Single Scattering in Refractive Media with Triangle Mesh Boundaries

Bruce Walter
Shuang Zhao
Nicolas Holzschuch
Kavita Bala

Cornell Univ.
Cornell Univ.
Grenoble Univ.
Cornell Univ.

Presented at SIGGRAPH 2009
Single Scattering

- Direct illumination in refractive objects is hard

Single scatter from a single point light source
Single Scattering

- Direct illumination in refractive objects is hard

Single scatter from a single point light source
Single Scattering

- Direct illumination in refractive objects is hard

Single scatter from a single point light source
Problem

Eye ray
Problem

• Find direct illumination at V (receiver) from L (light)
Problem

- Find direct illumination at V (receiver) from L (light)

Ignoring refraction
Challenges: Bending of Path

- Find direct illumination at V (receiver) from L (light)
- Light bends at interface according to Snell’s Law

Ignoring refraction

With refraction

Eye ray
Challenges: Multiple Paths

- Find direct illumination at V (receiver) from L (light)
- Light bends at interface according to Snell’s Law
 - Can have zero, one, or many such paths (and P’s)

Ignoring refraction

With refraction

Eye ray

V

P

L

P₁

P₂
Is it important?

- Glass tile quality comparison

Shadow rays ignore refraction

Our method
Challenges Summary

• Bending of paths
• Multiple paths
• Shading normals
• Large triangle meshes
Challenges: Shading Normals

- Geometric normals (N_G) vs. shading normals (N_s)
 - E.g., interpolated normals, bump maps, normal maps
 - Alters directions and intensities of light paths
Challenges: Shading Normals

- Geometric normals (N_G) vs. shading normals (N_S)
 - E.g., interpolated normals, bump maps, normal maps
 - Alters directions and intensities of light paths
Limitations

- Finds connections that
 - Cross the boundary exactly once
 - Have no other changes in direction
 - Cost depends on path count and boundary
Prior Work

• Diffusion and multiple scatter
 – [eg, Stam 95, Jensen et al. 01, Wang et al. 08]

• Monte Carlo
 – [eg, Kajiya 86, Veach 97]

• Beam tracing
 – [eg, Nishita & Nakamae 94, Iwasaki et al. 03, Ernst et al. 05]

• Photon mapping
 – [eg, Jensen 01, Sun et al. 08, Jarosz et al. 08]

• Fermat’s principle
 – [eg, Mitchell & Hanrahan 92, Chen & Arvo 00]
Prior Work

• Mitchell & Hanrahan 92
 – Used Fermat’s principle and Newton’s method
 – Reflection (shown) and refraction

• Limitations
 – Only supported implicit surfaces
 – Cannot handle shading normals
 – Expensive 3D search
 – Not scalable to complex geometry
Contributions

• Support triangles with shading normals
 – Most widely used geometry format
 – Required fundamental problem reformulation
 – New search methods and intensity equations

• Hierarchical culling
 – Scales to complex objects with many triangles

• CPU and GPU implementations
 – Interactive performance on some scenes
Outline

• Half-vector formulation
• Solving for a single triangle
• Hierarchical culling for meshes
• Results
Fermat’s Principle

- Define optical path length
 - $d(P) = \eta ||V-P|| + ||P-L||$
 - Extrema of $d(P)$ are the refraction points
- Cannot handle shading normals

Index of refraction = η
• Used in micro-facet model [Walter et al. 07]

• Direction to receiver: $\omega_V = (V - P) / ||V - P||$

• Direction to light: $\omega_L = (L - P) / ||L - P||$
Half-Vector Formulation

- Used in micro-facet model [Walter et al. 07]
- Direction to receiver: $\omega_V = (V - P) / \|V - P\|$
- Direction to light: $\omega_L = (L - P) / \|L - P\|$
- Half-vector: $H = (\eta \omega_V + \omega_L) / \|\eta \omega_V + \omega_L\|$
Half-Vector Formulation

• If $H = -N$ (surface normal) then
 – V, P, L, and N are coplanar
 – Angles obey Snell’s Law: $\eta \sin(\theta_V) = \sin(\theta_L)$

• It is a refraction solution
 – Assuming V and L lie on the correct sides of the normal
Half-Vector Formulation

• Find all P such that: $H + N = 0$

 – Natural extension to shading normals: $H + N_s = 0$

• Newton’s method to find zeroes of: $f(P) = H + N$
Newton’s Method Review

- Quadratically convergent near a root
 - Each iteration doubles the precision
- Chaotic behavior far from a root
 - May diverge or converge to other roots
Outline

• Half-vector formulation
• Solving for a single triangle
 – Geometric normal - 1D Newton
 – Shading normals - 2D Newton
 – Subdivision oracles
• Hierarchical culling for meshes
• Results
Solution must lie in plane containing V, L, and N_G:

- Unique solution always exists
- Simple 1D Newton’s method converges
 - Typically in just 2 to 4 iterations
- Check if solution lies within the triangle
• Solution must lie in plane containing V, L, and NG
 – Unique solution always exists
 – Simple 1D Newton’s method converges
 • Typically in just 2 to 4 iterations
 – Check if solution lies within the triangle
Triangle with Shading Normal

- Shading normal, N_S, varies over triangle
 - Full 2D search over triangle’s area
- Function $f(P) = H + N_S$ maps 2D to 3D
 - Derivative is 2X3 Jacobian matrix is non-invertible
 - Use pseudoinverse for Newton’s method:

$$J^+ = (J^T J)^{-1} J^T$$

$$X_{i+1} = X_i - J^+(X_i)f(X_i)$$
Triangle with Shading Normal

• Need good starting points
• May have zero, one, or multiple solutions
 – Subdivide triangle as needed to isolate solutions
Two Triangle Subdivision Oracles

• Test with strong guarantees
 – Based on [Krawczyk 69], [Mitchell&Hanrahan 92]
 – Conditions guarantee uniqueness and convergence

• Fast empirical heuristic
 – Based on solid angles of triangle and normals
Triangle summary

• For each triangle:
 – If no shading normals
 • Solve for P with 1D Newton
 – Else if passes the subdivision oracle
 • Solve for P with 2D Newton
 – Else
 • Subdivide into 4 triangles and try again
 – Test if P lies within the triangle
Outline

• Half-vector formulation
• Solving for a single triangle
• Hierarchical culling for meshes
• Results
Culling Tests

- Most triangles contain no solutions for P
- Three quick culling tests
 - Spindle
 - Sidedness
 - Interval
Spindle Culling Test

- Refraction bends path by angle $\leq \arccos(1/\eta)$
 - Solutions must lie within circular arc (2d) or spindle (3d)
Spindle Culling Test

- Refraction bends path by angle $\leq \arccos(1/\eta)$
 - Solutions must lie within circular arc (2d) or spindle (3d)
Spindle Culling Test

- Refraction bends path by angle $\leq \arccos\left(\frac{1}{\eta}\right)$
 - Solutions must lie within circular arc (2d) or spindle (3d)
Sidedness Culling Test

- Light L must be on the outside of surface at P
- Receiver V must be inside within the critical angle

\[\arccos\left(\frac{1}{n}\right) \]
Hierarchical Culling for Meshes

• Apply culling test to groups of triangles
• Use 6D position-normal tree [Bala et al. 03]
 – Leaves are boundary triangles
 – Boxes and cones bound positions and normals
 – Traverse top-down
Algorithm Summary

• Build position-normal tree for each boundary mesh
• For each eye ray
 – Trace until hits surface or volume-scatters at V
 – Select a light source point, L
 – Traverse tree to solve for all P on boundary
 – For each solution point P
 • Check for occlusion along path
 • Compute effective light distance
 • Add contribution to pixel value
Effective Distance to Source

• Refraction alters usual $1/r^2$ intensity falloff
 – Can focus or defocus the light

• Compute effective light distance for each path
 – Simple formula for triangles without shading normal
 – Use ray differentials [Igehy 99] for shading normal case
 – See paper for details
Outline

• Half-vector formulation
• Solving for a single triangle
• Hierarchical culling for meshes
• Results
Results - CPU

• Three scenes without shading normals

Teapot Cuboctahedron Amber
Results - CPU

- Three scenes without shading normals

Teapot
15.3s

Cuboctahedron
13.9s

Amber
19.2s

512x512 images, 64 samples per pixel, 8-core 2.83GHz Intel Core2
Results - Teapot

- Teapot quality comparison

Shadow rays ignore refraction

Our method (15.4s)
Results - Teapot

- Teapot quality comparison

Shadow rays ignore refraction
Our method (15.4s)
Results - Cuboctahedron

- Cuboctahedron movie (13.9s)
Results - GPU

- Implemented on GPU using CUDA 2.0
- 1D, 2D Newton iteration
- Hierarchical pruning
- Ray tracing based on [Popov et al. 2007]
- One kernel thread per eye ray
- Does not yet support all scenes
Results - GPU

<table>
<thead>
<tr>
<th>Name</th>
<th>Render Time</th>
<th>FPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teapot</td>
<td>0.1 s</td>
<td>10 fps</td>
</tr>
<tr>
<td>Cuboctahedron</td>
<td>0.14 s</td>
<td>7 fps</td>
</tr>
<tr>
<td>Amber</td>
<td>0.3 s</td>
<td>3 fps</td>
</tr>
</tbody>
</table>

512x512 images, 2 eye rays per pixel + 40-60 volume samples, nVIDIA GTX 280, CUDA 2.0
Results - GPU

- Teapot example
 - 10 fps on GPU
Results - CPU

• Three scenes with shading normals

Glass tile
Glass mosaic
Pool
Results - CPU

• Three scenes with shading normals

Glass tile 66.9s
Glass mosaic 87.8s
Pool 59.4s

512x512 images, 64 samples per pixel, 8-core 2.83GHz Intel Core2
Results - Glass Tile

Photon map (equal time) Our method (66.9s)
Results - Glass Mosaic

- Glass mosaic movie (87.8s)
Results - Component Evaluation

• Evaluation of algorithm components
 – Pool (2632 triangles in boundary)

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without Hierarchy</td>
<td>1934.6s</td>
<td>32x</td>
</tr>
<tr>
<td>Guaranteed Convergence</td>
<td>141.1s</td>
<td>2.4x</td>
</tr>
<tr>
<td>Subdivision Heuristic</td>
<td>59.4s</td>
<td>1x</td>
</tr>
</tbody>
</table>
Results - Bumpy sphere

- Bumpy sphere (9680 triangles)
 - Volume sampling noise
 - Used 128 samples per pixel
 - Effective distance clamping

Our method 304.3 s
Results - Bumpy sphere

- Bumpy sphere (9680 triangles)

Shadow rays ignore refraction

Our method
Results - Bumpy sphere

• Bumpy sphere (9680 triangles)

Path tracing (16x time) Our method
Results - Bumpy sphere

- Bumpy sphere (9680 triangles)

Photon map 10M (equal time) Our method
Conclusion

- New method for single scatter in refractive media
 - Applicable to many rendering algorithms
 - New half-vector formulation
 - Efficient culling and search methods
 - Supports shading normals and large triangle meshes
 - Interactive performance for some scenes

- Future work
 - Better culling
 - Reflections and low-order scattering
 - Multiple interfaces
Acknowledgements

• Sponsors
 – NSF
 • Career 0644175, CPA 0811680, CNS 0615240, CNS 0403340
 – Intel
 – NVidia
 – Microsoft
 – INRIA sabbatical program

• PCG Graphics Lab and Elizabeth Popolo
The End
Results - CPU timings

<table>
<thead>
<tr>
<th>Name</th>
<th>Render Time</th>
<th>Triangles</th>
<th>Shading Normals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Surface</td>
<td>Other</td>
</tr>
<tr>
<td>Teapot</td>
<td>15.3 s</td>
<td>12</td>
<td>4096</td>
</tr>
<tr>
<td>Cuboctahedron</td>
<td>13.9 s</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Amber</td>
<td>19.2 s</td>
<td>36</td>
<td>60556</td>
</tr>
<tr>
<td>Glass tile</td>
<td>66.9 s</td>
<td>798</td>
<td>60</td>
</tr>
<tr>
<td>Glass mosaic</td>
<td>87.8 s</td>
<td>20813</td>
<td>1450</td>
</tr>
<tr>
<td>Pool</td>
<td>59.4 s</td>
<td>2632</td>
<td>4324</td>
</tr>
<tr>
<td>Bumpy Sphere</td>
<td>304.3 s</td>
<td>9680</td>
<td>0</td>
</tr>
</tbody>
</table>

512x512 images, 64 samples per pixel (128 for bumpy sphere), 8-core 2.83GHz Intel Core2 CPU
Newton’s Method

• Iterative root finding method
 – Start with initial guess \(x_0 \)
 – Iteration: \(x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \)
Newton’s Method

• Iterative root finding method
 – Start with initial guess x₀
 – \(x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \)
Newton’s Method

• Iterative root finding method
 – Start with initial guess x_0
 – $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$