The Path-Buffer

Bruce Walter*
Jed Lengyel*

Abstract

With a small modification the z-buffer can be made flexi-
ble enough to be used in global illumination algorithms tra-
ditionally handled only by ray casting, but still enjoy the
benefits of z-buffer algorithms including predictable perfor-
mance, memory coherence, and acceleration using special-
ized z-buffer hardware.

The fundamental difference between the path-buffer and
a standard z-buffer is that the global near clipping plane
is replaced with a per pixel near clipping value z;. The
success of each pixel write depends on compares with both
the current z and zo values. We demonstrate the power of
this additional test by showing how two global illumination
algorithms can be adapted to use the path-buffer instead of
ray casting.

First we adapt Kajiya-style path tracing for finding view-
dependent global illumination solutions. Since the scene
database is streamed through the path-buffer, and no com-
plicated meshing or per-element storage is needed, very large
and complex models may be illuminated. Both diffuse and
non-diffuse reflectance functions can be handled as well any
complex geometric primitives which can be rasterized (e.g.
displacement-mapped spline surfaces). Second we show how
the path-buffer can be used to do an image gather from a
coarse radiosity solution in two-pass radiosity methods.

1 Introduction

Visibility testing is a fundamental problem in computer
graphics and occurs as a step in most graphics algorithms.
Many different methods have been proposed, but the two
most common visibility tests in use today are the z-buffer
and ray casting. The interactive rendering community has
focused on the z-buffer because of its predictable resource re-
quirements and because it is easy to accelerate using special-
ized hardware. When it was first introduced, the z-buffer[2]
was considered far too “brute-force” and wasteful of memory.
The z-buffer has since gained enormous popularity and is the
basis for rendering engines that can scan-convert and do hid-
den surface removal on millons of primitives per second.[8][5]
The high speed of these engines and the ability to handle
millions of primitives inspired the path-buffer technique.

The global illumination community has tended to use ray
casting for visibility testing. Nearly all current global illu-
mination methods (hierarchical radiosity[7], clustering[16],
path tracing[9]) use ray casting in part because the standard
z-buffer lacks the flexibility needed to efficiently implement
the visibility tests required by these methods.

Previous methods which combined z-buffers and global il-
lumination include the hemi-cube[3] formulation of radiosity,
and the two-pass radiosity method[18] where hemi-cubes of
varying widths are used to compute shading from a previous

*Program of Computer Graphics, Cornell University, Ithaca,
N.Y. 14853

radiosity solution. These methods order the computation
by element or pixel respectively and require a rasterization
step to gather the incoming light for each element or pixel in
the scene. The path-buffer technique described below orders
the computation by direction instead of by ray or by element
and so requires only a constant number of rasterization steps
to sample the directions of a sphere. Path-buffer algorithms
also tend to be progressive in that they can quickly an im-
age and then refine that image as more scan conversions are
done.

Other work on illumination using scan conversion includes
the item-buffer [21] in which a scan conversion is used to ac-
celerate the inital step in ray tracing, and shadow maps [11]
which scan convert from the view of the light to compute
direct illumination. A survey of previous techniques com-
bining z-buffers and global illumination is given in [17].

Other modified z-buffer and point-sampling algorithms
(e.g.[13] [4]) keep more than one z value but use it for
transparency and CSG (Constructive Solid Geometry) op-
erations.

Section 2 describes the basic path-buffer algorithm. Path
tracing using the path-buffer is described in Section 3 and
gathers from radiosity solutions is discussed in Section 4.
Some results from our software implementation are listed in
Section 5. Appendix A gives some of the mathematical basis
for path tracing and Appendix B gives some details of our
software implementation.

2 The Path-Buffer as a Parallel Ray Caster

Ray casting and z-buffers are both solutions to the visibility
problem and hence are in some sense equivalent (see Fig-
ure 1). Any ray could be replaced by a scan conversion with
a one pixel z-buffer, and any z-buffer scan conversion could
be replaced by a set of rays passing through each pixel.!

We can see some of the limitations of standard scan con-
version if we think of the z-buffer as a parallel ray tracer
casting a million rays (one through each pixel). The nature
of the z-buffer places three constraints on the rays.

Restriction 1: All rays must either be parallel when using
an orthogonal projection or pass through a single point
when using a perspective projection.

Restriction 2: The rays are distributed in a regular pat-
tern corresponding to pixels.

Restriction 3: All rays originate at the near clipping
plane.

The innovation of the path buffer is that it eliminates this
third restriction by splitting the near clipping plane into a
near clipping value per pixel. Thus each pixel contains two

IThis may not be true if anti-aliasing other than super-
sampling is used, but we will not be consider such techniques
here.

z values z and zo, the near clipping value. The standard
z-buffer tests z at each pixel and writes only if the new z
is less than the previous z. The path-buffer only writes the
pixel if the new z is greater than zy and less than the current
z. If an update is successful we replace z with the new z but
do not change zo.

Figure 1: A standard z-buffer rasterization from the eye point
results in a set of points which are nearest to the eye-point
but beyond the near-clipping plane. A second rendering from
Just behind P (with a near clipping plane passing through P)
will find the closest surface, and in effect trace a single ray.

2.1 Using the Path-Buffer

When adapting algorithms to use the path-buffer instead of
ray casting, we still have to be aware of restrictions one and
two. In this paper we will use orthographics projections for
all rays except eye rays. This means that each scan conver-
sion will effectively cast a large number of parallel rays as in
Figure 2. Thus we will need to reorder the computation to
use a large number of parallel rays in order to make efficient
use of each scan conversion.

Given a set of parallel rays we want to trace, we will chose
a orthographic projection in the direction of the rays and set
the view frustum large enough to encompass all the starting
points of the rays. We will then project each of the ray
starting points onto the view plane to find the pixel closest
corresponding pixel. The zy value for this pixel will be set to
match the its ray’s starting point. Scan converting the scene
will then cast all of the rays at the same time. Afterwards
we can read the results of each ray from its corresponding
pixel.

Some error 1s introduced when matching rays to their clos-
est pixel, but this has not caused a problem in our tests.
However this will become more of a problem if ray starting
points are widely separated or if the path-buffer resolution
is small. This could be overcome by using sub-pixel posi-
tioning.

2.2 Advantages of Path-Buffer

Besides tracing the advantage of tracing multiple ray simul-
taneously, the path-buffer also has all the advantages of scan

conversion and z-buffers. Scan conversion is easily paral-
lelizable as evidenced by the multitude hardware accelera-
tors which exist. The path-buffer does require an additional
compare to zo on each write which is not supported by most
current hardware. However the additional cost is both small
and predictable and thus very suitable for hardware imple-
mentation.

There 1s a large class of modeling primitives which is eas-
ier to rasterize than to intersect with a ray. Imagine try-
ing to efficiently intersect a ray with a displacement- and
texture-mapped spline surface! Scan conversion also has
the advantage of good memory coherence for texture and
displacement map access.[4] In general ray-tracing tends to
randomize memory accesses, which increases page thrashing.
Whereas scan conversion can efficiently handle scenes which
may be larger than main memory (e.g. procedure models)
by streaming the scene through the scan converter.

H_

Figure 2: The points obtained by a standard z-buffer rasteri-
zation from the eye point (as in Figure 1) are then projected
onto the new viewplane. The path-buffer uses z of each pro-
jected point as the zo per-pixel clipping plane. The second
path-buffer rendering is tracing all of the sample rays at once
from all of the different starting points.

3 Path Tracing

Path tracing[9] was introduced as a way to estimate the
global illumination due to both direct and indirect light-
ing. Light transport is estimated by tracing possible light
paths backward from the eye. These paths are generated
randomly and by averaging over many such paths an ac-
curate estimate of the total illumination is obtained. See
Appendix A for more details on how path tracing works.

Path tracing has a number of benefits. It is a view-
dependent algorithm which can handle arbitrary BRDFs
(bidirectional reflectance distribution functions) including
both diffuse and specular surfaces. No meshing is required
and no additional data needs to be stored with the primi-
tives, thus large scenes and procedural models can be han-
dled.

The main drawback is that typically a very large number
of paths must be computed. This combined with the expen-
sive nature of ray casting has limited use of path tracing.
However the quality of the images it produces has led to

a search for faster methods which capture the same effects.
Ward[20] has developed a related method which caches light-
ing information at surfaces to reduce the number of rays
needed. This system has found widespread use in the Radi-
ance system for global illumination[19].

3.1 Ordering by Direction

Figure 3: Montecarlo path-tracing works by adding in the
contributions of a finite set of energy-transport paths (chosen
at random) to approzimate the integral over all paths. A and
B are two example paths.

Standard path tracing works by computing paths in a pixel
serial fashion with all paths for a single pixel being com-
puted before the next pixel is started. The path-buffer can
be used to greatly accelerate this process by simultaneously
tracing one path for each pixel. However need to modify the
way the paths are generated in order to get the ray coher-
ence we need to efficiently use the path-buffer. In standard
path tracing, the paths for neighboring pixel are generated
independently like those in Figure 3. This causes all ray co-
herence to be lost after the first bounce. However we can
reorder the computation by having the paths for different
pixels share directions. As shown in Figure 4 this gives the
parallel rays we need for efficient use of the path-buffer. This
allows to shoot one path for each pixel by scan converting
the scene a number of times equal to the depth to which
we want to trace the paths. By repeating this process by
number of paths we want per pixel, we can produce a path
traced image using only z-buffer style scan conversion.

3.2 Direction Coherence

By sharing directions between the paths for different pixels,
we have introduced a correlation in the error at neighboring
pixels. This correlation will be visually obvious if an insuf-
ficient number of paths are traced. Visually this looks like
noticable images of the scene being “pasted” on surfaces of
the scene. The solution is to shoot more paths until this
error is no longer objectionable which is also the solution
for the error in ordinary path tracing. Each pixel will still
converge to the correct value as more paths are used.
Another problem occurs at non-diffuse surfaces. Direc-
tional highlights are more difficult to correctly approximate

Figure 4: Path-tracing with shared directions — path A and
path B share the same direction for each bounce.

by picking uniform random directions. Ordinary path trac-
ing handles this by choosing the directions partially based
on the local BRDF. However since our directions apply to
many different paths, this is more difficult to do with the
path-buffer. Thus for our implementation we simply use
more paths when non-diffuse objects are present. We feel
that this is more than offset by our decreased cost to trace
a path as long as our BRDFs are not too highly directional.

3.3 Optimizations

Another standard acceleration technique for path tracing is
to shoot a shadow ray to a light at each path intersection
point. This makes each path a much better estimate of the
true lighting and greatly reduces the number of paths which
need to be shot. This technique can still be used in the con-
text of scan conversion by using shadowmaps. We randomly
choose a point on the light sources and generate shadowmaps
for that point. The shadow rays are replaced by look-ups
into these shadowmaps. To make shadows more accurate,
we pick a new light point for each set of paths.

We can also get effects like anti-aliasing, depth of field,
and motion blur using the techniques of the accumulation
buffer[6]. Since we are already accumulating our image over
many scan conversions of the scene, these effects can be
added essentially for free.

4 Local-Pass for Radiosity Post-Process

The cost of computing a radiosity solution increases with the
resolution of the mesh on the scene. Thus for complex scenes
is often prohibitively expensive to find a radiosity solution
on a mesh which is fine enough for direct display. However
Rushmeier[12] noted good images can be produced much less
expensively by using a two-pass method. In the first phase
a radiosity solution is computed on a coarse mesh. Then
the local pass makes an image by doing a gather from the
radiosity solution at each pixel. The produces images with
far more detail than could be captured in the coarse mesh.

Since the introduction of the this two-pass method, great
progress has been made in accelerating the radiosity solu-
tion pass. However relatively little work has been done

on speeding up the local pass. Smits[16] has shown how
the radiosity pass can be accelerated to the point where he
now reports that the local-pass now accounts for most of
his computation.? The problem will be even worse for ani-
mations where the radiosity solution is computed once, but
the gather must be computed at each frame. We believe
the path-buffer has great potential for accelerating the local
pass.

The process of doing a gather is very similiar to that for
path tracing. Possible light paths are still traced backward
from eye. However the paths are limited to depth two. At
the second bounce instead of continuing the path, we just
use the computed radiosity value from the radiosity solution.
Hence it is straightforward the path-buffer path tracing al-
gorithm to do gathers as well.

5 Results

We created a software implementation to evaluate how well
the path-buffer would work in practice. All pictures are
256 by 256 pixels and all timings are done on an HP 735
workstation. The timings are included for completeness only
as the real performance potential tests will come when the
path-buffer is combined with hardware scan conversion.

A simple diffuse box environment cosisting of 36 triangles®
was used to test the path tracing with the path buffer. Fig-
ures 5, 6, and 7 show solutions for the same environment
with a maximum path depth of one, two, and three. A
depth one solution includes only direct lighting while using
greater depths includes better approximations to the indi-
rect lighting as well. Notice how the shading in the shadows
and on the front of the yellow box change as more of the
indirect light is included. Each of these renderings was com-
puted using 1024 paths/pixel. Each path/pixel required 5
scan conversions to generate the hemi-cube shadowmap plus
a number of scan conversions equal to the depth to trace the
the paths. Figure 7 took 35 minutes to generate. To demon-
strate that the algorithm can handle non-diffuse BRDFs, we
changed the yellow box into a yellow brushed metal box in
Figure 10. We also increased the paths/pixel to 4096 to
adequately sample the non-diffuse BRDF.

We also tested using the path-buffer to do a gather from
a radiosity solution. Figure 8 shows a radiosity on the box
environment using a coarse mesh. The gather using 1024
paths/pixel is shown in Figure 9. The number scan conver-
sions is the same number of as for a depth two path trace.
This figure used 210 triangles and took 32 minutes to gen-
erate. We also ran a gather on a more complicated room
consisting of 14920 triangles. The radiosity solution for this
environment is shown in Figure 11. We used a Monte Carlo
radiosity solver which generates the right answer on average,
but the result for individual polygons is often incorrect espe-
cially for small polygons. A gather using 4096 paths/pixel is
shown in Figure 12. This image took 233 minutes to gener-
ate. Note the subtle effects like the secondary illumination
from the ceiling above the left door and the indirect lighting
shadow behind the posts next to the fireplace. To demon-
strate just how important the indirect illumination is in this
scene, we have included a direct lighting only solution in
Figure 13.

2Personal communications
3Qur implementation splits polygons into triangles.

6 Conclusions

We believe that the path-buffer is a valuable extention of
the standard z-buffer. By adding zg value to each pixel and
an additional z compare to each pixel write, scan conversion
can be applied to new algorithms which were previously ex-
clusively the domain of ray casting. Moreover this addition
is simple enough that it can easily be implemented in hard-
ware.

We have shown two sample applications of the path-buffer:
path tracing and gathering from radiosity solutions. To test
the practicality of these path-buffer algorithms, we created
a software implementation of the path-buffer. The results
of this implementation have been very encouraging. How-
ever we think that the real value of the real power of the
path-buffer will be realized when its combined with hard-
ware support. Thus is our hope that hardware designers
will consider adding path-buffer support to their future scan
conversion and z-buffer hardware designs.

6.1 Future Work

We are actively seeking to find an available hardware scan
conversion design which can support the path-buffer. Nearly
all of the additional cost in handling bigger models will come
in the scan conversion of the scene. Thus with hardware
scan conversion we expect be able to handle models which
are orders of magnitude bigger than the ones presented here.

There are also many improvements which can be made
in our implementation of path tracing. The number of scan
conversions required per path can reduced by making better
use of the shadow maps and by reusing scan conversions from
the eye over multiple paths.

Better ways need to be found to handle very specular sur-
faces. This might be done by altering the directional sam-
pling based on the BRDFs which the paths hit. Perhaps
by letting each path “vote” on important directions to sam-
ple or by special casing specular intersections for separate
calculation (similiar to two-pass techniques[18].)

Also for future work is the inclusion of levels-of-detail.
Objects could be use different levels of detail depending on
the distance from the eye or the current depth of the paths.
This could greatly reduce the cost of very complex scenes.

A Appendix: Mathematical Foundation

A.1 Rendering Equation

The rendering equation was introduced by Kajiya[9] to give
a mathematical basis for the design and evaluation of realis-
tic rendering algorithms. Kajiya also introduced a method
called path tracing which is capable of producing good ap-
proximate solutions to the rendering equation using Monte
Carlo techniques. In this appendix, we will give a quick sum-
mary of the equations which govern path tracing. For more
detail see [9] [15]

The rendering equation can be formulated in many dif-
ferent ways. It can be formulated as an integration over
directions as follows:

L(Z,w) :Le(f,w)—l—/ p(#, w, wL(#, W) cosfdw’ (1)
Q

where § is the angle between w’ and the surface normal at &
and #’ is the point on the first surface visible from # in di-
rection w’. Alternatively it can be formulated as an integral

points on surfaces in scene

directions

radiance (light power per unit area per
steradian)

emitted radiance (light power per unit area
per steradian)

reflected radiance defined by L - Le
bidirectional reflectance distribution function
geometry or visibility function. Equals one
if two points are mutually visible, zero
otherwise.

set of surfaces in scene

set of light emitting surfaces

area of all light emitting surfaces

sphere of all possible direction

distance between #'and ¥

T &y

5

Qv - o D E 8

n »n
o

e

|
81

Table 1: Symbols and Terms

over all points on all the surfaces in our scene.

L(Z,w) = Le (&, w)—l—/ p(#, w, w L&, W g(&, &)
s

| — ||

(2)
where w' is the direction from # to &, 8’ is the angle between
w’ and the surface normal at &', and g(#,3') is 1if & is visible
from # and 0 otherwise.

Exact solutions to these equations are only known for a
few very simple cases, so we use an approximation method
known as Monte Carlo integration. The integral of a function
f(z) over the range X is approximately equal to f(z:)/p(z:)
where z; € X is a randomly chosen value according to the
probability density function p(z).

I= / @i~]Jj Ejj; (3)

This 1s a valid estimate in the sense that although any in-
dividual value may not be correct, on average we will get
the right answer. Thus we can always get a better estimate
by averaging many such estimates. How quickly such an av-
erage will converge to the correct solution depends on the
function, f, and probability density, p, used. In many cases
it is worthwhile to carefully design p(z) based on knowledge
of f(z), however in this paper we will simply use uniform
probability density functions where p = 1/(fX dps). For

more information on Monte Carlo integration see [14] [10].

A.2 Naive Path Tracing

Path tracing in its most naive form works by integrating
Equation 1 using a uniform probability over the sphere of
directions so that p(w’) = ﬁ. We randomly choose direction
w’ to get the estimate:

L(Z,w) & Le(#,w) + 47 cos §p(#, w, wL(Z',w") (4)

We can then evaluate L(Z',w") by recursively applying Equa-
tion 1 and choosing another random direction w” to get:

L(#w) = Le(# w)+ 47 cosbp(Z, w,w')
[Le (#, 0"y 4 47 cos ' p(&, W', W YL(F", w”)]
We can repeat this procedure as many times as we like, but

we need some way to keep our computation is finite. Typi-
cally a maximum depth is set for this recursion and then the

cos 8 cos §'dz’

remaining L is assumed to be a constant often called the am-
bient value. This introduces some bias to our solution but
the bias decreases with increasing depth of the recursion.
The choice of a good ambient will both decrease the bias
and increase the accuracy of our estimates. However there
is currently no good method for automatically choosing an
ambient value other than trial and error or comparison to a
known solution. In this paper will use an ambient value of
zero unless otherwise noted.

A.3 Path Tracing

We can reduce the number of paths needed by being a little
less naive in our sampling. In a typical scene the set of light
emitting surfaces, S., is only a very small portion of the set of
surfaces, S. Only paths which hit a surface in S.will result in
a non-zero estimate, but the chance of our randomly hitting
a light source may be very small. All these zero estimates
mean that our convergence of our approximation is slow and
many paths are required. We can improve the convergence
by reformulating the equation that we are estimating.

Let us define I, = L. — L.. Then our radiosity equation
will be roughly of the form:

L:Le—l—/pLecosedw/—l—/ercosedw/
Q Q

If the light sources constitute a small portion of our scene
will be better off by reformulating the second term as an
integration over the light surfaces in the style of Equation 2
to get:

L(Z,w) = Le(Z, w)+L(F w)

/p(f,w,w/)Le(f/,w/)g(f,f/)
s

e

cos 8 cos §'dz’

& — ||

L(%w) =

—|—/p(f,w,w”)Lr(f”,w”) cos 8" dw"”
Q

We can estimate the surface integral by using the Monte
Carlo integration. The uniform probability density for this
integral is p(Z') = 1/A. where A.is the total area of all light
sources. Choosing random values for ' and w’ we get:

cosfcosb' A,
& — |2

+4mcos 8" p(F, w, w" L (8", w") (5)

p(#, w, wLe (&, wg(#, &)

As before we can evaluate L.(Z",w") by using recursive ap-

plications of these equations up to some maximum depth.

There path tracing shown here is still somewhat naive.
There are number of improvement which have been made in
path tracing, but are not used in our current implementa-
tion. Arvo[1] has shown that the bias due to the depth limit
can be avoided by using probabilitic termination of paths.
Also much work has been done on finding non-uniform pro-
bility density functions which give more accurate estimates.
These improve the convergence of the estimate and so reduce
the number of paths which need to be traced.

A.4 Radiosity Gather

A gather from a radiosity solution can be done using the
same basic equations as for path tracing. For a gather we will
use Equation 5, but instead of recursively applying it, we use
the pre-computed radiosity solution to evaluate L(#",w")
This 1s essentially the same as doing depth 2 path tracing

with spatially varying ambient values

Image Buffer

color Color 12 bytes
total_attn Color 12 bytes
pos Vector 12 bytes
Path Buffer
z Float 4 bytes
2o Float 4 bytes
image_pixel | Pointer | 4 bytes
light Color 12 bytes
attn Color 12 bytes

Table 2: Per Pixel Data Structures

PathBufferTrace (database, image_buf, path_buf)

InitializeImagePositions (image_buf,database.eye);

transform = PerspectiveProjection (database.eye);

for depth := 1 to maxdepth
next_dir = RandomDirection();
ScanConvertPositions (path_buf transform,image_buf);
ScanConvertScene (path_buf,transform,database);
Updatelmage (image_buf path_buf,transform);
transform = OrthographicProjection (next_dir,image_buf);

Table 3:

B Implementation

As proof of concept, we have implemented a software version
of the path-buffer. Several versions of path tracing and ra-
diosity gathering have been combined in a single implemen-
tation and use slightly different code. Thus just a general
overview of the implementation will be given here. The re-
maining details for a particular algorithm can filled in using
the equations in Appendix A.

The main data structures used are the image buffer and
the path buffer shown in Table 2. The image buffer holds
the current estimate of our image which we are accumulating
as well as the states of all the paths currently being traced.
The path buffer is used for scan conversions to find the next
intersection points for the paths. We use an additional 3
bytes per pixel for shadowmaps for a total of 75 bytes per
pixel. Our colors are implemented as three floats for the red,
green, and blue color channels.

All the algorithms work by repeated computing sets of
paths where each set of paths has one path per pixel. The
results for each pixel are averaged over many such paths to
produce an accurate image. Pseudocode for tracing a set of
paths is shown in Table 3.

The InitializelmagePositions function sets the starting po-
sition for each path in the image buffer to the value corre-
sponding to its pixel as determined by the view point. Scan-
ConvertPositions maps each path in the image buffer to the
corresponding location on the path buffer as determined by
the projection for the current shot. We then use ScanCon-
vertGeometry to scan convert the scene into the path buffer
to determine the next intersection point for each path. Up-
datelmage is used to update the path and image data in the
image buffer using the results of the scan conversion. If we
have not yet reached the maximum depth then we repeat
the process by continuing the paths in a randomly direction.

Pseudocode for ScanConvertPositions is listed in Table 4.
One complication not shown is that we must also deal with
the fact that more than one image pixel may map onto the

ScanConvertPositions (path_buf transform,image_buf)

foreach entry € path_buf
entry.image_pixel = NULL;

foreach pixel € image_buf
if pixel.total_attn == 0 then

continue; skip this pivel

pt = Transform (transform,pixel.pos);
entry = path_buf[pt.y][pt.x];
entry.image_pixel = pixel;
entry.zg = pt.z;
entry.z = infinity;

Table 4:

WritePixel(x, y, z, attn, light)

entry = pathbufly][x];

if entry.zp < z and entry.z > z then
entry.z = z;
entry.attn = attn;
entry.light = light;

Table 5:

same location in the path buffer. One way to handle this
is to give the entry to first pixel who tries to grab it. Un-
fortunately this would add an additional unwanted bias to
our solution. We could repeat the shot until all pixels have
been handled, but this is expensive. Instead we chose to
use Russian Roulette[1] to probabilistically choose between
competing pixels and to weight the survivor by the correct
amount to avoid introducing additional bias.

The ScanConvertGeometry function uses standard scan
conversion techniques except that the WritePixel routine
has been modified to add the additional compare with zo as
shown in Table 5. The two other values we store in the path
buffer are: attn = 47 cos8p(#,w,w’) and light which is the
emitted and/or reflected light at the surface depending on
which exact algorithm we are implementing. See Appendix
A for more details. Note that in the PathBufferTrace func-
tion we pre-picked the direction for the next shot before we
doing the current shot. This enables us able to immediately
evaluate the bidirectional reflectance distribution function
p(Zww’). An alternative would be to store enough infor-
mation per pixel to be able to do defered evaluation.

The function Updatelmage shown in Table 6 serves two
functions. It adds the collected light into our estimate for
the image and it updates the status of the paths to prepare
for the next scan conversion. This consists of mapping the
new endpoints for the paths back into world space, storing
them in the pos field of the image buffer, and accumulating
the total attenuation along the path. The total attenuation
gives of the relative contribution of any light we collect on
the scan conversion.

References

[1] J. Arvo and D. B. Kirk. Particle transport and image synthe-
sis. In F. Baskett, editor, Computer Graphics (SIGGRAPH '90
Proceedings), volume 24, pages 63-66, Aug. 1990.

Updatelmage (image _buf path_buf,transform)

(2]

[10]

[11]

[12]

[13]

[14]

[15]

for y := 1 to IMAGE_HEIGHT
for x := 1 to IMAGE_WIDTH
entry = path_buf[y][x];
pixel = entry.image_pixel;
if pixel == NULL then
continue; Skip this entry

pt = Point(x,y,entry.z);
pixel.pos = InverseTransform (transform,pt);
pixel.color += pixel.total_attn * entry.light;
pixel.total_attn *= entry.attn;

Table 6:

E. E. Catmull. Computer display of curved surfaces. In Proceed-
ings of the IEEE Conference on Computer Graphics, Pattern
Recognition, and Data Structure, pages 11-17, May 1975.

M. F. Cohen and D. P. Greenberg. The Hemi-Cube: A radios-
ity solution for complex environments. In B. A. Barsky, editor,
Computer Graphics (SIGGRAPH ’85 Proceedings), volume 19,
pages 31-40, Aug. 1985.

R. L. Cook, L. Carpenter, and E. Catmull. The Reyes image ren-
dering architecture. In M. C. Stone, editor, Computer Graphics
(SIGGRAPH ’87 Proceedings), pages 95-102, July 1987.

H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, G. Turk, B. Tebbs, and L. Israel. Pixel-
Planes 5: A heterogeneous multiprocessor graphics system us-
ing processor-enhanced memories. In J. Lane, editor, Computer
Graphics (SIGGRAPH ’89 Proceedings), volume 23, pages 79—
88, July 1980,

P. E. Haeberli and K. Akeley. The accumulation buffer: Hard-
ware support for high-quality rendering. In F. Baskett, editor,
Computer Graphics (SIGGRAPH ’90 Proceedings), volume 24,
pages 309-318, Aug. 1990.

P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierarchi-
cal radiosity algorithm. In T. W. Sederberg, editor, Computer
Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 197—
206, July 1991.

C. B. Harrell and F. Fouladi. Graphics rendering architecture for
a high performance desktop workstation. In J. T. Kajiya, editor,
Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27,
pages 93—-100, Aug. 1993.

J. T. Kajiya. The rendering equation. In D. C. Evans and R. J.
Athay, editors, Computer Graphics (SIGGRAPH '86 Proceed-
ings), volume 20, pages 143-150, Aug. 1986.

M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. John
Wiley and Sons, New York, N.Y., 1986.

W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering an-
tialiased shadows with depth maps. In M. C. Stone, editor,
Computer Graphics (SIGGRAPH ’87 Proceedings), volume 21,
pages 283-291, July 1987.

H. E. Rushmeier. Realistic Image Synthesis for Scenes with Ra-
diatively Participating Media. PhD thesis, Cornell University,
May 1988.

D. Salesin and J. Stolfi. The ZZ-buffer: a simple and efficient
rendering algorithm with reliable antialiasing. In Proceedings of
the PIXIM 89, pages 451-466, 1989.

P. Shirley. Hybrid radiosity/monte carlo methods. Advanced
Topics tn Radiosity, 1994. ACM Siggraph '94 Course 28 Notes.

P. Shirley and C. Wang. Distribution ray tracing: Theory and
practice. In Proceedings of Third Eurographics Workshop on
Rendering, pages 33-43, 1992.

[16]

[17]

(18]

[19]

[20]

[21]

B. Smits, J. Arvo, and D. Greenberg. A clustering algorithm for
radiosity in complex environments. Computer Graphics, 28(3),
July 1994. ACM Siggraph '94 Conference Proceedings.

K. Sung. Area sampling buffer: Tracing rays with z-buffer hard-
ware. In Proceedings of Eurographics 92, volume 11, pages 299—
310, 1992.

J. R. Wallace, M. F. Cohen, and D. P. Greenberg. A two-pass
solution to the rendering equation: A synthesis of ray tracing and
radiosity methods. In M. C. Stone, editor, Computer Graphics
(SIGGRAPH ’87 Proceedings), volume 21, pages 311-320, July
1987.

G. J. Ward. The radiance lighting simulation and rendering sys-
tem. Computer Graphics, 28(3), July 1994. ACM Siggraph ’94
Conference Proceedings.

G. J. Ward, F. M. Rubinstein, and R. D. Clear. A ray tracing
solution for diffuse interreflection. In J. Dill, editor, Computer
Graphics (SIGGRAPH ’88 Proceedings), volume 22, pages 85—
92, Aug. 1988.

H. Weghorst, G. Hooper, and D. P. Greenberg. Improved compu-
tational methods for ray tracing. ACM Transactions on Graph-
tcs, 3(1):52-69, Jan. 1984.

Figure 5: Diffuse scene path-buffer traced with depth 1 (direct
dllumination only), 1024 paths/pizel.

Figure 6: Path-buffer traced with depth 2, 1024 paths/pizel.

Figure 7: Path-buffer traced with depth 3, 1024 paths/pizel.

Figure 8: Monte Carlo Radiosity solution on the diffuse box
enveironment.

Figure 9: Path-buffer gather from Figure 8, 1024 paths/pizel.

Figure 10: Scene with brushed yellow metal box. Path-buffer
traced with depth 3, 4096 paths/pizel.

Figure 11: Room with a Monte Carlo Radiosity solution.

Figure 12: Path-buffer gather from Figure 11, 4096
paths/pizel

Figure 13: Room with direct lighting only.

The Path-Buffer

Bruce Walter*
Jed Lengyel®

PCG-95-4 May 1995

With a small modification the z-buffer can be made flexible enough to be used in global illumination algorithms traditionally
handled only by ray casting, but still enjoy the benefits of z-buffer algorithms including predictable performance, memory
coherence, and acceleration using specialized z-buffer hardware.

The fundamental difference between the path-buffer and a standard z-buffer is that the global near clipping plane is replaced
with a per pixel near clipping value zg. The success of each pixel write depends on compares with both the current z and zo
values. We demonstrate the power of this additional test by showing how two global illumination algorithms can be adapted
to use the path-buffer instead of ray casting.

First we adapt Kajiya-style path tracing for finding view-dependent global illumination solutions. Since the scene database
is streamed through the path-buffer, and no complicated meshing or per-element storage is needed, very large and complex
models may be illuminated. Both diffuse and non-diffuse reflectance functions can be handled as well any complex geometric
primitives which can be rasterized (e.g. displacement-mapped spline surfaces). Second we show how the path-buffer can be
used to do an image gather from a coarse radiosity solution in two-pass radiosity methods.

*Program of Computer Graphics, Cornell University, Ithaca, N.Y. 14853

