Rendering Light Reflection Models Direct Illumination

Visual Imaging in the Electronic Age

Donald P. Greenberg October 20 , 2020 Lecture #14

Ivan Sutherland - 1963

General Electric

Program of Computer Graphics, Cornell University

Professors Office

Janitor's Closet 1973

DPG

Program of Computer Graphics, Cornell University

Cornell in Perspective Film

Program of Computer Graphics, Cornell University

Cornell in Perspective Film

SCIENTIFIC AMERICAN

Direct Illumination

from a fixed viewpoint. Your lines of sight, the multitude of straight lines leading from your eye to the subject, will all intersect this plane. Therefore, if you were to reach out with a grease pencil and draw the image of the subject on this plane you would be "tracing out" the infinite number of points of intersection of sight rays and plane. The result would be that you would have "transferred" a real three-dimensional object to a two-dimensional plane.

Goal of Realistic Imaging

"The resulting images should be physically accurate and perceptually indistinguishable from real world scenes"

Goal of Realistic Imaging

Lighting

Jeremy Birn, "[digital] Lighting & Rendering", 2000 New Riders Publishers

The three dimensional shape is only inferred with this lighting.

Lighting

Jeremy Birn, "[digital] Lighting & Rendering", 2000 New Riders Publishers

The geometry is better understood with correct lighting and shading.

Rendering Framework

Cornell Box with Cameras

Direct Lighting and Indirect Lighting

Direct Lighting and Indirect Lighting

Assumptions In Direct Lighting

Light travels directly from light source to all object surfaces (no occlusion) ∴ no shadows

All light sources are point light sources (no geometric area)

No interreflections from any surfaces

Lights maybe "directional", "spot" or "omni lights"

Raster Operations

- Conversion from polygons to pixels
- Hidden surface removal (z-buffer)
- Incremental shading

Roy S. Berns. "Billmeyer and Saltzman's Principles of Color Technology, 3rd Ed. 2000, John Wiley & Sons, Inc. p. 12.

Specular reflection of light from a mirrorlike surface.

Roy S. Berns. "Billmeyer and Saltzman's Principles of Color Technology, 3rd Ed. 2000, John Wiley & Sons, Inc. p. 12.

Combination of diffuse and specular reflection due to scattering from beneath, plus reflection from, a smooth surface.

Roy S. Berns. "Billmeyer and Saltzman's Principles of Color Technology, 3rd Ed. 2000, John Wiley & Sons, Inc. p. 12.

Reflectance - Three Forms

Diffuse Reflections

Diffuse Reflections

Receiving Polygon

Diffuse Reflections

How do you find the angle θ ?

- If you know the surface definition (it's planar equation), you can find it's normal direction \vec{N} . A unit normal in this direction is $\vec{N}/|\vec{N}|$
- If you know the location of the light source *L*, you can find the illumination direction \vec{L} . A unit normal in this direction is $\vec{L}/|\vec{L}|$

Cosine Calculations

Dot Product Definition

$$\overline{N} \cdot \overline{L} = \left| \overline{N} \right| \left| \overline{L} \right| \cos \theta$$

$$\cos\theta = \frac{\overline{N} \cdot \overline{L}}{|N||L|} = \frac{\overline{N}}{|N|} \cdot \frac{\overline{L}}{|L|}$$

Usually, the normal and light source vector directions are given as unit normals.

Gouraud Flat Polygon Shading

Each polygon is shaded based on a single normal. Gouraud Thesis

Gouraud Smooth Shading

Four polygons approximating a surface in the vicinity of point A.

The shading at point R is computed as two types of successive linear interpolations: across polygon edges: P between A and B, Q between A and D; across the scan line: R between P and Q.

scan line

Gouraud Thesis

3

В

Gouraud Smooth Shading

Each pixel is shaded by interpolating intensities computed at each of the polygon's vertices.

Gouraud Thesis

Steps in Gouraud Shading

- For each polygon
 - Compute vertex intensities (using any illumination model)
 - Compute slopes (linear interpolation) in spatial (image) domain (picture plane) and intensity domain (real environment)
 - Increment by scan line
- For each scan line
 - Compute slope in intensity domain (real environment)
 - Render each pixel

Note the intensity computations are based on object space data, but all interpolation is done in image space.

Diffuse Shading

Jeremy Birn. Digital Lighting & Rendering, p. 74.

Between Analogue and Digital

Daniel Rozin, "Wooden Mirror"
Daniel Rozin, "Wooden Mirror" close-up

Specular Shading

Viennese Siler, Modern Design 1780-1918) Teapot, Jakob Krautauer, Vienna 1802 – Silver, fruitwood, H 14.8 cm/5.9 in.

Phong Model Assumptions

- The reflection function can be represented by three components: a constant ambient term, and diffuse and specular components
- Isotropic (rotationally symmetric)
- Point or parallel light source (one vector direction)
- Computationally simple

Phong Model Specular Reflection

How do you find the angle β ?

- If you know the illumination direction \vec{L} , you can find the reflection direction \vec{R} (angle of reflection = angle of incidence)
- If you know the location of the observer, you can find the view direction \vec{V}
- The specular reflection component is a function of the angle β, the angle between the view direction and the reflection vector

Variation of $\cos^n\beta$

Phong Reflection Model

Phong Goblet

Bui Toung Phong Thesis

Phong Equation

 $I = I_a + I_d + I_s$ = $[k_a + k_d(\vec{N} \cdot \vec{L})](object \ color) + k_s(\vec{R} \cdot \vec{V})^n(light \ color)$

Where k_a = constant ambient term and $k_a + k_d + k_s = 1$

Phong Model with Constant Ambient Term and Variations of Specular Exponent

Roy Hall

Phong Model with Constant Specular Exponent and Variation of Ambient Term

Roy Hall

Bidirectional Reflection Distribution Function (BRDF)

Reflection Geometry (BRDF)

Bidirectional Reflection Distribution Function

Light Measurement Laboratory

Reflection Processes

Gaussian Distribution

Where *m*=root mean square slope of the microfacets

Experiment Data

Aluminum, $\sigma_0 = 0.28 \mu$

Comparison of experiment and theory

Aluminum $\sigma_0 = 0.28 \mu$, $\tau = 1.77 \mu$

Bidirectional Reflectance (BRDF)

Retro-Reflection

Retroreflection

Retroreflection

Reflectance of Copper Mirror

Light Reflected from Copper

Cook-Torrance Renderings

Copper Vase

Reflection from Plastic

The geometry of scattering from a layered surface

ACM Computer Graphics, SIGGRAPH 1993 p. 166

Phong Goblet

Bui Toung Phong Thesis

Brushed Stainless Steel

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, Pat Hanrahan. "A Practical Model for Subsurface Light Transport," ACM Siggraph 2001, August 2001, Los Angeles, CA, pp. 511-518.

Schematic model of the image process

ACM Transactions on Graphics, SIGGRAPH 2003 p. 773

End...

3D Studio Max: Material Editor

3D Studio Max: Material Editor

Schematic flow of the imaging process in proposed imagebased skin color and texture analysis/synthesis

ACM Transactions on Graphics, SIGGRAPH 2003 p. 771

Cook's Fresnel Approximation

Cook's Copper Spheres

Cosine Calculations

Dot Product Definition

$$\overline{N} \cdot \overline{L} = \left| \overline{N} \right| \left| \overline{L} \right| \cos \theta$$

$$\cos\theta = \frac{\overline{N} \cdot \overline{L}}{|N||L|} = \frac{\overline{N}}{|N|} \cdot \frac{\overline{L}}{|L|}$$

Usually, the normal and light source vector directions are given as unit normals.

Dot Products to find Cosine of Angle θ

 $i \cdot i = 1$ $i \cdot j = 0$ $i \cdot k = 0$

Dot Product to find the cosine of the angle β

This is the product of the reflection vector R and the view direction V

Cross Product to find Normal Vectors

4x4 Transformations

Engineering Honors Section

Slides to explain the difference between the fast Phong algorithm, the change which varies by scan line, and the actual change which varies by pixel.

Also an explanation to change the shading based on the original geometry.

Gonioreflectometer

Bidirectional Reflectometer

Model Comparisons

Smooth Surface, Rough Surface, Combination

Specular reflection of light from a mirrorlike surface.

Diffuse reflection of light from a rough surface.

reflection due to scattering from beneath, plus reflection from, a smooth surface.

Roy S. Berns. "Billmeyer and Saltzman's Principles of Color Technology, 3rd Ed. 2000, John Wiley & Sons, Inc. p. 12.