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Abstract

The irradiance at a point on a surface due to a polyhedral source
of uniform brightness is given by a well-known analytic formula.
In this paper we derive the corresponding analytic expression for
the irradiance Jacobian, the derivative of the vector representation
of irradiance. Although the result is elementary for unoccluded
sources, within penumbrae the irradiance Jacobianmust incorporate
more information about blockers than either the irradiance or vector
irradiance. The expression presented here holds for any number of
polyhedral blockers and requires only a minor extension of standard
polygon clipping to evaluate. To illustrate its use, three related
applications are briefly described: direct computation of isolux
contours, finding local irradiance extrema, and iso-meshing. Isolux
contours are curves of constant irradiance across a surface that can be
followed using a predictor-corrector method based on the irradiance
Jacobian. Similarly, local extrema can be found using a descent
method. Finally, iso-meshing is a new approach to surface mesh
generation that incorporates families of isolux contours.

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation, I.3.5 [Computational Geometry and
Object Modeling]: Geometric Algorithms.

Additional Key Words and Phrases: irradiance gradient, irradi-
ance Jacobian, isolux contours, light field, mesh generation, vector
irradiance.

1 Introduction

A perennial problem of computer graphics is the accurate represen-
tation of light leaving a surface. In its full generality, the problem
entails both local reflection phenomena and the distribution of light
reaching the surface. Frequently the problem is simplified by as-
suming polyhedral environments or Lambertian (diffuse) emitters
and reflectors. With these simplifications the remaining challenges
are in simulating interreflections and acurately modeling shadows
and penumbrae from area light sources.
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Many aspects of surface illumination have been studied in or-
der to accurately model features of the reflected light. In previous
work, Heckbert [8] and Lischinski et al. [12] identified derivative
discontinuities to produce efficient surface meshes. Nishita and
Nakamae [14, 15] located penumbrae in polyhedral environments,
while Teller [19] computed antipenumbrae for sequencesof portals.
Ward and Heckbert [22] computed irradiance gradients from ran-
dom samples of the environment to accurately interpolate irradiance
functions. Drettakis and Fiume [5] also estimated gradients from
samples and used them to guide subsequent sampling.

The present work introduces a new tool based on the concept of
vector irradiance, a natural representation of irradiance defined at
all points in space. The central contribution of the paper is a closed-
form expression for the derivative of the vector irradiance, which we
call the irradiance Jacobian. The new expression properly accounts
for occlusion and subsumesthe irradiance gradient as a special case.

In Section 2 we derive the irradiance Jacobian for polygonal
sources of uniform brightness starting with an analytic expression
for the vector irradiance. The same expression has been used in
scalar form by Nishita and Nakamae [14] to accurately simulate
polyhedral sources, and by Baum et al. [2] for the computation
of form factors. Section 3 introduces a method for characterizing
changes in the apparent shape of a source due to differential changes
in the receiving point, which is the key to handling occlusions. In
Section 4 basic properties of the irradiance Jacobian are discussed,
including existence and the connection with gradients.

To illustrate the potential uses of the irradiance Jacobian, Sec-
tion 5 describes several computations that employ irradiance gra-
dients. We describe a method for direct computation of isolux
contours, which are curves of constant irradiance on a surface.
Each contour is expressed as the solution of an ordinary differential
equation which is solved numerically using a predictor-corrector
method. The resulting contours can then be used as the basis of a
meshing algorithm. Finding local extrema is a related computation
that can be performed using a descent method. Finally, Section 6
describes other potential applications of the irradiance Jacobian.

1.1 Radiometric Preliminaries

All radiometric quantities may be defined in terms of radiance: ra-
diant power per unit projected area per unit solid angle [watts/m2sr].
Any collection of light sources in an optical medium uniquely de-
fines a non-negative radiance function over all spatial positions and
directions. At the macroscopic level, this function completely spec-
ifies the distribution of radiant energy in the medium. We shall
denote the radiance at the point r and in the direction � by L(r,�).

Central to the present work is a vector field� : IR3 � IR3 known
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Figure 1: (a) The vector irradiance at point r due to polygon P can be
written in closed-form. (b) The contribution due to edge k is the product of
the angle�k and the unit vector �k.

as the light field [7]. In terms of radiance, the light field is given by

�(r) �
Z
S2

L(r,�)� d�(�), (1)

where S2 is the unit sphere in IR3, and � is the canonical measure
on the sphere [3]. That is, �(r) is the integral over all unit vectors
through r weighted by the radiance in each direction. At each point
in space �(r) is a vector quantity known as the light vector [7] or
the vector irradiance [17]; we adopt the latter terminology in this
paper.

From vector irradiance we can derive other radiometric quanti-
ties, such as the net flux [watts/m2]. At any point r on a hypothetical
surfaceM, the net flux �(r) is the net flow of radiant energy across
M per unit area [9]. By definition,

�(r) �
Z
S2

L(r,�) cos� d�(�), (2)

where � is the angle of incidence relative to the surface. It follows
that � and� are related by

�(r) = ��(r) � n(r), (3)

where n(r) is the surface normal at the point r. The vector irradiance
at r therefore defines a linear mapping that relates surface normals
to net flux.

At real surfaces, the net flux accounts for energy arriving from
the hemisphere above the surface, in which case �(r) is called
irradiance. Equivalently, the irradiance at a point r on a surface
follows from equation (3) if the vector irradiance is computed using
sources that are visible and lie above the tangent plane through r.

Although vector irradiance is a very general radiometric quantity
defined in any optical medium, it is particularly useful in certain
restricted settings. For instance, at diffuse receivers the reflectivity,
surface orientation, and vector irradiance completely determine the
reflected radiance at every point. Moreover, when the sources are
polyhedral, the vector irradiance can be expressed in closed form.

1.2 Polyhedral Sources

For sources of uniform brightness, � can be expressed analytically
for a number of simple geometries including spheres and infinite
strips [7]. Polygonal sources are another important class with known
closed-form expressions, and are the focus of this paper. Suppose
P is a simple planar polygon in IR3 with vertices v1, v2, . . . , vn. If
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Figure 2: The irradiance at point r due to source P is the same with either
blocker, but the slopes of the irradiance curves are different.

P is a diffuse source with constant emission M [watts/m2], then the
light field due to P is given by

�(r) =
M
2�

nX
i=1

�i(r)�i(r), (4)

where �1, . . . ,�n are the angles subtended by the n edges as seen
from the point r, or equivalently, the arclengths of the edges pro-
jected onto the unit sphere about r. The vectors � 1, . . . ,�n are unit
normals of the polygonal cone with cross section P and apex r. See
Figure 1. For any 1 � k � n the functions�k and�k can be written

�k(r) = cos�1

�
vk � r
jj vk � r jj �

vk+1 � r
jj vk+1 � r jj

�
, (5)

and

�k(r) =
(vk � r)� (vk+1 � r)
jj (vk � r)� (vk+1 � r) jj , (6)

where jj � jj is the Euclidean norm and vn+1 � v1. Equation (4)
most commonly appears in scalar form [2, 6, 14]. With M = 1, the
corresponding expression ��(r) � n(r) is the form factor between
a differential patch at r and the polygonal patch P. This scalar
expression was first derived by Lambert in the 18 th century [18].

Because the light field is a true vector field, the vector irradiance
due to multiple sources may be obtained by summing the contri-
butions from each source individually. Thus, polyhedral sources
can be handled by applying equation (4) to each face and sum-
ming the resulting vectors. Alternatively, when the faces have equal
brightness, equation (4) can be applied to the outer contour of the
polyhedron as seen from the point r [14]. Partially occluded sources
are handled similarly by summing the contributions of all the visible
portions. Determining the visible portions of the sources in poly-
hedral environments is analogous to clipping polygons for hidden
surface removal [23].

The closed-form expression for vector irradiance in equation (4)
provides an effective means of computing related expressions, such
as derivatives. In the remainder of the paper we derive closed-form
expressions for derivatives of the irradiance and vector irradiance
due to polyhedral sources in the presence of occluders, and describe
several applications.

2 The Irradiance Jacobian

The derivative DF of a differentiable function F : IR3 � IR3 is
representedby a 3�3 Jacobian matrix. We shall denote the Jacobian
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Figure 3: (a) The view from r of the two types of “intrinsic” vertices. (b)
The vertex vector for the unoccluded source vertex v 1. (c) The vertex vector
for the blocker vertex v2 in the interior of source P.

matrix of F at r by Jr(F). That is,

Jr(F) � DF(r) =

�
�Fi(r)
�xj

�
. (7)

In this section we derive the Jacobian matrix of the vector irradiance
�, or more briefly, the irradiance Jacobian. The obvious approach
is to differentiate equation (4) with respect to the point r; a straight-
forward exercise easily performed by a symbolic manipulator. The
result holds for unoccluded polygonal sources.

To see why the irradiance Jacobian is more difficult to compute
when blockers are present, consider the arrangement in Figure 2.
First, observe that the irradiance at the point r can be computed by
applying equation (4) to the visible portion of the source,which is the
same in the presence of either blocker A or blocker B. Although the
resulting expression can be differentiated, this does not result in the
irradiance Jacobian. Because the two blockers produce irradiance
functions with different slopes at r, the irradiance Jacobians must
also differ to account for blocker position.

To derive an expression that applies within penumbrae, we ex-
press �(r) in terms of vertex vectors, which correspond to vertices
of the spherical projection of the polygon, as depicted in Figure 1.
Vertex vectors may point toward vertices of two distinct types: in-
trinsic and apparent. An intrinsic vertex exists on either the source
or the blocker, as shown in Figure 3. An apparent vertex results
when the edge of a blocker, as seen from r, crosses the edge of the
source or another blocker, as shown in Figure 4. We shall express
Jr(�) in terms of derivatives of the vertex vectors, viewing them
as mappings from points in IR3 to unit vectors. The derivative of a
vertex vector is a 3� 3 matrix, which we call the vertex Jacobian.
Vertex Jacobians hide the geometric details of each vertex, yielding
a relatively simple closed-form expression for Jr(�).

Let v�1, v�2, . . . , v�m be the vertices of P�, the source P after clipping
away portions that are occluded with respect to the point r. Without
loss of generality, we may assume that P� is a single polygon; if
it is not, we simply iterate over the pieces. The vertex vectors
u1(r), u2(r), . . . , um(r) are defined by

uk(r) � v�k � r
jj v�k � r jj . (8)

We also define w1(r), . . . , wm(r) to be the cross products

wk(r) � uk(r)� uk+1(r). (9)

Henceforth, we assume that uk and wk are functions of position and
omit the explicit dependence on r. Expressing � k and �k in terms
of wk , we have

�k = sin�1 jjwk jj , (10)

and

�k =
wk

jjwk jj . (11)
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Figure 4: (a) The view from r of the two types of “apparent” vertices. (b)
The vertex vector for v1 resulting from a blocker edge and a source edge.
(c) The vertex vector for v2 resulting from two blocker edges.

The form of equation (10) simplifies the following development,
although it is equivalent to equation (5) only for acute angles; that
is, only when uk � uk+1 � 0. This restriction will be removed below.

To compute J(�) in terms of the vertex Jacobians
J(u1), . . . , J(um) we first consider the k th term of the summation
in equation (4). Differentiating, we have

J(�k�k) = �kr�k + �kJ(�k), (12)

where�kr�k is the outer product of the vector �k and the gradient
r�k. We now compute r�k and J(�k). For brevity, we denote
the vertex vectors uk and uk+1 by a and b respectively, and the cross
product a � b by w. Then the gradient of �k with respect to r is

r�k = r sin�1 jjw jj

=
1p

1� wTw

�
wT

jjw jj

�
J(w)

=

�
wT

aTb

�
J(w)
jjw jj . (13)

Similarly, differentiating �k with respect to r we have

J(�k) = D

�
w
jjw jj

�
=

J(w)
jjw jj �

wwT

jjw jj3 J(w)

=

�
I� wwT

wTw

�
J(w)
jjw jj . (14)

From Equations (10)-(14), we obtain an expression for J(�k�k) in
terms of J(w) and the vertex vectors a and b:

J(�k�k) =

�
w
jjw jj

�
wT

aTb

�
+ sin�1 jjw jj

�
I� wwT

wTw

��
J(w)
jjw jj .

If the factor of sin�1 jjw jj is now replaced by the angle between a
and b, the expression will hold for all angles, removing the caveat
noted earlier. The above expression may be written compactly as

J(�k�k) = E(a, b) J(a� b), (15)

where the function E is the edge matrix defined by

E(a, b) �
�

1
aTb

�
wwT

wTw
+

cos�1 aTb
jjw jj

�
I� wwT

wTw

�
. (16)

In equation (16) we have retained w as an abbreviation for a � b.
Because the edge matrix contains no derivatives, it can be computed



directly from the vertex vectors a and b. To simplify the Jacobian
of a � b, we define another matrix-valued function Q by

Q(p) �
�

0 pz �py

�pz 0 px

py �px 0

�
. (17)

Then for any pair of vectors p and q, we have p�q = Q(p)q. Writing
the cross product as a matrix multiplication leads to a convenient
expression for the Jacobian matrix of F � G, where F and G are
vector fields in IR3. Thus,

J(F �G) = Q(F)J(G)�Q(G)J(F). (18)

Applying the above identity to equation (15), summing over all
edges of the clipped source polygon P �, and scaling by M/2�, we
arrive at an expression for the irradiance Jacobian due to the visible
portion of polygonal source P:

J(�) =
M
2�

mX
i=1

E(ui, ui+1) [Q(ui)J(ui+1)�Q(ui+1)J(ui)] . (19)

This expression can be simplified somewhat further by collecting
the factors of each J(ui) into a single matrix. We therefore define
the corner matrix C to be the matrix-valued function

C(a, b, c) � E(a, b)Q(a)� E(b, c)Q(c). (20)

Then the final expression for the irradiance Jacobian can be writ-
ten as a sum over all the vertex Jacobians transformed by corner
matrices:

J(�) =
M
2�

mX
i=1

C(ui�1, ui, ui+1) J(ui), (21)

where we have made the natural identifications u0 � um and
um+1 � u1. Note that each corner matrix C depends only on the
vertex vectors, and not their derivatives; all information concerning
apparent motion due to changing the position r is embodied in the
vertex JacobiansJ(u1), . . . , J(um), which we now examine in detail.

3 Vertex Jacobians

To apply equation (21) we require the vertex Jacobians, which we
now construct for both unoccludedand partially occluded polygonal
sources. First, observe that each vertex vector u(r) is a smooth
function of r almost everywhere; that is, u(r) is differentiable at all
r � IR3 except where two or more edges of distinct polygons appear
to coincide, as described in section 4. Differentiability follows from
the smoothness of the Euclidean norm and the fact that the apparent
point of intersection of two skew lines varies quadratically in r along
each of the lines [16]. From this it is evident that the vertex Jacobian
exists whenever the real or apparent intersection of two edges exists
and is unique.

When the vertex Jacobian exists, it can be constructed by deter-
mining its action on each of three linearly independent vectors; that
is, by determining the instantaneous change in the vertex vector u
as a result of moving r. Differential changes in u are orthogonal to
u and collectively define a disk, or in the case of partial occlusion,
an ellipse. See Figure 5. The directions that are easiest to analyze
are the axes of the ellipse, which are the eigenvectors of the vertex
Jacobian. We first treat intrinsic vertices and then generalize to the
more difficult case of apparent vertices.

vertex

r

u

dr
du

change in
vertex vector

change in
position

Figure 5: A differential change in the position r results in a change in the
unit vertex vector u. The locus of vectors du forms a disk, or more gnerally,
an ellipse in the plane orthogonal to u.

3.1 Intrinsic Vertices

Suppose that u is the vertex vector associated with an unoccluded
source vertex, as shown in Figure 3b. In this case the vertex Jaco-
bian J(u) is easy to compute since it depends solely on the distance
between r and the vertex, which we denote by �. Moving r in the
direction of the vertex leaves u unchanged, while motion perpen-
dicular to u causes an opposing change in u. The changes in u are
inversely proportional to the distance �. This behavior completely
determines the vertex Jacobian. Thus, we have

J(u) = � 1
�

�
I� uuT

	
, (22)

where the matrix I � uuT is a projection onto the tangent plane of
S2 at the point u, which houses all differential motions of the unit
vector u. The same reasoning applies to vertex vectors defined by a
blocker vertex, as in Figure 3c. In this case � is the distance along
u to the blocker vertex.

3.2 Apparent Vertices

Within penumbrae, apparent vertices may be formed by the apparent
crossing of non-coplanar edges. The two distinct cases are depicted
in Figure 4. Let u be the vertex vector associated with such a vertex,
where the determining edges are segments of skew lines L 1 and L2.
Let s and t be vectors parallel to L1 andL2, respectively, as depicted
in Figure 6. As in the case of intrinsic vertices, moving r toward the
apparent vertex leaves u unchanged, so J(u)u = 0. To account for
other motions, we define the vectors bs and bt by

bs � (I � uuT) sbt � (I� uuT) t,

which are projections of s and t onto the plane orthogonal to u.
Now consider the change in u as r moves parallel to bs , as shown in
Figure 6a. In this case the apparent vertex moves along L 1 while
remaining fixed on L2. Therefore, the change in u is parallel to bs
but opposite in direction to the change in r. If �t is the distance to
L2 along u, we have

J(u)bs = � bs
�t

. (23)

Evidently, bs is an eigenvector of J(u) with associated eigenvalue
�1/�t. A similar argument holds when r moves along bt , as shown
in Figure 6b. Here the apparent vertex moves along L2 while
remaining fixed at L1. If �s is the distance to L1 along u, we have

J(u)bt = � bt
�s

, (24)
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Figure 6: The vertex Jacobian J(u) with respect to two skew lines L1 and
L2 is found by determining how the vertex vector u changes as r moves
parallel to (a) the vector bs , and (b) the vectorbt .

which provides the third eigenvector and corresponding eigenvalue.
Collecting these relationships into a matrix equation, we have

J(u)

 bs bt u

�
=

�
� bs
�t

� bt
�s

0

�
. (25)

It follows immediately that whenever the linesL1 andL2 are distinct
and non-colinear as viewed from the point r, then

J(u) = A

� �1/�t

�1/�s

0

�
A�1 (26)

where A � 
 bs bt u
�
. Note that equation (26) reduces to equa-

tion (22) when �s = �t . Equation (26) therefore suffices for all
vertex vectors, but the special case for intrinsic vertices can be used
for efficiency.

3.3 Polygon Depth-Clipping

To compute the irradiance or vector irradiance at a point r, it suffices
to clip all sources against all blockers, as seen from r, and apply
equation (4) to the resulting vertex lists. This operation is also
sufficient to compute the corner matrices and the vertex Jacobians
at unoccluded source vertices. However, the vertex Jacobians for
the cases illustrated in Figures 3c, 4b, and 4c all require informa-
tion about the blockers that is missing from traditionally-clipped
polygons. Specifically, the distances to blocker edges defining each
vertex are needed to form the matrices in Equations (22) and (26).

Thus, additional depth information must be retained along with
the clipped polygons for use in computing vertex Jacobians. We
propose a simple mechanism, called depth clipping, by which the
required information appears as additional vertices. The idea is to
construct the clipped polygon using segments of source and blocker
edges and joining them by segments called invisible edges, which
cannot be seen from the point r. See Figure 7. The resulting
non-planar contour is identical to that of the traditionally-clipped
polygon when viewed from r. Each invisible edge produces a vertex
Jacobian of the form in equation (26); its end points encode the
distances from r while the adjacent edges provide the two directions.
Each vertex not adjacent to an invisible edge produces a vertex
Jacobian of the form in equation (22).

The depth-clipped polygon and the emission M completely spec-
ify the irradiance Jacobian. Most polygon clipping algorithms can
be extended to generate this representation using the plane equation
of each blocker. The depth-clipped polygon also clearly illustrates
the information required for irradiance Jacobians.

(a) (b) (c)

r r

invisible edge
source

blockers

P

Figure 7: (a) Source P is partially occluded by two blockers as seen from
r. (b) The vector irradiance at r due to P can be computed using the simply-
clipped polygon. (c) The irradianceJacobianat r requires the depth-clipped
polygon.

4 Properties of the Irradiance Jacobian

In this section we list some of the basic properties of the irradiance
Jacobian, beginning with existence. By definition, the Jacobian
Jr(�) exists wherever � is differentiable, which requires the ex-
istence of each directional derivative at r. Because we consider
only area sources, the variation of � is continuous along any line
except when a blocker is in contact with the receiving surface. In-
stantaneous occlusion causes discontinuous changes in the vector
irradiance. In the absenceof contact occlusions, the variation of� is
not only continuous but differentiable everywhere except along lines
where edges appear to coincide; that is, points at which a source or
blocker edge appears to align with another blocker edge [12]. For
instance, when both blockers are present simultaneously in Figure 2,
the irradiance curve coincides with curve B to the left of r, and with
curve A to the right. Therefore, the irradiance at r has a disconti-
nuity in the first derivative. Only contact occlusion and edge-edge
alignments cause the Jacobian to be undefined; other types of events
cause higher-order discontinuities in the vector irradiance, but are
first-order smooth.

(b)(a) (c)

PB2 B3

B1

Figure 8: (a) The vertex Jacobian does not exist at the intersection of three
edges. A small change can produce (b) a single apparent vertex, or (c) two
apparent vertices.

From equation (21) it would appear that the irradiance Jacobian
does not exist if any one of the vertex Jacobians fails to exist; this
is not always so. A vertex Jacobian may be undefined because the
vertex lies at the intersection of three edges, as shown in Figure 8a.
In cases such as this, a minute change in r can lead to several possi-
ble configurations with different vertex Jacobians. See Figures 8b
and 8c. However, the unoccluded area of the source still changes
smoothly despite such a difficulty at a single vertex. To ensure that
equation (21) is valid wherever� is differentiable, we simply restrict
the edges that are used in computing the vertex Jacobians to those
that actually bound the clipped source. Thus, in Figure 8, blocker
B1 is ignored until it makes its presence known by the addition of a
new edge, as in Figure 8c.

One of the most useful properties of the Jacobian matrix is its con-
nection with directional derivatives. For any � � S2, the directional
derivative of � at r in the direction � is

D��(r) = Jr(�) �. (27)



Although directional derivatives of � may be approximated to sec-
ond order with central differences, using the irradiance Jacobian
has several advantages. First, all directional derivatives of �(r)
are easily obtained from the irradiance Jacobian at r, which re-
quires a single global clipping operation; that is, sources need only
be clipped against blockers once. In contrast, difference approx-
imations require at least two clipping operations per directional
derivative. More importantly, directions of maximal change follow
immediately from the Jacobian but require multiple finite differ-
ences to approximate.

A final property, which we build upon in the next section, is the
connection with the rate of change of surface irradiance. Differen-
tiating equation (3) with respect to position, we have

r� = �
T J(n) + nT J(�), (28)

which associates the irradiance gradient with the irradiance Jaco-
bian. Note that J(n) is related to the curvature of the surface at
each point r � M. For planar surfaces J(n) � 0, so equation (28)
reduces to

r� = nT J(�), (29)

which is the form we shall use to compute isolux contours on polyg-
onal receivers. When evaluating equation (29) several optimizations
are possible by distributing the vector multiplication across the terms
of equation (21), which changes the summation of matrices into a
summation of row vectors.

5 Applications of the Irradiance Jacobian

In the first portion of the paper, we have seen how to compute the
irradiance Jacobian and the irradiance gradient. The steps can be
summarized as follows:

Matrix IrradianceJacobian( Point r )

Matrix J� 0
for each source P with emission M

beginbP� P depth-clipped against all blockers, as seen from r
for each i: Ji � vertex Jacobian for the i th vertex of bP
for each i: Ei � edge matrix for the i th edge of bP
for each i: Ci � corner matrix using Ei�1 and Ei

J� J + M
2� (sum of all Ci Ji)

end
return J

Here the inner loops all refer to the vertices as seen from r; pairs of
vertices associated with invisible edges are counted as one. Gradi-
ents can then be computed using equation (28) or equation (29). The
procedure above is a general-purpose tool with many applications,
several of which are described in the remainder of this section.

5.1 Finding Local Extrema

The first application we examine is that of locating irradiance ex-
trema on surfaces, which can be used in computing bounds on the
transfer of energy between surfaces [11]. Given the availability of
gradients, the most straightforward approach to locating a point of
maximal irradiance is with an ascent method of the form

ri+1 � ri + �i

�
I� nnT

	
r�T(ri), (30)

where r0 is a given starting point, and the factor �i is determined
by a line search that insures progress is made toward the extremum.
For example, the line search may simply halve � i until an increase

(a) (b)

Figure 9: (a) Projecting the gradient onto a surface defines a 2D vector
field everywhere orthogonal to the level curves. (b) Rotating the projected
gradientsby��/2 creates a vector field whose flow lines are isolux contours.
Local maxima are then encircled by clockwise loops.

in irradiance is achieved. The extremum has been found when
no further progress can be made. Minima are found similarly.
The principle drawbacks of this method are that it finds only local
extrema, and convergence can be very slow when the irradiance
function is flat. In the absence of a global method for locating
all extrema, seed points near each of the relevant extrema must be
supplied.

5.2 Direct Computation of Isolux Contours

Curves of constant irradiance over surfaces are known as isolux
contours [20]. Applications of isolux contours in computer graphics
include visualizing irradiance distributions [21, 15] and simplifying
shading [4] and sampling [5]. In computer vision isolux contours
have been used to perform automatic image segmentation [10]. In
this section we show how isolux contours can be computed directly.

Every isolux contour on a surface M can be represented by a
function r : [0,	) �M that satisfies

�(r(s)) = �(r(0)) (31)

for all s � 0. To compute such a curve we construct a first-order
ordinary differential equation (ODE) to which it is a solution, and
solve the ODE numerically.

The direction of most rapid increase in �(r) at a point r � M
is given by the gradient r�(r), which generally does not lie in the
tangent plane of the surface. The projection of the gradient onto
the surface is a tangent vector that is orthogonal to the isolux curve
passing through its origin. See Figure 9a. If the projected gradient is
rotated by 90 degrees, we obtain a direction in which the irradiance
remains constant to first order. See Figure 9b. Thus, we define the
isolux differential equation by

�r = P(r)r�T(r), (32)

with the initial condition r(0) = r0, where

P(r) � R(n(r))


I� n(r)nT(r)

�
, (33)

and R(z) is a rotation by��/2 about the vector z. The matrix P(r) is
constant for planar surfaces. The solution of this ODE is an isolux
contour with irradiance c = �(r0).

5.2.1 Solving the Isolux Differential Equation

Any technique for solving first-order ordinary differential equations
can be applied to solving the isolux differential equation. The
overriding consideration in selecting an appropriate method is the
number of irradiance values and gradients used in taking a step



along the curve. Obtaining this information involves a global clip-
ping operation, which is generally the most expensive part of the
algorithm.

Multistep methods are particularly appropriate for solving the
isolux ODE since they make efficient use of the recent history of the
curve. For example, Milne’s predictor-corrector method is a multi-
step method that predicts the point rk+1 � r(sk+1) by extrapolating
from the three most recent gradients and function values using a
parabola. When the matrix P is fixed, Milne’s predictor is given by

r0
k+1 � rk�3 +

4h
3

P (2gk�2 � gk�1 + 2gk) , (34)

where gk denotes the gradient at the point rk, and h is the step
size [1]. Given the predicted value, a corrector is then invoked to
find the nearest point on the curve. Because the contour is the zero
set of the function �(r) � c, the correction can be performed very
efficiently using Newton’s method. Beginning with the predicted
point r0

k , a Newton corrector generates the sequence r 1
k , r2

k , . . . by

ri+1
k � ri

k +


c� �(ri

k)
� r�T(ri

k)

jjr�T(ri
k) jj2 , (35)

which converges quadratically to a point on the curve. The iteration
is repeated until

jc� �(ri
k)j � 	, (36)

where 	 is a preset tolerance. With this corrector, accurate polygonal
approximations can be generated for arbitrarily long isolux contours.
This would not be possible with the traditional Milne corrector, for
example, which would eventually drift away from the curve. With a
good predictor, very few correction steps are required, which saves
costly gradient evaluations.

Figure 10: A family of isolux contours for three unoccluded sources.

5.2.2 Examples of Isolux Contours

The predictor-corrector method described above was used to com-
pute isolux contours for simple test cases with both unoccluded and
partially occluded sources. The step size h and the tolerance for
the corrector were user-supplied parameters. Use of the Newton
corrector made the curve follower fairly robust; even abrupt turns
at or near derivative discontinuities in the irradiance function were
automatically compensated for.

To generate a family of curves depicting equal steps in irradiance,
similar to a topographic map, we must find starting points for each

curve with the desired irradiance values c1 > c2 > � � � > ck. The
Newton corrector can be used to find a point on the (k + 1)st curve
by finding a root of the equation �(r)� ck+1 beginning at any point
on the k th curve. The curve families in Figures 10 and 11 were
automatically generated in this way. Figure 10 shows a family of
isolux contours resulting from three unoccluded rectangular sources.
Three distinct families were generated, starting at each of the three
local maximuma, which were found by the ascent method described
in section 5.1. Figure 11 shows a family of isolux contours resulting
from a rectangular source and a simple blocker. These contours
surround both a peak and a valley.

Because distinct isolux contours cannot cross, any collection of
closed contours has an obvious partial ordering defined by contain-
ment. To display filled contours, as shown in Figures 12a and 12b,
the regions can be painted in back-to-front order after sorting ac-
cording to the partial order.

Figure 11: Isolux contourson a planarreceiver due to a rectangularsource
and simple blocker above the plane of the receiver.

5.3 Iso-Meshing

Because the isolux contours described in the previous section are
generated by direct computation rather than by post-processing an
image, they may be used in the image generation process. For
example, isolux contours can be used to drive a meshing algorithm
for global illumination.

The idea is similar to that of discontinuity meshing [8, 13], which
can identify important discontinuities in the radiance function over
diffuse surfaces. Isolux contours provide additional information
about radiance functions, and can be employed for mesh generation
either in a preprocessing step for modeling direct illumination, or
as part of a radiosity post-process to create a high-quality mesh for
rendering a final image [13].

To best exploit the information in the contours, the mesh el-
ements of an iso-mesh should follow the contours. To generate
a mesh with this property from isolux contours, we have applied
the constrained Delaunay triangulation algorithm used earlier by
Lischinski et al. [13] for discontinuity meshing. This approach
forces the edges of the mesh elements to align with the isolux con-
tours rather than crossing them. It also creates triangles with good
aspect ratios. Figure 13 shows the result of applying this algorithm
to the families of isolux contours shown in Figure 12. Meshes
of varying coarseness can be generated by selecting subsets of the
points along the contours.



Figure 12: Filled isolux contours corresponding to the previous figures.
Each region is shaded according to the constant irradiance of its contour.

6 Conclusions and Future Work

We have presented a closed-form expression for the irradiance Jaco-
bian due to polygonal sources of uniform brightness in the presence
of arbitrary polygonal blockers. The expression is closely related
to the well-known analytic formula for point-to-patch form factors,
and is evaluated in much the same way when blockers are present;
only a minor extension of standard polygon clipping is required.

Several applications that make use of gradients obtained from the
irradiance Jacobian have been demonstrated, including the compu-
tation of isolux contours and local irradiance extrema, both in the
presence of occluders.

Isolux contours provide a useful characterization of irradiance in
regions away from the derivative discontinuities that can be handled
with discontinuity meshing. We have demonstrated how a family
of isolux contours can form the basis of a mesh generated with con-
strained Delaunay triangulation. This is one means of interpolating
isolux contours, and also demonstrates a new approach to meshing
for global illumination.

The irradiance Jacobianmay also find other applications in global
illumination. In approaches that do not employ an explicit mesh,
gradients can be used to guide sampling in a spirit similar to previous
approaches [22, 5], but using analytically computed gradients. Al-
ternatively, irradiance gradients can be used to define higher-order
interpolants within the elements of an existing mesh.
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