex.

Simple pixels are approximated by a single edge. This edge di-
vides the pixel into a primary and a secondary region. The empty
and complex pixels contain only a primary region. Primary region
colors are computed during interpolation whereas secondary colors
are estimated during anti-aliasing. If a simple pixel contains a point,
the side where it is will be the primary region or the point is elimi-
nated if we don’t have enough sub-pixel precision to determine its
sidedness.

Pixels and points are considered reachable if there is a reason-
ably direct path between them that does not cross any edges (for a
detailed explanation please refer to Figure 6 of the EPI paper [1]).
The reachability filter determines this from every pixel to each of
its neighbors in a 5x5 pixel neighborhood and stores this result in
a per-pixel bit mask for use by interpolation. Reachability compu-
tation includes determining reachability between immediate neigh-
bors, chaining reachability through intermediate pixels, and com-
bining different paths. Reachability is symmetric.

Interpolation then combines all the nearby reachable samples us-
ing a center-weighted kernel to estimate the primary color. Missing
or unreachable samples are given a weight of zero and the weights
renormalized for each pixel. Complex pixels ignore reachability
since their edge configuration is too complicated to reconstruct, but

Implementing the Render Cache and the Edge-and-Point Image On Graphics Hardware, Velázquez-Armendáriz et. al., GI 2006 2



Vertex-pixel shader

Pixel shader

External process

Priority
Depth cull

Point
projection

Edges’
inter-

sections

TextureTexture
Edge’s
data

textures

Silhouette
edges’
indices

Edges’
positions

Silhou-
ette

edges

Point Cloud

Age &
ImgID

Pred.
occu-
pancy Raw

points’
depth

Proj-
ected
points

PriorityPoints,
priority,
point ID

Filtered
depth

Pixel
classi-
fication

Reach-
abitily

Inter-
polated
image

Anti-
aliased
image

Set Image ID
Predicted
projection

Silhouette
edge finder

Indices
packing

Age & penalize
New points

Final image & priorities

Point ID

Points

Figure 3: Data flow on the GPU. The yellow squares on the fig-
ure represent textures, the blue rectangles VBOs. Dashed lines are
vertex/pixel shaders, solid lines pixel programs and dotted lines pro-
cesses not handled directly by the GPU.

they tend to be rare and in portions of the image where error is less
noticeable anyway. EPI uses a single 5x5 interpolation while the
render cache uses a combination of 3x3 and 7x7 kernels without
reachability.

After interpolation, simple pixels are anti-aliased using an area
weighted combination of their primary color and an estimated sec-
ondary color which is copied from a neighboring pixel chosen based
on edge orientation.

2.4 Sample prioritization and request

The system expects that only a small number of new samples
(points) can be shaded per frame, so it is important to prioritize their
locations for maximum benefit. During image reconstruction, we
also create a priority image that estimates the value of generating a
new shading result at a pixel. The priority is based on the point’s
age for pixels with points and on the total interpolation weight for
pixels without points to reflect the local point density. An error-
diffusion dither then converts this priority image to a sparse set of
locations where new shading results will be requested [13].

New results are integrated into the point cloud as they become
available, overwriting older points. Aging penalties are applied to
points that do not project inside the image and in image regions
where shading changes are detected. Points exceeding a maximum
age are not drawn.

Because there is a lag between when a new sample is requested
and when the shaded result is returned, we also include some pre-
dictive sampling. The camera position is predicted several frames
ahead and a simplified projection is used to detect large gaps in
point data and samples requested for these regions. This allows
the system to request points for regions before they become visible,
thus improving visual quality.

3 MAPPING TO THE HARDWARE

In this section we will present how we modified the combined ren-
der cache and EPI system to take advantage of the GPU. Based on
computational similarity, we have divided the system components

into three parts: point processing, edge finding and rasterization,
and image filters. As each part required different solutions, we will
discuss the issues and limitations we encountered.

Most of the processing was successfully moved to the GPU but
some components like the point cloud management and dither for
prioritized sampling had to be left on the CPU.

3.1 Data Flow on the GPU

We will briefly explain the data flow on the GPU, illustrated on
Figure 3. More detailed explanations of each stage are on the cor-
responding sections. The system uses different types of data struc-
tured in various ways depending on the origin and intended use of
the information. The system builds four textures with the edges and
normals of the current model and a Vertex Buffer Object (VBO)
with the position of the edges. This process is executed only once
during the scene’s initialization.

As new points arrive the system updates the GPU point cloud,
organized as a VBO which stores the samples’ position and color,
and as a texture which stores the age and last Image id of each
point. Every frame a pixel shader updates the points’ considering
possible penalizations and then the system projects the point cloud
using vertex and pixel shaders. This projection step writes to a raw
depth texture the z-value of the projected points and draws simul-
taneously to textures storing the color and subpixel location data
for each point and priority values based on their age. It also tracks
which point was projected to each pixel by writing the point’s index
(Point id) into the pixel. The depth cull filter deletes points which
are likely to be occluded from theses textures. A second cloud pro-
jection using simplistic shaders generates the predicted occupancy
image which is drawn to a texture.

A pixel shader uses the edges textures to detect the silhouette
using an intermediate texture to mark which edges belong to the
silhouette. The CPU reads back this texture and writes the index of
the proper edges to a tightly packed index VBO. Using these fast
VBOs and the filtered depth texture as a read-only z-buffer wwe
rasterize the silhouette edges encoding the position of their inter-
sections with the pixels in a texture. Using the edges’ intersections,
the projected color and priority textures, successive pixel shaders
apply the different filters of the EPI algorithm to intermediate tex-
tures. The final output is a texture with the anti-aliased image and
the priorities for requesting new samples.

3.2 Point projection

The point cloud is replicated into two copies, one on the CPU side
for management and one on the GPU side for fast projection. The
point data on the GPU is split into both a Vertex Buffer Object
(VBO) containing the 3D positions and colors and a texture con-
taining their ages and last pixel coordinates (image id). Positions
and colors only change when new points overwrite old ones, while
the ages and image id need to be updated every frame. The age
texture is read by a shader program during each projection.

The point projection writes the point image’s color, its subpixel
information, a priority value (based on the point’s age) and the
point’s id (index in point cloud) into the appropriate pixel. There-
fore we chose to use Multi Render Target (MRT) to project the point
cloud only once, writing simultaneously to four textures (three
color textures and one depth texture).

A combination of vertex and shader programs project the points,
and additional passes are used to update the point’s image ids
and ages including aging penalties. We use Framebuffer Objects
(FBOs) to be able to write to the age and image id texture, but
we need to keep two copies (swapped each frame) as it is used as
both a source and destination in these operations. In general FBOs
allow us to pass data from one pass to the next with minimal over-
head. To avoid excessive state changes, we perform the projection

Implementing the Render Cache and the Edge-and-Point Image On Graphics Hardware, Velázquez-Armendáriz et. al., GI 2006 3



for predictive sampling immediately after the normal point projec-
tion. The predictive projection is done without depth testing and
simply writes a one into each occupied pixel.

The depth cull deletes samples from the projection that are likely
to be occluded by other surfaces. A pixel shader computes a filtered
depth, which is the average depth of the points that were projected
in a 3x3 neighborhood, plus an offset. This stage then erases the
pixels that are behind the calculated depth using alpha blending and
MRT. The depth cull also writes the 3x3 average depth to a z-buffer
for later use by the edge rasterization stage.

Converting the priority map into sample requests and integrat-
ing new samples into the point cloud are still handled by the CPU.
Error-diffusion dither for sampling just does not map well onto the
restricted dataflow allowed on GPUs. Creating or updating geom-
etry on the GPU is not yet well supported, so updating the point
cloud has been left as a CPU task. Unfortunately this requires the
CPU to access and update the VBO each frame causing extra CPU
to GPU memory transfers. To help minimize this the CPU keeps
a copy of the point cloud in main memory in addition to the GPU
copy.

3.2.1 Limitations

We found that the point projection stage is mainly bandwidth lim-
ited. Due to the hybrid nature of our approach, we have to write
data to the point cloud VBO and read back data from the GPU each
frame. This traffic has a very significant effect on our overall perfor-
mance. The data that is read back is the predicted occupancy image,
point ids, the point ages and image ID, and the priority image.

When updating the point cloud, we map the VBO as write-only
and only overwrite the points that have actually changed. The corre-
sponding ages are reset by drawing a point into the age texture. This
technique avoids copying the complete point cloud every frame, but
there is still significant overhead. Our experiments show that pro-
jecting a completely static point cloud would be three times faster
than our results where the VBO is modified each frame. Thus, im-
plementing point cloud update completely on the GPU would result
in a very large performance gain and hopefully this will be possible
on the next generation of cards.

To reduce the dynamic VBO penalty, we modified the predictive
sampling projection to project only a quarter of the points per frame
but drawn as larger splats. This works well because the predictive
sampling is only looking for large gaps in the point data and the
points are distributed randomly through the point cloud.

3.3 Silhouette detection

The EPI [1] uses hierarchical structures to find silhouettes. This
is efficient for high complexity scenes, but does not map well to
the GPU due to its high branching factor and data dependencies.
Since transferring the edges to the GPU each frame has a signifi-
cant cost, we decided to implement a more brute-force edge finding
method directly on the GPU. The shadow edges are still detected
on the CPU, because they require a lot of dynamic information
from the scene and change much less frequently as they are view-
independent. They only need to be uploaded to the GPU when they
change.

The system stores all the model’s edges in a static VBO, so they
can be drawn quickly, and as textures, to detect the silhouette edges
with a pixel shader. A pixel shader reads each edge along with
the normals of the neighboring faces and decides if it is a silhou-
ette edge or not. Silhouette edges border one front-facing and one
back-facing polygon. Then, the system writes either a zero or a one
to a texture to indicate if the corresponding edge is on the silhou-
ette. Next, we compress this sparse texture into a packed array of
edge indices using the CPU and a readback. Then, the silhouette
edges can be efficiently drawn using these indices and the static

VBO already stored on the GPU. This process has turned out to be
surprisingly fast, and is faster than the CPU-based hierarchical sil-
houette finding even for complex scenes. We continue to use the
CPU hierarchy for efficiently finding shadow edges.

3.3.1 Limitations

The GPU silhouette detection is limited by the fill rate of the GPU.
It is constrained by the size of the textures that record all the scene
edges and neighboring normals and the need to draw a texture with
a pixel for each scene edge. For our scene with the most edges
(dragon) the edges did not fit in the static VBO in the GPU memory
and we had to fall back to main memory to store them, leading to
slightly diminished performance on the edge raster stage. To reduce
space we store the normals using a 16 bit floating point format, but
even higher compression could be used.

3.4 Edge raster

After we found the silhouette and shadow edges, the next stage is
to rasterize them onto the image plane. Unlike normal edge ras-
terization, we want to record their intersections with pixel bound-
aries to sub-pixel precision. We encode the boundary intersections
as a 8 bit mask per pixel boundary and use a pixel shader to test
the edge against the pixel boundaries and compute the appropriate
bit mask. Each pixel stores only its left and top boundaries as the
others can be retrieved from neighboring pixels. We use a boolean-
or frame buffer operation to composite the results from multiple
edges so that we can reliably detect when multiple edges cross a
pixel. We draw the edges with thick lines extending their length by
one pixel at each end, using an approach similar to the silhouette
shadow maps [6] to ensure that we conservatively activate all pixels
with potential intersections.

3.5 Image filters

The rest of the stages, pixel classification, reachability, interpola-
tion and anti-aliasing, are implemented as a consecutive set of im-
age filters using textures for passing intermediate results and share
a similar set of implementation strategies and limitations. These
stages use lookup tables encoded as fp16 textures to avoid control
code in the fragment shaders, and some of the original operations
in the EPI are pre-computed and stored in those textures.

At the classification stage, the pixels are classified as empty, sim-
ple and complex depending on the total number of edges’ intersec-
tions that lay within. Only the simple pixels need comprehensive
processing, so dynamic branching is used to reduce the number of
pixels totally analyzed.

Due to the limited edge intersection and subpixel information
precision some point samples are ambiguous, i.e., it cannot be es-
tablished on which side of the edge that sample is. Consequently
those samples are invalidated from the projected point image, us-
ing MRT to make both the classification and the invalidation at the
same time, writing the classification to one texture and the valid
point samples to another one.

The reachability operation uses three passes for computing im-
mediate neighbor reachability, chaining these for reachability to far-
ther neighbors and finally using the fact that reachability is sym-
metric to copy some reachability results from neighboring pixels.
Then interpolation uses the reachability for edge-respecting inter-
polation by only using reachable samples and simultaneously cal-
culating pixel sampling priorities. The anti-aliasing uses the inter-
polation and edge information from pixel classification to perform
an inexpensive but effective anti-aliasing of all edge pixels.

As an optional component we also implemented the render cache
interpolation, which does not use edges nor reachability and con-
sists of a prefilter stage with an uniform 7x7 kernel to fill sam-

Implementing the Render Cache and the Edge-and-Point Image On Graphics Hardware, Velázquez-Armendáriz et. al., GI 2006 4



ple regions without points and a 3x3 weighted interpolation kernel
for denser zones. We combined both the prefilter and interpola-
tion stages into a single pass, using Shader Model 3.0 dynamic
branching on the pixel shaders. The prefilter is used only where
it is needed, thus improving the performance.

3.5.1 Branching granularity

The current GPUs have limited performance gains with the dy-
namic branching on the pixel shaders due to their SIMD nature.
The current thread goes through the fast branch only if all the pix-
els being evaluated take the same path, otherwise all of them follow
the long path. Only the simpler render cache interpolation showed
substantial improvements with the branching because almost all of
the pixels take the shortest path. However, other stages such as the
pixel classification would require better granularity so that only a
small amount of pixels follow the slowest path. This kind of com-
plex scenes should benefit from newer hardware with a granularity
of 4x4 pixels, instead of the 64x64 blocks used with most current
generation cards.

3.5.2 Bit operations on the GPU

GPUs do not provide bit level operations, but we can still verify if
a flag is set by comparing the numerical values. If the k bit of a
number n is set, then n ≥ 2k.

An effective way to test this is using the step function: step(a, x)
= x ≥ a ? 1 : 0. This function is better employed in its vector form,
comparing four independent values in a single instruction. Using
this step as a modulator, the weight and current total of the convo-
lution filters is implemented with neither branching nor predication
as:

modulator = step(2k, n) * currWeight
total += modulator * currValue
weight += modulator

To test if only the k bit is set, the floating point operation exe-
cuted is step(2k−1, mod(n, 2k)).

The convolution filters and other operations require to execute
multiple sums and products in the style a = c1x1 + c2x2 + c3x3 +
c4x4. An effective way to optimize this operation is performing
a dot product between the elements of this linear combination:
a = 〈c1,c2,c3,c4〉 · 〈x1,x2,x3,x4〉. The dot product of up to four
elements vectors is a single hardware instruction.

3.5.3 Fill rate and texture access

The EPI filters require abundant texture reads and most of their cal-
culations depend on those values. Therefore faster texture access
speeds would benefit those stages. The EPI filters are also limited
by the fill rate: the number of pixels the GPU can process. Increas-
ing the pixel pipelines number and clock frequency would decrease
the time needed for these filters.

A technique for reducing the fill rate requirements is to dimin-
ish the number of operations in the pixel shader. In all shaders the
operations were vectorized whenever possible as a means to reduce
the instructions count. Moreover, the number of registers used by
a shader is still important for achieving maximum performance. A
180 instruction shader which uses 25 registers performs 50% slower
than other version of the same shader of 215 instructions that em-
ploys 24 registers on our NVidia 7800 GPU.

4 RESULTS

In this section we present detailed results for our hybrid render-
ing system. All images are 512 x 512. Both the shaders and the

image reconstruction process ran in the same system, a Pentium
4 3.2 GHz dual core with 2 GB of memory. The GPU used is a
NVidia GeForce 7800 GTX with 256 MB of memory, using Force-
ware drivers version 81.85. The GPU code is written in C++ using
OpenGL and Cg 1.4rc. The top level rendering system runs with
Java 1.5 and both components are interfaced through Java Native
Interface (JNI). We experimented with SLI dual GPU rendering,
but its performance was not significantly faster than a single card
most probably due to synchronization overheads.

We present results for five scenes. The Cornell box scene is the
simplest, with one area light and 36 polygons. The Chains scene,
with two lights, includes tessellated non-convex objects casting
complex shadows on each other. The Mack room has three lights
with 101k triangles, and includes full global illumination computed
using irradiance caching. The David head from Stanford’s Digital
Michelangelo project, has 250k polygons, is lit by 1 light and in-
cludes ray traced glossy reflections. The Dragon scene, from Geor-
gia Tech’s Large Geometry Models Archive, is a 871k polygons
model that includes a light casting a shadow through a grid on the
dragon.

Table 1 presents detailed timings for these models and Table 2
compares our GPU implementation and the original render cache
and EPI system (all running on the same system). Our GPU imple-
mentation is 60−110% faster than the original, pure multithreaded
CPU system, which uses one processor or core for generating new
shading results and other one for the EPI process. More impor-
tantly, the speed up increases along with the scene complexity; on
the David head and dragon scenes we achieved twice the previous
frame rate. The silhouette detection is faster using the GPU and de-
pends of the complexity of the scene, as does the edge raster stage.
All the other processes are independent of scene complexity and
are related only to image size; the number of elements in the point
cloud depends of the image size as well.

Model Original Full GPU Speed up
Cornell Box 14.46 23.53 61.46%
Chains 13.71 24.20 76.49%
Mack Room 13.08 21.87 67.49%
David Head 9.25 18.61 101.14%
Dragon 7.42 15.59 110.01%

Table 1: Comparison of the frames per second between the original
system and our GPU implementation.

Discussion of point projection performance

Originally we thought that point projection, being an operation that
maps straightforwardly to graphics hardware, would be very fast,
and we expected that the EPI filters, with their texture accesses and
multiple passes, would be the performance bottleneck. Unexpect-
edly the reverse is true. The graphics cards are designed to draw
thousands of pixels from a few vertices and our approach of one
pixel per vertex is against that premise. This along with the band-
width limitations of VBOs makes point projection slower than ex-
pected, occupying 33% of GPU time.

Using a point cloud of roughly 300,000 points, all points could
be projected in 5 ms using a static VBO. Once we updated the point
cloud every frame, the time to stream all the points increased to
11 ms, regardless of the complexity of the vertex and pixel shaders
used. A plausible explanation for this puzzling behavior is that be-
cause the points are updated frequently, the video driver maps the
buffer to low performance memory. During our tests, we found
that if the points were updated less frequently than once every four
frames, they would be read faster, achieving the original rate of 5
ms. A possible reason is that the driver’s memory manager moves

Implementing the Render Cache and the Edge-and-Point Image On Graphics Hardware, Velázquez-Armendáriz et. al., GI 2006 5



Figure 4: Illustration of the different stages of the system. The points and the edges create the edge-and-point image. Edge constrained
interpolation creates a high quality approximation of the image. On the bottom there are details of data textures at different stages, from left
to right: raw points as provided by the underlying renderer, edge raster stage encoding edge’s crossings on the pixels, pixel classification as
empty, simple or complex; reachability (showing the detail of a pixel’s 5x5 neighborhood), priority depicting the places where new samples will
be requested and the final result.

the buffer to the fastest memory available after it was used several
times without being modified.

To implement the update of the image ID of the point cloud we
evaluated the use of Vertex Texture Fetch (VTF) versus using Ren-
der To Vertex (RTV), where a read back to a pixel buffer object
feeds the vertex engine. However, the VTF operation is currently
only supported for some texture formats and it emerged to be 2−3
times slower than using Render to Vertex (RTV).

Future performance

We can summarize our current performance findings:

• Demanding pixel shaders with tens of texture accesses per
pixel are very fast, aside from the raw computational power
of the GPUs.

• Transferring vertex data on the GPU, such as RTV, as of this
writing, is disappointingly slow to be fully useful.

• Lack of scatter writes on pixel shaders prevented us for man-
aging all data on the GPU, and thus we had to copy back some
information to the CPU.

Finer granularity of the pixel pipeline branching units in the fu-
ture will yield performance improvements on complex scenes for
operations such as pixel classification. Scatter writes on the pixel
shaders would allow us to implement the point projection and the
predicted projection in a single pass, circumventing bandwidth lim-
itations. It would also permit us to implement other stages related to
point cloud management more efficiently. Better RTV implemen-
tations would allow us to keep the point cloud as a texture on the
GPU. More supported texture formats for VTF, and faster perfor-
mance, would make it an attractive way to update the point cloud
data and project points.

Public availability

In order to provide proper implementation information of the dif-
ferent developed shaders, we are releasing their complete Cg source
code, publicy available at:

http://www.cs.cornell.edu/~kb/projects/epigpu.

5 CONCLUSIONS

We have presented a hybrid GPU/CPU system for the render cache
and the edge-and-point image using commodity graphics hard-
ware. These point-based alternatives exploit the strengths of CPUs
and GPUs to scale to complex scenes. Our implementation is
60− 110% faster than a pure CPU implementation and frees up
the CPU for other computations such as expensive shading. The
system’s performance is likely to improve with the current trend of
GPUs, which are incorporating more pixel pipelines, higher clock
frequencies and more control logic for dynamic shaders. The higher
frame rate coupled with additional free CPU time will achieve bet-
ter interactivity and faster image convergence than the software-
only system.

ACKNOWLEDGEMENTS

We thank Stanford’s Digital Michelangelo project, the Georgia
Tech Large Geometry Models Archive, and Gene Gregor for their
models. This work was supported by NSF grants CPA-0539996,
ACI-0205438, and Intel Corporation. The first author was funded
by the Computer Science Department at Cornell University. He also
wants to thank Francisco Valero-Cuevas from Cornell University
and Eugenio Garcı́a Gardea from Monterrey Institute of Technol-
ogy and Higher Studies for their commitment with the Engineering
Research Program under which this work was developed.

Implementing the Render Cache and the Edge-and-Point Image On Graphics Hardware, Velázquez-Armendáriz et. al., GI 2006 6

http://www.cs.cornell.edu/~kb/projects/epigpu


Scene Edges P1 P2 P3 P4 E1 E2 I1 I2 GPU Total FPS

Cornell Box 75 5.14 12.31 1.34 1.08 0.34 0.43 1.09 7.29 32.32 42.82 23.35
6.68 13.87 4.73 2.01 0.08 5.63 28.70 69.14 14.46

Chains 110,592 4.02 10.77 1.30 1.07 1.54 0.99 1.44 7.17 31.81 41.32 24.20
5.22 13.17 4.75 2.11 3.91 12.36 28.09 72.93 13.71

Mack Room 153,526 3.71 9.48 1.20 1.06 1.86 1.93 1.38 7.06 31.17 45.73 21.87
4.73 13.27 4.59 1.97 2.17 14.77 27.97 76.43 13.08

David Head 374,653 4.37 11.92 1.18 1.05 4.92 5.87 1.15 7.11 40.78 53.73 18.61
6.35 13.54 4.52 1.95 8.43 40.11 27.85 108.08 9.25

Dragon 1,305,164 4.15 12.79 1.18 1.06 13.81 7.88 1.25 7.11 52.22 64.16 15.59
6.30 14.18 4.83 2.10 22.29 45.41 33.91 134.73 7.42

Table 2: Performance results. For each scene the first column gives the number of edges it has. The next eight columns give the timings
in milliseconds for these processes: update points and request samples (P1), point projection (P2), predicted projection (P3), depth cull (P4),
GPU silhouette detection (E1), edge rasterization (E2), pixel classification (I1), reachability, interpolation and anti-aliasing (I2). The next two
columns give the total GPU time, including all overheads, and the total frame time (both CPU and GPU) in milliseconds. The last column
presents the achieved frames per second. At each scene the upper row contains the GPU timings and the bottom one the CPU results. The
original CPU version does not show isolated pixel classification times.

REFERENCES

[1] Kavita Bala, Bruce Walter, and Donald P. Greenberg. Combining
edges and points for interactive high-quality rendering. ACM Trans.
Graph., 22(3):631–640, 2003.

[2] Abhinav Dayal, Cliff Woolley, Benjamin Watson, and David P. Lue-
bke. Adaptive frameless rendering. In Rendering Techniques, pages
265–275, 2005.

[3] Frederic P. Pighin, Dani Lischinski, and David Salesin. Progres-
sive previewing of ray-traced images using image-plane discontinuity
meshing. In Rendering Techniques ’97, pages 115–125, 1997.

[4] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan.
Ray tracing on programmable graphics hardware. In SIGGRAPH ’02,
pages 703–712, 2002.

[5] Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann
Jensen, and Pat Hanrahan. Photon mapping on programmable
graphics hardware. In HWWS ’03: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages
41–50, 2003.

[6] Pradeep Sen, Mike Cammarano, and Pat Hanrahan. Shadow silhouette
maps. ACM Trans. Graph., 22(3):521–526, 2003.

[7] M. Simmons and C. Séquin. Tapestry: A dynamic mesh-based display
representation for interactive rendering, 2000.

[8] Miloslaw Smky, Shin-ichi Kinuwaki, Roman Durikovic, and Karol
Myszkowski. Temporally coherent irradiance caching for high quality
animation rendering. In Eurographics 2005, volume 24, 2005.

[9] Marc Stamminger, Joerg Haber, Hartmut Schirmacher, and Hans-
Peter Seidel. Walkthroughs with corrective texturing. In Rendering
Techniques 2000, pages 377–388, 2000.

[10] Laszlo Szirmay-Kalos, Barnabas Aszodi, Istvan Lazanyi, and Matyas
Premecz. Approximate ray-tracing on the gpu with distance impos-
tors. In Eurographics 2005, volume 24, 2005.

[11] Parag Tole, Fabio Pellacini, Bruce Walter, and Donald P. Greenberg.
Interactive global illumination in dynamic scenes. In SIGGRAPH ’02,
pages 537–546, 2002.

[12] Bruce Walter, George Drettakis, and Donald P. Greenberg. Enhanc-
ing and optimizing the render cache. In Eurographics Workshop on
Rendering, 2002.

[13] Bruce Walter, George Drettakis, and Steven Parker. Interactive render-
ing using the render cache. In Rendering techniques ’99 (Proceedings
of the 10th Eurographics Workshop on Rendering), volume 10, pages
235–246, Jun 1999.

Implementing the Render Cache and the Edge-and-Point Image On Graphics Hardware, Velázquez-Armendáriz et. al., GI 2006 7


	Introduction
	Related work

	Algorithm overview
	Point cloud and projection
	Edge finding and rasterization
	Image filters
	Sample prioritization and request

	Mapping to the hardware
	Data Flow on the GPU
	Point projection
	Limitations

	Silhouette detection
	Limitations

	Edge raster
	Image filters
	Branching granularity
	Bit operations on the GPU
	Fill rate and texture access


	Results
	Conclusions

