Fast Agglomerative Clustering for Rendering

Bruce Walter, Kavita Bala,
Cornell University

Milind Kulkarni, Keshav Pingali
University of Texas, Austin
Clustering Tree

• Hierarchical data representation
 – Each node represents all elements in its subtree
 – Enables fast queries on large data
 – Tree quality = average query cost

• Examples
 – Bounding Volume Hierarchy (BVH) for ray casting
 – Light tree for Lightcuts
Tree Building Strategies

• Agglomerative (bottom-up)
 – Start with leaves and aggregate

• Divisive (top-down)
 – Start root and subdivide
Tree Building Strategies

- **Agglomerative** (bottom-up)
 - Start with leaves and aggregate

- **Divisive** (top-down)
 - Start root and subdivide
Tree Building Strategies

• **Agglomerative (bottom-up)**

 – Start with leaves and aggregate

• **Divisive (top-down)**

 – Start root and subdivide
Tree Building Strategies

- **Agglomerative (bottom-up)**
 - Start with leaves and aggregate

- **Divisive (top-down)**
 - Start root and subdivide
Tree Building Strategies

- **Agglomerative (bottom-up)**
 - Start with leaves and aggregate

- **Divisive (top-down)**
 - Start root and subdivide
Tree Building Strategies

• Agglomerative (bottom-up)
 – Start with leaves and aggregate

• Divisive (top-down)
 – Start root and subdivide
Tree Building Strategies

• Agglomerative (bottom-up)
 – Start with leaves and aggregate

• Divisive (top-down)
 – Start root and subdivide
Tree Building Strategies

• Agglomerative (bottom-up)
 – Start with leaves and aggregate

• Divisive (top-down)
 – Start root and subdivide
Conventional Wisdom

• Agglomerative (bottom-up)
 – Best quality and most flexible
 – Slow to build - $O(N^2)$ or worse?

• Divisive (top-down)
 – Good quality
 – Fast to build
Goal: Evaluate Agglomerative

• Is the build time prohibitively slow?
 – No, can be almost as fast as divisive
 – Much better than $O(N^2)$ using two new algorithms

• Is the tree quality superior to divisive?
 – Often yes, equal to 35% better in our tests
Related Work

• Agglomerative clustering
 – Used in many different fields including data mining, compression, and bioinformatics [eg, Olson 95, Guha et al. 95, Eisen et al. 98, Jain et al. 99, Berkhin 02]

• Bounding Volume Hierarchies (BVH)
 – [eg, Goldsmith and Salmon 87, Wald et al. 07]

• Lightcuts
 – [eg, Walter et al. 05, Walter et al. 06, Miksik 07, Akerlund et al. 07, Herzog et al. 08]
Overview

• How to implement agglomerative clustering
 – Naive $O(N^3)$ algorithm
 – Heap-based algorithm
 – Locally-ordered algorithm

• Evaluating agglomerative clustering
 – Bounding volume hierarchies
 – Lightcuts

• Conclusion
Agglomerative Basics

• Inputs
 – N elements
 – Dissimilarity function, d(A,B)

• Definitions
 – A cluster is a set of elements
 – Active cluster is one that is not yet part of a larger cluster

• Greedy Algorithm
 – Combine two most similar active clusters and repeat
Dissimilarity Function

- \(d(A,B) \): pairs of clusters → real number
 - Measures “cost” of combining two clusters
 - Assumed symmetric but otherwise arbitrary
 - Simple examples:
 - Maximum distance between elements in A+B
 - Volume of convex hull of A+B
 - Distance between centroids of A and B
Naive $O(N^3)$ Algorithm

Repeat {
 Evaluate all possible active cluster pairs $<A,B>$
 Select one with smallest $d(A,B)$ value
 Create new cluster $C = A+B$
}

until only one active cluster left

• Simple to write but very inefficient!
Naive O(N^3) Algorithm Example
Naive $O(N^3)$ Algorithm Example

- U
- PQ
- RS
- T
Acceleration Structures

• KD-Tree
 – Finds best match for a cluster in sub-linear time
 – Is itself a cluster tree

• Heap
 – Stores best match for each cluster
 – Enables reuse of partial results across iterations
 – Lazily updated for better performance
Heap-based Algorithm

Initialize KD-Tree with elements
Initialize heap with best match for each element
Repeat {
 Remove best pair <A,B> from heap
 If A and B are active clusters {
 Create new cluster C = A+B
 Update KD-Tree, removing A and B and inserting C
 Use KD-Tree to find best match for C and insert into heap
 } else if A is active cluster {
 Use KD-Tree to find best match for A and insert into heap
 }
} until only one active cluster left
Heap-based Algorithm Example
Locally-ordered Insight

• Can build the exactly same tree in different order

• How can we use this insight?
 – If \(d(A,B) \) is non-decreasing, meaning \(d(A,B) \leq d(A,B+C) \)
 – And \(A \) and \(B \) are each others best match
 – Greedy algorithm must cluster \(A \) and \(B \) eventually
 – So cluster them together immediately
Locally-ordered Algorithm

Initialize KD-Tree with elements
Select an element A and find its best match B using KD-Tree
Repeat {
 Let C = best match for B using KD-Tree
 If d(A,B) == d(B,C) { //usually means A==C
 Create new cluster D = A+B
 Update KD-Tree, removing A and B and inserting D
 Let A = D and B = best match for D using KD-Tree
 }
 else {
 Let A = B and B = C
 }
} until only one active cluster left
Locally-ordered Algorithm Example

T

U

P

Q

RS
Locally-ordered Algorithm Example

Diagram showing nodes T, U, P, Q, and RS with connections between them.
Locally-ordered Algorithm Example
Locally-ordered Algorithm Example

T U P

RS Q
Locally-ordered Algorithm Example
Locally-ordered Algorithm

• Roughly 2x faster than heap-based algorithm
 – Eliminates heap
 – Better memory locality
 – Easier to parallelize
 – But $d(A,B)$ must be non-decreasing
Results: BVH

- BVH – Binary tree of axis-aligned bounding boxes
- Divisive [from Wald 07]
 - Evaluate 16 candidate splits along longest axis per step
 - Surface area heuristic used to select best one
- Agglomerative
 - \(d(A,B) = \) surface area of bounding box of A+B

- Used Java 1.6JVM on 3GHz Core2 with 4 cores
 - No SIMD optimizations, packets tracing, etc.
Results: BVH

BVH Build Times

- Agg-Heap
- Agg-Local
- Divisive

Time (secs)

Triangles

Kitchen
Tableau
GCT
Temple
Results: BVH

Surface area heuristic with triangle cost = 1 and box cost = 0.5
Results: BVH

Image Time (secs)

- **Kitchen**: Divisive 49.2, Agglomerative 32.3
- **Tableau**: Divisive 16.4, Agglomerative 15.8
- **GCT**: Divisive 35.1, Agglomerative 29
- **Temple**: Divisive 41.2, Agglomerative 32.2

1280x960 Image with 16 eye and 16 shadow rays per pixel, without build time
Lightcuts Key Concepts

• Unified representation
 – Convert all lights to points
 • ~200,000 in examples

• Build light tree
 – Originally agglomerative

• Adaptive cut
 – Partitions lights into clusters
 – Cutsize = # nodes on cut
Lightcuts

• Divisive
 – Split middle of largest axis
 – Two versions
 • 3D – considers spatial position only
 • 6D – considers position and direction

• Agglomerative
 – New dissimilarity function, \(d(A,B) \)
 • Considers position, direction, and intensity
Results: Lightcuts

Avg. Cutsize

640x480 image with 16x antialiasing and ~200,000 point lights
Results: Lightcuts

Total Image Time (secs)

- Divisive-3D
- Divisive-6D
- Agglomerative

640x480 image with 16x antialiasing and ~200,000 point lights
Results: Lightcuts

Kitchen model with varying numbers of indirect lights
Conclusions

• Agglomerative clustering is a viable alternative
 – Two novel fast construction algorithms
 • Heap-based algorithm
 • Locally-ordered algorithm
 – Tree quality is often superior to divisive
 – Dissimilarity function $d(A,B)$ is very flexible

• Future work
 – Find more applications that can leverage this flexibility
Acknowledgements

• Modelers
 – Jeremiah Fairbanks, Moreno Piccolotto, Veronica Sundstedt & Bristol Graphics Group,

• Support
 – NSF, IBM, Intel, Microsoft