Computer Vision for Recovering Information About Scene Geometry

Dan Huttenlocher
Computer Science Dept.
Geometry and Computer Vision

- Recovering “full” scene geometry from multiple images
 - depth or disparity maps from stereopsis
 - 3D surfaces or point sets from motion analysis

Depth map from Boykov, Veksler and Zabih, 1998
Partial Scene Geometry is Useful

- Two examples
 - background-plus-objects scene representation
 - emerging integrated approach to recovering scene geometry from multiple views
 - combines motion analysis and epipolar geometry from stereopsis
 - flexible models of objects
 - long history of graph-based models (late 60’s) for articulated objects composed of rigid subparts
 - recent algorithmic advances and applications to recognizing both static and dynamic configurations
Background-Plus-Objects

- Most scenes have a background that appears to be a “plane at infinity”
 - changes in viewpoint (locally) do not reveal 3D geometric structure of this background

- Objects are then parts of scene where 3D geometry is apparent from images
 - closer than the “plane at infinity”
 - causes motion parallax between views
 - moving independently in the scene
 - motion that does not obey parallax
Illustrating Background-Plus-Objects

- **Top**
 - sequence with moving camera and car

- **Bottom**
 - background aligned (left)
 - parallax motion aligned (right)

From Anandan and Irani, 1997
Background-Plus-Objects Modeling

- Camera centers C_t and C_s, image point P_i
 - projection onto “virtual” reference plane π
 - re-projection onto image plane

From Irani, Anandan and Weinshall, 1998
Background-Plus-Objects Modeling

- Virtual reference plane maps to each image plane via projective transformation
 - modeled using projective transformation between two images
 - affine approximation often reasonable

- Remaining image motion (parallax) in static scene due to height above reference plane
 - meets epipolar constraint
 - don’t actually need to find epipoles
 - important because not always reliably computable
Applications of this Geometric Model

- Replacing objects in video
 - e.g. advertisements in live broadcast of sporting events (e.g., Sarnoff)

- Detection of “interesting” objects in video
 - removing independently moving objects
 - hypothesizing objects to follow

Tracking results from Bell, Felzenszwalb and Huttenlocher, 1999
Representing Flexible Objects

- Modeling articulated objects such as people, some animals, many manmade items
 - “stick figure” models (e.g., Bregler, Adelson)
 - “cardboard cutout” models (e.g., Black, Yacoob)
- Models composed of parts and connections between parts
 - commonly use graph-based representation with parts as nodes and connections as edges
 - connection cost reflects deformation of model parts with respect to an “ideal configuration”
Illustrating Flexible “Cardboard” Models

- Relative geometry captured by connections
 - simple appearance model of each part

From Felzenszwalb and Huttenlocher, 1999
Finding Good Configurations of Parts

- For \(n \) parts and \(m \) possible locations of each part, \(O(m^n) \) configurations
 - cost measures how well each part matches image and how much model is deformed

- Seek low cost configuration
 - can be set up in a principled manner as a MAP estimation problem (Bayesian framework)

- In general find local rather than global minimum due to high computational cost
 - fine for tracking – “nearby” configuration
New Result: Efficient Global Solution

- Many flexible objects are tree-structured
 - no cycles in the graph
 - “hand not connected to foot”

- An $O(m^2n)$ method for such objects
 - modification of standard Viterbi-style dynamic programming – but still not practical, m^2 is huge

- Second level of dynamic programming yields $O(mn)$ method that runs in a few seconds
 - based on a novel generalization of distance transforms from point sets to functions
Flexible Model Matching Examples

- Simple part models can be mismatched due to color change
 - primarily measuring deformation geometry
Flexible Model Matching Examples

- Currently no model of occluded parts
 - find best match that accounts for all parts (allowing overlap)
The Geometry You Need?

Variety of techniques in computer vision for extracting geometric information

- “full” 3D recovery only one possibility
 - recent improvements in stereo algorithm accuracy
- partial 3D recovery using background-plus-objects representation
 - objects with “depth” or moving “independently”
 - potentially more stable than methods that explicitly recover epipolar geometry
- geometric model-based matching for identifying people and their activities