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Abstract

The anisotropic BRDF introduced in [Ward 1992] has become
widely used in computer graphics, but some important implemen-
tation details are less widely known. We discuss how to efficiently
evaluate the Ward BRDF. Then we derive the probability density
function for its associated Monte Carlo sampling scheme and the
correct weights to use with the generated samples. Finally for the
isotropic version, we describe how to bound the maximum possible
BRDF value over a region of (direction) space.

1 Introduction

The Ward BRDF (Bidirectional Reflectance Distribution Function)
was introduced in [Ward 1992] as an empirical model to fit mea-
sured BRDF (i.e. surface reflectance) data. It has several advan-
tages over the prior BRDF models and has become widely used in
the computer graphics community. It uses only a few simple pa-
rameters making it easy to control, can be sampled efficiently for
Monte Carlo, can model anisotropic surfaces, and was shown to fit
reasonably well to measured BRDF data.

The purpose of this paper is to clarify and correct some important
implementation details of the Ward BRDF. We discuss how to effi-
ciently evaluate the BRDF in Section 2. Monte Carlo BRDF sam-
pling is required for many rendering algorithms, and hence, Ward
provided an efficient sampling scheme with his BRDF. However he
did not provide the associated probability density function, which
for mathematical accuracy, is needed to correctly weight the gen-
erated samples. We both discuss how to derive such probability
density functions in general in Section 3, and present the specific
results for the Ward BRDF in Equation 10.

Another powerful, though less widely used, BRDF operation is
the ability to bound its maximum value over a range of directions.
In Section 4, we discuss how to cheaply cheaply and tightly bound
the isotropic Ward BRDF over a set of directions defined by a spa-
tial bounding volume.

1.1 Notation

We will be working extensively with directions in 3D, which
we will denote in boldface (e.g., v). In actual use, these di-
rections are typically represented as normalized 3D vectors (e.g.,
v = [vx, vy, vz], where v2

x +v2
y +v2

z = 1). Directions can also be rep-
resented as two angles, θ and φ , using spherical polar coordinates
as illustrated in Figure 1. We will usually subscript these angles
with the direction that they are describing. We can convert between
the spherical angles and the 3D unit vector representations using:

(θ , φ)⇔
[

sinθ cosφ , sinθ sinφ , cosθ
]

(1)

The scalar dot product of two directions is equal to the cosine
of the angle between them (e.g., v · z = cosθv). When using 3D
vectors, the dot product can be computed by summing the products
of the corresponding components (e.g., u ·v = uxvx +uyvy +uzvz).
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Figure 1: Spherical polar coordinates example. The direction v
can be fully described by two angles θv and φv. θv is the angle
between v and the z-axis. φv is the angle between the x-axis and v’s
projection onto the x-y plane.

A BRDF (Bidirectional Reflectance Distribution Function) de-
scribes how light is scattered at a surface. At a surface point it is a
function of two directions (an incident direction i and an outgoing
direction o) and written as fr(i,o). It is often convenient to con-
struct a coordinate frame on the surface where the z-axis is the same
of the local surface normal, n, and the x and y axes lie in the tangent
plane of the surface as shown in Figure 2. For anisotropic BRDFs,
the x and y axes must match the principle directions of anisotropy,
while they can be chosen arbitrarily for isotropic BRDFs.

The Ward BRDF uses the half direction h that is defined to be
halfway between the incident and out directions. It can be com-
puted by adding i and o as 3D vectors and then renormalizing:

h =
i+o
‖i+o‖

(2)

The half angle is motivated by microfacet BRDFs and produces
more realistic highlights than alternatives such as Phong (e.g., see
[Fisher 1994; Ngan et al. 2004]).

2 Ward BRDF

The original Ward BRDF is defined as the sum of two components
[Ward 1992, Equation 5a]. The first is a diffuse term, ρd/π . Dif-
fuse components are relatively simple and already well understood,
so we will ignore the diffuse component for the remainder of this
paper. The second component is a gaussian anisotropic gloss lobe
defined by three parameters, ρs, αx, and αy, as:

fr(i,o) = ρs

4παxαy
√

cosθi cosθo
e
− tan2 θh

(
cos2 φh

α2
x

+ sin2
φh

α2
y

)
(3)

where ρs controls the magnitude of the lobe, and αx and αy control
the width of the lobe in the two principal directions of anisotropy.
If αx = αy then the lobe is isotropic (i.e. invariant under surface
rotations around the surface normal).

Just after defining his BRDF, Ward presents an approximation
that is intended to be computationally cheaper [Ward 1992, Equa-
tion 5b]. There is no reason to ever use this approximation. The fol-
lowing vector equation is both exact and cheaper to compute than
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Figure 2: Coordinate frame used in BRDF calculations. The z-axis
is equal to the local surface normal n, and the x and y axes lie in the
surface’s tangent plane. The BRDF is a function of two directions,
the incident direction, i, and out direction o (e.g., the directions to
the eye and light). The half direction h is defined to lie midway
between i and o, and plays an important role in the Ward BRDF.

the approximation1.

fr(i,o) = ρs

4παxαy
√

(i ·n)(o ·n)
e
− ((h·x)/αx)2 + ((h·y)/αy)2

(h·n)2
(4)

Since h appears to equal powers in both the numerator and denom-
inator of the exponent, an unnormalized half vector can be used
when evaluating this equation. It is trivial to show that Equations 3
and 4 are equivalent by expressing h as a 3D unit vector as shown
below and expanding the dot products.

h =
[

sinθh cosφh , sinθh sinφh , cosθh
]

(5)

2.1 Sampling

A good BRDF sampling technique is essential in the efficiency of
Monte Carlo rendering algorithms. When sampling, we regard the
incident vector i as given, or fixed, and want to generate out vectors
o in a distribution that closely matches the BRDF. Ward provided
a sampling for his BRDF [Ward 1992, Equation 7], but accidently
omitted an arctangent in his equations2. Given two uniform random
variables u and v in the range 0 < u,v < 1, the correct sampling
equations are:

θh = arctan

√
− logu

cos2 φh/α2
x + sin2

φh/α2
y

(6)

φh = arctan
(

αy

αx
tan(2πv)

)
(7)

Care must be taken in computing the second arctangent to keep φh
in the same quadrant as the angle 2πv. These sampling equations
compute the half direction h from u and v, which is then used to
generate direction o from h and i using:

o = 2(i ·h)h − i (8)

If the generated distribution of out directions o perfectly matches
the BRDF, then all the samples can be given the same weight. How-
ever, this is rarely the case for non-trivial BRDFs. In order to com-
pute the correct sampling weights we need to know the actual prob-

1This vector form has been independently found by multiple people in-
cluding myself. Greg Ward credits Cristophe Schlick as being the first.
Equivalent formulations can also be found in [Ward 2004] and recent ver-
sions of [Larson and Shakespeare 2004].

2Missing arctangent was first reported to Greg Ward by Alex Keller and
can also be found in [Dutre 2001]

Reference Uniform Weighting Correct Weighting

Differences ⇒

Figure 3: Shown here is a diffuse box containing a sphere with
a Ward BRDF (ρs = 0.75,αx = αy = 0.15). The left image is a
reference solution that used uniform hemisphere sampling. The
middle image used Ward’s sampling but assumed uniform weights
(w(o) = ρs), while the right image used the correct sample weights
(Equation 10). The bottom row shows the differences between the
images with Ward’s sampling and the reference.

ability density function po for the generated directions o. The cor-
rect probability function from the Ward sampling is:

po(o) = 1
4παxαy(h · i)cos3 θh

e
− tan2 θh

(
cos2 φh

α2
x

+ sin2
φh

α2
y

)
(9)

This probability is, by design, quite close to the Ward BRDF (see
Equation 3), but does not exactly match it. The next section will de-
scribe how to find sampling probability functions and how to derive
Equation 9. The correct weighting function w(o) that should be ap-
plied to the samples in Monte Carlo algorithms (e.g., path tracing)
is given by:

w(o) =
fr(i,o)cosθo

po(o)
= ρs (h · i)(h ·n)3

√
(o ·n)
(i ·n)

(10)

Previous work has generally assumed that the samples of the
Ward BRDF could be equally weighted (i.e. w(o) ≈ ρs). This is
often nearly true, but can cause significant errors for wide lobes
and for angles near grazing as demonstrated in Figure 3. To get the
correct results in these cases, one needs to use the correct sampling
weights from Equation 10.

Some viewers may aesthetically prefer the middle image in Fig-
ure 3, but it is the left and right images that are mathematically cor-
rect for the Ward BRDF. The darkening effect near grazing is built
into the Ward BRDF definition. [Duer 2005] has proposed modify-
ing its equations to reduce this effect, however that lies beyond the
scope of this paper.

3 Deriving Sampling Probabilities

In this section we will review how to derive the probability den-
sity for a given sampling transform and demonstrate how to use
this theory to find the probability function for the isotropic case of
the Ward BRDF. We are specifically interested in 2D probability
densities here, but similar relations hold for other dimensions.
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3.1 General Theory

Let S be our 2D source space and [s1,s2] ∈ S be a random variable
with known probability density ps. Given a target space T , any
transform from S to T defines a new random variable [t1, t2] ∈ T
(where t1 = t1(s1,s2) and t2 = t2(s1,s2) ). We want to compute the
probability density pt associated with the transformed random vari-
able, [t1, t2].

For simplicity we will assume the transform is invertible over
the regions of interest (i.e. we can also write s1 = s1(t1, t2) and s2 =
s2(t1, t2)). The probability of the random variable being in a region
B (which we write as P(B)) is given by integrating its probability
density over that region with respect to its associated measure (e.g.,
pt and its measure dt1 dt2).

P(B) =
∫

B
pt(t1, t2) dt1 dt2 (11)

A probability density must always have an associated measure,
though often the associated measure is implicit. Given a region
B⊆ T , let AB ⊆ S be the set of all points in S that map to points in
B. The probabilities of these two sets must be equal (i.e. P(AB) =
P(B)) since they cover the same events, and thus we have:∫

AB

ps(s1,s2)ds1 ds2 =
∫

B
pt(t1, t2) dt1 dt2 (12)

By applying the change of variables theorem from calculus to the
first integral, we get:∫

AB

ps(s1,s2)ds1 ds2 =
∫

B
ps(s1(t1, t2), s2(t1, t2))

∥∥∥∥∂ [s1,s2]
∂ [ t1, t2]

∥∥∥∥dt1 dt2

(13)
where the absolute value of the determinant of the Jacobian is de-
fined in terms of partial derivatives as:

∥∥∥∥∂ [s1,s2]
∂ [ t1, t2]

∥∥∥∥=

∥∥∥∥∥∥
∂ s1
∂ t1

∂ s1
∂ t2

∂ s2
∂ t1

∂ s2
∂ t2

∥∥∥∥∥∥=
∣∣∣∣∂ s1

∂ t1

∂ s2

∂ t2
− ∂ s2

∂ t1

∂ s1

∂ t2

∣∣∣∣ (14)

Since these equations hold for any set B, we can use them to solve
for the probability density pt as:

pt(t1, t2) = ps
(

s1(t1, t2), s2(t1, t2)
)∥∥∥∥∂ [s1,s2]

∂ [ t1, t2]

∥∥∥∥ (15)

3.2 Application to ph and po

We want to specialize this general theory to handle the specific case
of finding probability density functions for sampling methods based
on the half direction h (such as the Ward BRDF). Such sampling
methods take two uniform random numbers u and v, transform them
into a half direction h and then uses h to generate the out vector o.
We will first discuss deriving the probability density ph for h and
then relate this to the probability density po for the out vector o.

To start we want to apply Equation 15 where we substitute u, v
for s1, s2 and θh, φh for t1, t2, but there is a small difficulty. We
are transforming to a non-Euclidean space, the sphere of directions,
and the appropriate measure to use with ph is solid angle (i.e. the
solid angle measure is sinθh dθh dφh rather than just dθh dφh). We
adjust for this by including an additional factor of 1/sinθh to cancel
out the extra factor in the solid angle measure to get:

ph(h) = puv(u(θh,φh), v(θh,φh))
∥∥∥∥ ∂ [u,v]

∂ [θh,φh]

∥∥∥∥ 1
sinθh

=
∣∣∣∣ ∂u
∂θh

∂v
∂φh

− ∂v
∂θh

∂u
∂φh

∣∣∣∣ 1
sinθh

(16)
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Figure 4: A coordinate system where the incident vector i is the z-
axis, and the surface normal n lies in the x-z plane (i.e. n ·y = 0). As
in Figure 1, we can specify directions using two spherical angles,
θ? and φ?. The star indicates that they are relative to this coordinate
frame. The relationship between h and o is, θ?

o = 2θ?
h and φ?

o = φ?
h .

where we have used the fact that puv(u,v) = 1 since u and v are
uniformly distributed in the unit square.

We will also need to compute po in terms of ph. The relationship
between h and o can be expressed very simply by using the special
coordinate frame shown in Figure 4, where the incident direction i
is used as the z-axis. To clearly distinguish them, we will mark all
spherical angles using these special coordinates with a star super-
script. The relationship between h and o in these coordinate is sim-
ple: θ?

o = 2θ?
h and φ?

o = φ?
h . We can once again apply Equation 15,

with slight modification again for using solid angle measures, to
get:

po(o) = ph(h)

∥∥∥∥∥∂
[
θ?

h ,φ?
h
]

∂ [θ?
o ,φ?

o ]

∥∥∥∥∥ sinθ?
h

sinθ?
o

= ph(h)
∣∣∣∣12 − 0

∣∣∣∣ sinθ?
h

sin2θ?
h

=
ph(h)

4cosθ?
h

=
ph(h)

4(h · i)
(17)

Similar results for the half direction to out direction transform can
be found in [Torrance and Sparrow 1967] and [Ashikhmin and
Shirley 2000].

3.3 Isotropic Example

Now to demonstrate how to apply these equations for a specific
case, we will derive the sampling probability density for the simpler
isotropic case. The Ward BRDF is isotropic when αx = αy, which
we can then simply write as α . In this case the BRDF simplifies to:

f iso
r (i,o) = ρs

4πα2
√

cosθi cosθo
e
− tan2 θh

α2 (18)

and the isotropic sampling equations simplify to:

θh = arctan
(

α
√
− logu

)
(19)

φh = 2πv (20)

We can invert these isotropic sampling equations to get:

u = e
− tan2 θh

α2 (21)

v =
φh

2π
(22)
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Figure 5: Bounding the maximum BRDF value. The incident and
normal directions are fixed and the reflection point is assumed to be
at the origin. We then compute an upper bound on fr(i,o) over a
set of out directions defined by a bounding volume B. The allowed
out directions are o =~v/‖~v‖ for any~v ∈B.

Then we can apply Equation 16 and compute the partial deriva-
tives of u and v with respect to θh and φh to get:

piso
h (h) =

∣∣∣∣∣
(

e
− tan2 θh

α2 2tanθh

α2 cos2 θh

)(
1

2π

)
− (0)(0)

∣∣∣∣∣ 1
sinθh

=
1

πα2 cos3 θh
e
− tan2 θh

α2 (23)

where we removed the absolute value operation because it is always
positive within the valid range of θh, between zero and π/2. Finally
we use Equation 17, we get the probability density for the sampled
out direction o in the isotropic case as:

piso
o (o) =

1
4πα2(h · i)cos3 θh

e
− tan2 θh

α2 (24)

The derivation of Equation 9 for the anisotropic case is per-
formed similarly with verification left as an exercise for the reader.

4 Bounding the BRDF

Another useful BRDF operation is bounding its maximum value
over a set of directions. While this is a much less common operation
than sampling, it is a powerful operation that is required by some
rendering algorithms [Walter et al. 2005]. In this section we will
describe how to compute a reasonably cheap and tight bound on the
isotropic Ward BRDF. Extension to the more general anisotropic
version are left as future work.

When bounding the BRDF, the incident direction i and the sur-
face point are considered fixed, but the out direction o is allowed
to vary. We can specify the set of allowed out directions using a
bounding volume B as shown in Figure 5. For simplicity, let’s as-
sume the surface reflection point is at the origin. Let ~v be a 3D
vector; the arrow indicates it is a vector of arbitrary length rather
than a normalized direction. We want to compute an upper bound
on a function of o, (i.e. the BRDF in our case), over all o =~v/‖~v‖
where~v ∈B.

One standard solution would be to use interval arithmetic. By
replacing each operator by its interval equivalent and expressing
the bounding volume as intervals, computing an upper bound would
be straightforward. Unfortunately these interval bounds tend to be
rather loose, especially if the initial intervals are large. Instead we
will proceed by trying to find a direction or set of parameters that
is a strict upper bound and corresponds to a point in or near the
bounding volume.

max(v )z
Max (o.n)
  Bound

min(v )2
x min(v )2y+

 Bounding
 Volume B

o
z=n v

Figure 6: An example of bounding the maximum value of cosθo
using Equation 27.

4.1 Cosine Bound

Let us begin with the relatively simple problem of computing an
upper bound on cosθo over the bounding volume B. If we use a
coodinate system where the surface normal n is the z-axis (e.g.,
Figure 2) and let o =~v/‖~v‖, then we can write this as:

cosθo = (o · z) =
vz√

v2
x + v2

y + v2
z

(25)

The derivative of cosθo with respect to vz is always positive, thus
we can replace vz with its maximum value over the bounding vol-
ume B to get:

cosθo ≤
max(vz)√

v2
x + v2

y +
[
max(vz)

]2 (26)

Now that the sign of the numerator is fixed, we can select vx and vy
to minimize or maximize the denominator appropriately:

cosθo ≤



max(vz)√
min(v2

x)+min(v2
y)+ [max(vz)]2

if max(vz)≥ 0

max(vz)√
max(v2

x)+max(v2
y)+ [max(vz)]2

otherwise

(27)
An example is shown in Figure 6. Note that we choose the maxi-
mum value of vz but for vx and vy we choose the values that maxi-
mize or minimize their squared values. Thus if vx can vary from -2
to 1, then max(vx) = 1, but max(v2

x) = 4 and min(v2
x) = 0.

4.2 Isotropic Bound

To bound the isotropic Ward BRDF (Equation 18), we start by
bounding its exponential term by computing a lower bound for
tanθh. Or equivalently, since 0 ≤ θh ≤ π/2, we can compute an
upper bound on cosθh = (h ·n). We will use the coordinate system
from Figure 4 because of its simple relationship between o and h.
By expressing h and n as 3D unit vectors based on their spherical
coordinates and noting that φ?

n = 0, we get:

(h ·n) =
[
sinθ

?
h cosφ

?
h , sinθ

?
h sinφ

?
h , cosθ

?
h
]
·
[
sinθ

?
n , 0, cosθ

?
n
]

= sinθ
?
n sinθ

?
h cosφ

?
h + cosθ

?
n cosθ

?
h (28)

Since θ?
n is fixed, we need only select appropriate values for θ?

h and
φ?

h that maximize this expression.
The derivative of (h ·n) with respect to cosφ?

h is always positive,
so we can replace cosφ?

h with its maximum value over the bounding
volume B. Using the coordinate frame of Figure 4 to express the
points~v? ∈B and since φ?

h = φ?
o we have:

cosφ
?
h = cosφ

?
o =

v?
y√

(v?
x)2 +(v?

y)2
(29)
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and we can compute a bound on the maximum of cosφ?
h in a similar

way as we did for Equation 27.
The situation for θ?

h is more complicated. We can compute a
bounding interval of possible values for cosθ?

o using Equation 27
to bound its maximum value and an analogous equation to bound its
minimum. Then we can use the half angle formula from trigonom-
etry:

cosθ
?
h = cos

θ?
o
2

=

√
1+ cosθ?

o
2

(30)

to transform this into an interval bound on cosθ?
h . To select the

appropriate value from this interval, we need to know the value that
would maximize (h · n). We can solve for the maximizing value
of cosθ?

h by taking the equation for (h · n), replacing cosφ?
h by

its upper bound, then taking the derivative with respect to θ?
h and

setting it equal to zero. The maximizing value of cosθ?
h is thus

given by:

∂ (h·n)
∂θ ?

h
= 0

sinθ?
n cosθ?

h max(cosφ?
h )− cosθ?

n sinθ?
h = 0

tanθ?
h = sinθ ?

n max(cosφ ?
h )

cosθ ?
n

cosθ?
h =


√

cos2 θ ?
n

cos2 θ ?
n +sin2

θ ?
n [max(cosφ ?

h )]2
ifmax(cosφh)≥ 0

1 otherwise
(31)

where the two cases are needed because when max(cosφ?
h ) is nega-

tive then so is the maximizing angle, but negative values for θ?
h are

not allowed and must be clamped to zero. We have also used the

identity cosθ?
h =

√
1/(1+ tan2 θ?

h ) for 0≤ θ?
h ≤ π/2.

Note that in the incidence plane (i.e. max(cosφ?
h ) = 1), the max-

imum occurs when θ?
h = θ?

n , as expected. However off the inci-
dence plane, we need to explicitly solve for the maximizing angle,
because half direction based lobes are not symmetric about the re-
flection direction. Also note that we require θ?

n be in the range
0≤ θ?

n ≤ π/2.
Now we select the value from our bounding interval on cosθ?

h
that is closest to the maximizing value given by Equation 31, and
plug this along with max(cosφ?

h ) into Equation 28 to get our desired
upper bound on (h ·n) over the bounding volume B.

What we ultimately want is a bound on:

f iso
r (i,o)cosθo = ρs

4πα2

√
cosθo

cosθi
e
− tan2 θh

α2 (32)

We can put an upper bound on cosθo using Equation 27 and we
have a upper bound on (h · n) which we can convert to a lower
bound on tan2 θh using the identity:

tan2
θh =

1− (h ·n)2

(h ·n)2 (33)

given that 0≤ θh ≤ π/2. Putting these together provides the desired
bound on the isotropic Ward BRDF.

5 Conclusions

In this paper we have discussed the Ward BRDF and several im-
portant issues for anyone wanting to use it. We reviewed how to
efficiently evaluate and sample the Ward BRDF. We then derived
the probability density associated with the Ward sampling scheme

and gave the correct weights to use with the samples. For mathe-
matical correctness, these weights must be used in any Monte Carlo
algorithm that uses the Ward sampling.

We also described how to efficiently bound the isotropic Ward
BRDF over a set of direction for rendering algorithms that require
BRDF bounds.
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