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Abstract
A model for the dynamic simulation of flexible bodies subject

to non-penetration constraints is presented. Flexible bodies are de-
scribed in terms of global deformations of a rest shape. The dynami-
cal behavior of these bodies that most closely matches the behavior
of ideal continuum bodies is derived, and subsumes the results of
earlier Lagrangian dynamics-based models. The dynamics derived
for the flexible-body model allows the unification of previous work
on flexible body simulation and previous work on non-penetrating
rigid body simulation. The non-penetration constraints for a system
of bodies that contact at multiple points are maintained by analyt-
ically calculated contact forces. An implementation for first- and
second-order polynomially deformable bodies is described. The
simulation of second-order or higher deformations currently in-
volves a polyhedral boundary approximation for collision detection
purposes.

1. Introduction
In this paper we present a new formulation for the dynamics of

flexible bodies that covers collisions and continuous contact as well
as free motion. The model, which draws on the flexible-body model
proposed by Witkin and Welch[9] and on the analytical contact force
model for rigid bodies presented by Baraff[1,2], centers on the idea
that flexible body simulation can be greatly simplified through the
introduction of a suitable geometric approximation. By restricting
the body’s changes of shape to those that can be represented by a
global parametric deformation, we solve two problems that plague
conventional local formulations: first, the dimensionality of the
simulation is reduced, and second, the severe numerical problems
to which local interactions can give rise are eliminated.

Because it is restricted by the geometric approximation, the
flexible body’s behavior generally exhibits error when compared
to the behavior of an ideal continuum body under like conditions.
Whether this approximation error is acceptable depends on factors
such as the materials and forces being modeled, and the purpose
of the simulation. In any case, once an approximation has been
adopted it is clearly desirable to minimize the resulting error.

Our formulation is derived from the criterion of minimal approx-
imation error. Following a brief discussion of local models and the
problems they introduce, we will review the global model of Witkin
and Welch, and show that their formulation for free body motion is
in fact the minimal error solution. Then we will consider the prob-
lem of collision-response for flexible bodies. Collisions between
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rigid bodies are generally modeled as instantaneous events through
the use of impulses. In the case of flexible bodies, this would be
inappropriate, since we are interested in seeing them compress and
rebound. The minimal error criterion leads us to a two-phase model
in which an initial impulse prevents inter-penetration, followed by
a non-impulsive phase of continuous contact in which the body
compresses due to its own momentum, then rebounds due to the
buildup of internal strain energy. Finally, we extend Baraff’s ana-
lytic contact force model to flexible bodies, discuss implementation
issues for polynomial deformations, and present simulation results.

1.1 Local models and the problem of stiffness
Traditional models for flexible bodies, including finite difference,

finite element, and mass-and-spring lattice models, approximate the
deviation of a continuum body from its rest shape in terms of dis-
placements at a finite number of points callednodal points. Given a
sufficient density of nodal points, these formulations can represent
essentially any deformation. At the other end of the spectrum,
continuum bodies whose deformations are considered small enough
to be neglected can be approximated as rigid bodies, which are free
only to translate and rotate.

Obviously, the rigid body formulation cannot be applied to bodies
whose deformation we do notwant to neglect. This is unfortu-
nate because nodal formulations tend to give rise to stiff differen-
tial equations which are difficult to solve numerically. The basic
problem is that nodal formulations model global phenomena—for
example, acceleration of the whole body due to a point force—
only via local interactions among adjacent nodes. The compression
waves that translate these local interactions into large-scale effects
involve deformations that are generally far too small and fast to play
a significant role in computer animation, the more so as the mechan-
ical stiffness of the flexible body is increased. Even so, if ordinary
numerical methods are used, it is these high-speed effects rather than
the phenomena of primary interest that dictate the size of the time
steps, with potentially disastrous effects on performance[7]. Where
it applies, the rigid body approximation sweeps these problems
away by eliminating local interactions altogether: the only degrees
of freedom a rigid body has are the global ones that govern its
position and orientation.

Modeling of flexible body collisions and contact raises additional
problems for the nodal formulation. In particular, collisions are
difficult to handle because they usually involve extremely large tran-
sient forces and accelerations which, like any others, must operate
strictly through local interactions. Hence the usual stiffness problem
is exacerbated. Things are made still worse if penalty methods[1,3]
(another local model) are used to enforce non-penetration con-
straints, since these introduce stiffness problems of their own.
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1.2 Global models
Witkin and Welch[9] present a flexible-body model that repre-

sents a compromise between the extremes of the nodal and rigid
formulations. Changes in the body’s shape are approximated neither
by nodal displacements nor by rigid body transformations, but by
global deformations that apply a parametric “space warp” to all
points in the body. This global formulation constrains the range
of deformations that the body can undergo to those that can be
represented by the chosen deformation function. However, because
the shape parameters are global in their effect, the stiffness problems
due to local interactions are eliminated, as in the rigid case. In a dif-
ferent flexible-body formulation, Pentland and Williams[6] achieve
much the same goal by linearizing the dynamic model, then using
modal analysis to eliminate high-frequency vibrations. We prefer
the formulation used in Witkin and Welch primarily because, as we
will see in the next section, it minimizes the error due to the geo-
metric approximation, whereas the consequences of the dynamics-
based approximations of Pentland and Williams are more difficult
to assess.

1.3 Collision and contact
Baraff[1,2] presents an analytical method for computing contact

forces between configurations of rigid bodies. Contact forces are
computed by solving simultaneous equations that reflect all of the
forces acting on all of the bodies. Thus, an external force acting on
one body has an immediate effect on any contacting bodies. The
formulation of the contact forces as a global problem eliminates the
stiffness problems encountered by the penalty method for contact
forces. To complete our global formulation, we will adapt this
method to deal with flexible bodies.

2. Global Deformations
In this section, we will define the basic global formulation for

flexible bodies used throughout this paper. As stated in the introduc-
tion, rather than describe the shape of a deformed body in terms of
some number of nodal points, a body’s shape is described in terms of
a global deformation functionDq, whereq is a vector of parameters
that controls the deformation. The functionDq mapsR3 onto itself;
Dq describes the deformed shape of a body by mapping each point
p of the body’s rest shape to the pointDq(p).

2.1 The dynamics of global deformations
Our goal in deriving the dynamical behavior of our flexible-body

model is to relate the forces acting on a body to the acceleration
of the control parametersq, in a generalization of the familiar
equationƒ = ma. That is, given the control parametersq, and the
first derivative _q, we want to express�q in terms ofq, _q, and any
forces acting on the body. We want the motion prescribed by this
�q to have the minimum possible deviation from the motion of an
ideal continuum body. The expression for�q derived in this paper
that minimizes the deviation matches the expression derived by the
earlier work of Witkin and Welch[9] using Lagrangian dynamics;
thus, we show that the Lagrangian dynamics formulation satisfies
our minimal approximation error criterion. The model of collision-
response derived in section 3.2 is also based on a minimum error
criterion.

In the derivations in this paper, bodies are parameterized by a
coordinatep in body space, which ranges over some fixed volume.
The density of the body at any pointp in body space is denoted as
�(p). If we let q(t) describe thestateof the body as a function of
time, then at timet, Dq(t) specifies how the body is mapped from
body space into world space. Specifically, at timet the deformed
body has density�(p) at the world space pointDq(t)(p).

In an ideal continuum body, the acceleration at any point is given

by the standard equationƒ = ma. An ideal continuum body is
therefore completely unconstrained in its motion, and can be de-
formed into any arbitrary shape, by appropriate forces. In contrast,
global deformations represent a constraint, limiting the allowable
deformations, and thus the motion, of a body. Because of this
constraint, the accelerationa of a point with massm, in response
to a forceƒ, will not in general satisfya = ƒ=m. The best we can
do is to minimize the deviation of the actual accelerationa, from the
ideal accelerationƒ=m. To measure the total acceleration deviation
for the entire body, we will integrate the acceleration deviation at
each point over the entire volume of the body.

Let the net force in world space acting on a body be described as
a vector-valued functionƒ(p) over the body. The force function
ƒ includes external forces such as gravity, internal forces due to
deformation, and forces due to contact. If we leta(p) denote
the acceleration at each point of the body, thena(p) would be
“ideal” if it always satisfieda(p) = ƒ(p)=�(p), or equivalently,
a(p)� ƒ(p)=�(p) = 0. We will measure the net acceleration error
E from this ideal acceleration for the entire body by writing

E = 1
2

Z
�(p)ja(p)� ƒ(p)=�(p)j2 dV (1)

wherep ranges over the volume of the body in world space. The
deviation is mass-weighted, since the error contributed by an accel-
eration deviation in some region of the body should grow linearly
with the density in that region. UsingE, we can relate the accelera-
tion of the control parameters to the net force functionƒby requiring
that�q be chosen so as to minimizeE.

However, the errorE defined by equation (1) is the same as a
quantity named by Gauss as the “constraint” of a system. Gauss
formulated a principle called theprinciple of least constraintthat
asserts that the motion of a system subject to constraints always
minimizes the “constraint”, namely equation (1). The principle of
least constraint yields the same result for constrained motion as
is given by Lagrange’s equation of motion[5]; thus, our notion of
motion satisfying a minimal error criterion is equivalent to treating
bodies as mechanical systems and defining their motion in terms of
the very well known Lagrangian dynamics.

2.2 Linear deformations
The previous section describes the dynamics when the deforma-

tion functionDq(t) is arbitrary. For the remainder of this paper, we
will limit ourselves to deformationsDq(t)(p) that depend linearly on
q, but may vary non-linearly with respect top. Rather than describe
the state in terms of a vectorq(t), we will switch notation and define
the state as a matrixR(t); correspondingly,DR(t) denotes the defor-
mation function specified byR(t). The fact that the deformation
DR(t) is linear with respect toR(t) means thatDR(t) must have the
form

DR(t)(p) = R(t)Z(p) (2)

whereZ(p) is a vector-valued function that does not depend on ei-
thert, or R. This restriction greatly simplifies some of the dynamics
equations, while still allowing much latitude in the choice of the
deformation functionD. Note theZ(p) need not be a linear function
of p. A deformation that is quadratic in the undeformed coordinates
could be specified by

Z(p) = [ p2
x; p

2
y; p

2
z; pxpy; pxpz; pypz; px; py; pz; 1]T (3)

with R(t) a 3� 10 matrix. Clearly, polynomial deformations of
any order can be expressed in terms of deformations that are linear
with respect to the state. Second-order polynomial deformations in
particular are fairly liberal in terms of the allowable deformations
of a body. Section 4 will discuss the details of implementing first-
and second-order polynomial deformation functions.
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From the previous section, we know that we can use Lagrangian
dynamics to relate�R(t) to R(t), _R(t), and the forceƒ(p) with mini-
mal error. Witkin and Welch[9] derive the relation

�R(t) = Q(t)M�1
(4)

whereM is a constant square matrix andQ(t) is a matrix of the
generalized net force acting on the body. The matrixM is defined
by

M =

Z
�(p)Z(p)Z(p)T dV (5)

which yields a square matrix of sizen, wheren is the dimension
of the column vectorZ(p). Additionally, M is both symmetric and
positive definite. The matrixQ(t) has dimension 3�n. Generalized
forceQ is related to force inR3 as follows: a forceƒ in R3 acting
on the pointDR(t)(p) in world space yields the matrix of generalized
forceƒZ(p)T. Note that bothƒ andZ(p) are column vectors, so that
the outer productƒZ(p)T yields a 3� n matrix.

For bodies with a complicated rest shape, the integral of equa-
tion (5) is difficult to calculate analytically. SinceM is constant
however, it can be calculated off-line of the simulation process by
numerical techniques; currently, we use Monte-Carlo integration to
precomputeM. Thus, all that is required to simulate the motion
of these flexible bodies is the solution of equation (4). This is
done by converting equation (4) to the coupled first-order ordinary
differential equation

d
dt

�
R(t)
_R(t)

�
=

�
_R(t)

Q(t)M�1

�
: (6)

The remaining task is to evaluate the generalized forceQ(t), which
subsumes external forces, internal forces, and any contact forces
acting on the body. External forces are by definition forces that are
known to us at timet, such as gravity, or viscous damping. In the
next section, we show how internal forces due to deformation may
be calculated. Section 3 discusses the computation of the contact
forces included inQ(t).

2.3 Potential energy functions of linear deformations
The internal forces that act to restore a flexible body to its rest

shape are specified in terms of the derivative@V=@R of a potential
energy functionV[9]. For most physical bodies, potential energy
functions can be described in terms of themetric tensorof a body.
(Internal damping forces are calculated similarly in terms of the
metric tensor and its time derivative.) For affine deformations, the
metric tensor (and its time derivative), at any instant of time, are
constant over the volume of a body; thus, evaluating integrals of
the metric tensor over the body volume is trivial. However, for
non-affine deformations, the metric tensor can vary over the volume
of a body; if the body’s shape is complex, the integrals needed to
compute@V=@Rcan be difficult to evaluate.

Our choices are to either calculate the integrals analytically,
or use a numerical approximation. For polynomial deformations,
integrals involving the metric tensor can be expressed as a linear
combination of integrals that are independent ofR(t). These inte-
grals are weighted by functions ofR(t) and summed to compute
@V=@R. Internal damping forces are computed similarly as a linear
combination of precomputed integrals, weighted by functions of
bothR(t) and _R(t). However, even for the second-order polynomial
deformations we have implemented, the necessary expansion of
precalculated integrals is quite large. An alternate technique is
to simply approximate the integrals by evaluating the integrand at
some finite number of points scattered throughout the body. This
has the virtue of being trivial to implement, and may also be more
general in dealing with complex energy functions that allow for

(a) (b)

Figure 1: (a) Non-penetration is enforced by preventing only the
four contacting vertices from moving below the plane. (b) The
entire lower rim of the cylinder must be prevented from moving
below the plane.

plasticity or fracture[8]. For second-order polynomial deforma-
tions, a small number of sample points (on the order of fifty) yields
adequate results.

3. Non-penetration Constraints
The derivation for the contact forces between flexible bodies that

prevent inter-penetration closely parallels the derivation of contact
forces between rigid bodies in Baraff[1,2]. The most notable dif-
ference arises when considering collisions between bodies, and is
detailed in section 3.2.

3.1 Contact geometry restrictions
In considering contact between bodies, we will make the as-

sumption that contact between bodies can be described in terms of
finitely many contact points. That is, we will restrict ourselves to
configurations in which inter-penetration can be prevented globally
by enforcing a finite number of local constraints. As an example,
consider figure 1. If all the bodies involved are rigid, then in
figure 1a, inter-penetration is prevented globally between the cube
and the plane by enforcing the four local constraints that each vertex
of the cube in contact with the plane remain on or above the plane.
However, to prevent the cylinder in figure 1b from dipping below
the plane and inter-penetrating, while still allowing it to tip over
arbitrarily, we must constraineachof the infinitely many boundary
points on the lower cylinder to remain on or above the plane.

Thus, we do not allow configurations such as figure 1b. For
bodies whose deformations are affine functions of the material co-
ordinates (as well as rigid bodies), polyhedral contact regions are
allowed (figure 2a). However, for all other deformations, con-
figurations such as figure 1a cannot be allowed. A deformation
which caused the contact face of the cube to curve could result
in inter-penetration even if the vertices of the face were prevented
from inter-penetrating the plane (figure 2b). Section 4.2 describes a
geometric polyhedral boundary discretization that permits the sim-
ulation of configurations with one- or two-dimensional polygonal
contact regions when arbitrary deformation functions are allowed.
This approximation is somewhat unsatisfactory; a non-discretized
method for dealing with situations like figure 2b would be prefer-
able.

3.2 Colliding contact
Having described the geometry of contact, we can now consider

the dynamics of contact. When bodies initially come into contact
at a pointpc, we say a collision has occurred. In order to maintain
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linear
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(a) (b)

Figure 2: (a) Affine deformations allow polyhedral contact re-
gions, because inter-penetration can be prevented with finitely
many local constraints. (b) For non-linear deformations, pre-
venting the vertices from moving below the plane does not nec-
essarily prevent inter-penetration.

the non-penetration constraint between the two bodies, at least one
of the two contact surfaces must undergo a velocity discontinuity
at the contact point. Otherwise, some amount of inter-penetration
would occur in the vicinity of the contact point. Since rigid bodies
cannot deform at all, in the case of a collision between two rigid
bodies, every point on the rigid body experiences a velocity discon-
tinuity. This implies an abrupt change in momentum, which can
only be accomplished by an impulse. Collisions can be quantified
in terms of the energy lost: a collision can be completely elastic,
meaning no energy is lost, or completely inelastic, meaning that the
kinetic energy of both bodies is completely dissipated (measured
with respect to a center of mass coordinate system). For rigid body
collisions, this energy loss is instantaneous. Immediately after a
collision, bodies bounce apart with a velocity that depends on the
elasticity of the collision.

In contrast, the collision process for flexible bodies takes some
non-zero amount of time. During that time, the colliding bodies
remain in contact with each other. To derive a collision-response
model for our flexible bodies, we will use a variational principle.
To motivate such a derivation, let us consider the case of a one-
dimensional rod colliding with a fixed obstacle. The rod is dis-
cretized inton mass points. Since this example is one-dimensional,
each mass point may undergo displacement either left or right. The
mass points are numbered left to right, from 1 ton (figure 3).

When the first mass point collides with the fixed obstacle, its
velocity must discontinuously change to zero, to prevent inter-
penetration. However, the velocity of the other mass points of
the rod are unchanged. In particular, as the second mass point
continues with its original velocity, the distance between the first
and second mass point decreases. As this distance decreases, an
internal force acts to repel the two mass points. This has the effect of
deaccelerating the second mass point, which means that the distance
between the second and third mass point decreases; clearly, this
effect propagates throughout the entire rod. While this is happening,
the fixed obstacle has been exerting a (non-impulsive) contact force
on the first mass point, to prevent the repulsive internal force from
accelerating the first mass point leftwards. After some finite period
of contact, the internal forces cause the rod to bounce away from
the obstacle. If there is no damping, the only energy lost will be
due to the dissipation of the kinetic energy of the first mass point.
However, in the limit asn goes to infinity, the mass of this point,
and thus its initial kinetic energy, both go to zero. Even though a
velocity discontinuity occurs (at the left end of the bar), the actual
change in momentum is zero, and thus no energy is lost. If we
wish to model collisions with some amount of inelasticity, we must
impose damping forces on the body that dissipate energy during the
collision.

The collision-response model for our constrained flexible bodies

impulse

contact
force

contact
force

1 2 n. . .3

Figure 3: A discretized rod collides with an immovable obstacle.
Mass 1’s velocity changes instantaneously to zero upon impact-
ing the obstacle. As mass 2 approaches mass 1, an internal force
between the two acts, pushing mass 1 leftwards. A contact force
acts rightwards on mass 1 to prevent inter-penetration.

is based on this analysis. As in the rigid body case, we will need
to apply an impulse at the contact point to prevent immediate inter-
penetration. This means that some kinetic energy must be lost, and
we cannot attain a perfectly elastic collision. This is a consequence
of limiting the allowable deformations of the body. After the im-
pulse has been applied, the bodies will no longer be colliding, and
a non-impulsive force (described in the next section) will act at the
contact point to prevent inter-penetration.1

As in section 2.1, we use an error measure to compare the
collision-response of our flexible-body model with the collision-
response of an ideal continuum body. To measure the net collision-
response, we generalize equation (1) to obtain a new error measure
E0 given by

E0 = 1
2

Z
�(p)j�v(p)j2 dV (7)

where�v(p) is the change in velocity in response to an impulse.
For an ideal continuum body,�v(p) is zero everywhere except at
the point of collision andE0 is zero. For our flexible-body model,
E0 measures the deviation between the actual change in velocity,
�v(p), and the ideal change in velocity, which is zero. The correct
instantaneous change�_R(t) in the state velocity_R(t) is the one
which minimizesE0, subject to the kinematic constraints of the
collision.

From the description of the collision in figure 3, it seems intuitive
that the correct course of action is to apply an impulse between two
colliding bodies at the point of contact, such that they just come
to rest (relative to each other) at the contact point. In the absence
of friction, the impulse should act normal to the contact surfaces. A
standard constrained-minimization principle applied to equation (7)
shows that the change in velocity�_R(t) from such an impulse is in
fact exactly the�_R(t)which minimizesE0, subject to the kinematic
constraints of the collision.

The actual computation of the impulse is trivial. For simplicity,
let us consider a collision between a flexible bodyA and an immov-
able, undeformable obstacleB with a well defined surface normal

1In general, the energy loss can be decreased by altering the deformation
functionD so that it allows the body more degrees of freedom. The limiting
case, whenD can represent any deformation, is the same as the limiting case
for the discretized bar of figure 3 whenn goes to infinity. Obviously, neither
case can be simulated without an infinite amount of computation.
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B

A
pc
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λn

Figure 4: Impact between a flexible bodyA and an immovable
undeformable bodyB.

at the contact pointpc. The vector̂n denotes the outwards pointing
unit surface normal ofB at the contact pointpc (figure 4). The
generalization to the case whenB is an ordinary rigid or deformable
body is straightforward. As is the case for generalized forces, an
impulseƒ in R3 acting on a body at the pointDR(t)(p) produces a
generalized impulseQ = ƒZ(p)T. A flexible body’s state velocity
_R(t) changes discontinuously to_R(t) + QM�1 when subject to a
generalized impulseQ.

To calculate the required impulse, letpc = DR(t)(p). We know
that the impulse occurs atpc, and has direction̂n for a frictionless
impact. Thus, we can express the impulse as�n̂, where� is an
unknown scalar. The velocity of the contact point on the moving
body before the collision is

d
dt

DR(t)(p) = _R(t)Z(p): (8)

After the collision, the velocity of the contact point is( _R(t) +
QM�1

)Z(p). Since bodyB is fixed, the velocity of the contact
point in then̂ direction after the collision must be zero; that is, we
require

n̂
�
( _R(t) + QM�1

)Z(p) = 0: (9)

SubstitutingQ = (�n̂)Z(p)T, we have the constraint

n̂
�
( _R(t) + �n̂Z(p)TM�1

)Z(p) = 0 (10)

which yields

� =
�n̂

�

_R(t)Z(p)
n̂
�

n̂Z(p)TM�1Z(p)
=

�n̂
�

_R(t)Z(p)
Z(p)TM�1Z(p)

(11)

sincen̂ has unit length. SinceM is positive definite, the denom-
inator of equation (11) is non-zero and positive. Moreover, since
n̂
�

_R(t)Z(p) is the initial approach speed in the normal direction
(which is negative),� is positive as one would expect from figure 4.
For collisions involving more than one contact point, the collisions
at the contact point can be considered as a sequence of collisions,
slightly staggered in time. If collisions involving multiple contact
points are modeled as occurring simultaneously, the approach taken
by Baraff[1] can be used.

3.3 Resting contact
The derivation for the resting contact forces between flexible

bodies is almost the same as the derivation for resting contact forces
between rigid bodies. The non-penetration constraints for rigid
bodies described in Baraff[2] are restricted to handle situations with
only finitely many contact points, as described in section 3.1. Since
we are restricted to situations in which inter-penetration can be

prevented by considering only finitely many contact points, we can
index the contact points from 1 ton. At each contact point between
two bodiesA andB, we will write down a constraint of the form

��i(t0) � 0 (12)

where�i(t) is a measure of the separation betweenA andB in the
normal direction at timet. Since�i(t) is a spatial measure,��i(t)
measures the relative normal acceleration betweenA and B. In
particular, if ��i(t0) < 0, then the bodies are accelerating so as to
inter-penetrate at theith contact point. Conversely, if��i(t0) > 0,
then the bodies are accelerating apart, and contact will be broken
at theith contact point immediately after timet0. If ��i(t0) = 0,
then contact is not broken at theith contact point. Thus, to prevent
inter-penetration, we must enforce equation (12).

The relation��i(t) � 0 is maintained at each contact point by
a time-varying contact force, acting normal to the contact surface.
As in the case of colliding contact, we need to calculate the magni-
tudes of these contact forces. Because��i(t0)measures acceleration,
��i(t0) depends linearly upon all the forces acting on bodiesA andB.
The contact force at each contact point is required to be repulsive
and conservative; that is, it must not add energy to the system of
bodies. Since the normal force at one contact may affect the accel-
eration of one or both of the bodies at another contact, satisfying
��i(t) � 0 at all of the contact points involves satisfying a system
of simultaneous linear inequalities. The constraint that the contact
forces act conservatively can be expressed in terms of a quadratic
constraint on the contact forces. Contact forces satisfying these
constraints can be computed by quadratic programming[1,2].

Exactly the same formulation is used to prevent inter-penetration
between flexible bodies. The expression derived for��i(t0) in
Baraff[2] requires the spatial and temporal derivatives of functions
describing the contact surfaces. Suppose we express the unde-
formed rest shape of our contact surface in body space in terms of a
real-valued functionF0(p); that is, a pointpb in body space is on the
undeformed surface if and only ifF0(pb) = 0. Then the deformed
contact surface at timet consists of those pointsp in world space for
which

F(p; t) = F0(D
�1
R(t)(p)) = 0: (13)

Deriving expressions for the various derivatives ofF(p; t) neces-
sary to symbolically evaluate��i(t0) becomes mostly an exercise in
applying the chain rule of calculus. For any deformation function
DR(t)(p) = R(t)Z(p), ��i(t0) is a linear function of�R(t0), so ��i(t0)
depends linearly upon the contact forces. The contact forces can be
extended to include friction as described by Baraff[3].

4. Implementing Polynomial Deformations
We have implemented flexible bodies for the cases of first- and

second-order polynomial deformations. There is no difficulty in
performing simulations that involve bodies with a mix of differ-
ing deformation functions. Simulations can also mix rigid and
deformable bodies. In this section, we will discuss a number of
implementation details.

4.1 Collision detection
Currently, our bodies are limited to unions of convex primitives,

where a primitive is either a polyhedron or a convex closed curved
surface. When deformations are limited to first-order deformations,
convexity is conserved under deformation. Thus, the collision
detection method described in Baraff[2] can be used without alter-
ation. Additionally, when flexible bodies are determined to contact
at some pointpc in world space, it is necessary to computepc in the
body space of both of the bodies; that is,D�1

R(t)(pc)must be computed
for each body. This is trivial for first-order deformations sinceDR(t)

is simply an affine transformation whose inverse is easily computed.
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Since polygons in body space are mapped into polygons in world
space, one- or two-dimensional contact regions are allowed, as
described in section 3.1.

Matters are more complicated for second-order or higher defor-
mations. ComputingD�1

R(t)(pc) is not a severe problem. A coarse
mesh of control points with known body space coordinates can
be transformed into world space for each body. Given a pointpc

in world space, the body space coordinates of the control points
closest topc in world space can be interpolated to provide a rough
estimate ofD�1

R(t)(pc). Starting with this estimate,D�1
R(t)(pc) can be

computed numerically using iterative techniques[4]. However, the
initial determination of the contact points in world space is a difficult
problem. Even given a suitable collision detection algorithm, our
simulations would be severely restricted because of the contact
geometry restrictions of section 3.1. It is our hope to eventually
deal with these problems; for now however, we will describe an ap-
proximation method that removes the contact geometry restriction
and lets us use previously developed collision detection algorithms.

4.2 Polyhedral approximation
Our approximation method consists of discretizing contact sur-

faces into a triangular mesh. The undeformed contact surface of the
body is decomposed into some number of triangular patches that
completely cover the surface. In body space, a given triangular
patch can be described as the triple of vertices(p0; p1; p2). At
time t, this triangle is transformed into world space as the triangle
(DR(t)(p0);DR(t)(p1);DR(t)(p2)). When performing collision detec-
tion and enforcing non-penetration constraints, the contact surface
is considered to be the collection of these transformed triangles. The
use of a coherence based culling step results in a collision detection
algorithm that is nearly linear in the number of polygons[3].

The non-penetration constraints are written in terms of the de-
formed triangles. Each triangle is treated as a plane in solving
for contact forces. Since the plane equation for each triangle can
be written in terms of the vertices, the derivatives needed for sec-
tion 3.3 can be computed in terms of the derivatives ofDR(t)(p0),
DR(t)(p1) andDR(t)(p2). Since the contact surfaces always remain
planar, the contact geometry restriction of finitely many contact
points is not an issue. As in the first-order case, the non-penetration
constraint can be formulated in terms of finitely many constraints,
even if one- or two-dimensional contact regions result.

If the results of a simulation are displayed using the actual de-
formed shape of a body, instead of the polyhedral approximation
used for the dynamics computations, visual anomalies can occur.
If the discretization of the polyhedral mesh is very low compared
to the curvature of the body, bodies may appear to inter-penetrate
somewhat. We have found however that a fairly coarse mesh
produces quite reasonable results for second-order deformations.
Presumably, higher-order deformations would require finer meshes
to avoid visual artifacts. Figure 5 shows a deformed rectangular
block; for display purposes, the block was meshed sufficiently to
appear as a smooth curved surface. For simulation purposes, the
(deformed) block was subdivided into a 3�3�5 cubic mesh, after
which each exterior square face was split into two triangles (for a
total of 156 triangles). This was sufficient to remove any suggestion
of inter-penetration throughout the entire simulation.

5. Conclusions
We have demonstrated a new technique for simulating flexible

bodies subject to non-penetration constraints. We have imple-
mented both first- and second-order polynomial deformable bod-
ies. The use of second-order deformations requires a polyhedral
approximation for collision detection purposes. The model pre-
sented unifies previous work on deformable bodies, non-penetration
constraints, and friction.
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Figure 5: Quadratically deformable block falling down stairs.
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