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Abstract

The irradiance at a point on a surface due to a polyhedral source
of uniform brightness is given by a well-known analytic formula.
In this paper we derive the corresponding analytic expression for
the irradiance Jacobian, the derivative of the vector representation
of irradiance. Although the result is elementary for unoccluded
sources, within penumbraetheirradiance Jacobianmust incorporate
moreinformation about blockersthan either theirradiance or vector
irradiance. The expression presented here holds for any number of
polyhedral blockersand requiresonly aminor extension of standard
polygon clipping to evaluate. To illustrate its use, three related
applications are briefly described: direct computation of isolux
contours, finding local irradiance extrema, and iso-meshing. solux
contoursare curvesof constant irradiance acrossasurfacethat canbe
followed using a predictor-corrector method based on theirradiance
Jacobian. Similarly, local extrema can be found using a descent
method. Finally, iso-meshing is a new approach to surface mesh
generation that incorporates families of isolux contours.

CR Categoriesand Subject Descriptors: 1.3.3[Computer Graph-
ics]: Picture/lmage Generation, 1.3.5 [ Computational Geometry and
Object Modeling]: Geometric Algorithms.

Additional Key Words and Phrases: irradiance gradient, irradi-
ance Jacobian, isolux contours, light field, mesh generation, vector
irradiance.

1 Introduction

A perennial problem of computer graphicsisthe accurate represen-
tation of light leaving a surface. In its full generality, the problem
entails both local reflection phenomenaand the distribution of light
reaching the surface. Frequently the problem is simplified by as-
suming polyhedral environments or Lambertian (diffuse) emitters
and reflectors. With these simplifications the remaining challenges
are in simulating interreflections and acurately modeling shadows
and penumbrae from arealight sources.
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Many aspects of surface illumination have been studied in or-
der to accurately model features of the reflected light. In previous
work, Heckbert [8] and Lischinski et al. [12] identified derivative
discontinuities to produce efficient surface meshes. Nishita and
Nakamae [14, 15] located penumbraein polyhedral environments,
while Teller [19] computed antipenumbraefor sequencesof portals.
Ward and Heckbert [22] computed irradiance gradients from ran-
dom sampl esof the environment to accurately interpolateirradiance
functions. Drettakis and Fiume [5] also estimated gradients from
samples and used them to guide subsequent sampling.

The present work introduces a new tool based on the concept of
vector irradiance, a natural representation of irradiance defined at
all pointsin space. Thecentral contribution of the paper is aclosed-
form expression for thederivative of thevector irradiance, whichwe
call theirradianceJacobian. Thenew expression properly accounts
for occlusionand subsumestheirradiance gradient as aspecial case.

In Section 2 we derive the irradiance Jacobian for polygonal
sources of uniform brightness starting with an analytic expression
for the vector irradiance. The same expression has been used in
scalar form by Nishita and Nakamae [14] to accurately simulate
polyhedral sources, and by Baum et a. [2] for the computation
of form factors. Section 3 introduces a method for characterizing
changesin the apparent shapeof asourcedueto differential changes
in the receiving point, which is the key to handling occlusions. In
Section 4 basic properties of the irradiance Jacobian are discussed,
including existence and the connection with gradients.

To illustrate the potential uses of the irradiance Jacobian, Sec-
tion 5 describes several computations that employ irradiance gra-
dients. We describe a method for direct computation of isolux
contours, which are curves of constant irradiance on a surface.
Each contour is expressed as the solution of an ordinary differential
equation which is solved numerically using a predictor-corrector
method. The resulting contours can then be used as the basis of a
meshing algorithm. Finding local extremais arelated computation
that can be performed using a descent method. Finally, Section 6
describesother potential applications of the irradiance Jacobian.

1.1 Radiometric Preliminaries

All radiometric quantities may be definedin terms of radiance: ra-
diant power per unit projected area per unit solid angle[watts/m?st].
Any collection of light sourcesin an optical medium uniquely de-
finesa non-negative radiance function over all spatial positions and
directions. At themacroscopiclevel, thisfunction completely spec-
ifies the distribution of radiant energy in the medium. We shall
denote the radiance at the point r and in the direction w by L(r, w).

Central to the present work isavector field ® : IR® — IR® known
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Figure 1: (a) The vector irradiance at point r due to polygon P can be
written in closed-form. (b) The contribution dueto edgek is the product of
the angle © and the unit vector I'y.

asthelight field [7]. In terms of radiance, the light field is given by
d(r) = / L(r, w) wdo(w), (1)
s2

where 82 isthe unit spherein IR?, and ¢ is the canonical measure
on the sphere[3]. That is, ®(r) isthe integral over al unit vectors
through r weighted by the radiancein each direction. At each point
in space ®(r) is a vector quantity known as the light vector [7] or
the vector irradiance [17]; we adopt the latter terminology in this
paper.

From vector irradiance we can derive other radiometric quanti-
ties, suchasthe net flux [watts’/m?]. At any point r onahypothetical
surface M, the net flux ¢(r) isthe net flow of radiant energy across
M per unit area[9]. By definition,

o(r) = / L(r,w) cosd do(w), 2
s2

where 6 isthe angle of incidencerelative to the surface. It follows
that ¢ and ® arerelated by

o(r) = —(r) - n(r), ©)

wheren(r) isthesurfacenormal at the point r. Thevector irradiance
at r therefore defines a linear mapping that relates surface normals
to net flux.

At real surfaces, the net flux accounts for energy arriving from
the hemisphere above the surface, in which case ¢(r) is called
irradiance. Equivalently, the irradiance at a point r on a surface
followsfrom equation (3) if the vector irradianceis computed using
sourcesthat are visible and lie above the tangent plane throughrr.

Although vector irradiance isavery general radiometric quantity
defined in any optical medium, it is particularly useful in certain
restricted settings. For instance, at diffuse receiversthe reflectivity,
surface orientation, and vector irradiance completely determine the
reflected radiance at every point. Moreover, when the sources are
polyhedral, the vector irradiance can be expressed in closed form.

1.2 Polyhedral Sources

For sources of uniform brightness, ® can be expressed analytically
for a number of simple geometries including spheres and infinite
strips[7]. Polygonal sourcesare another important classwith known
closed-form expressions, and are the focus of this paper. Suppose
P is asimple planar polygon in IR® with vertices vi, Vo, ..., Vi. If

polygonal source

blocker B

blocker A

Figure 2: Theirradianceat pointr due to sourceP isthe samewith either
blocker, but the slopes of the irradiance curves are different.

P isadiffuse sourcewith constant emission M [watts’/m?], then the
light field dueto P is given by

()= 20 SO, @
i=1

where 04, ..., ©, are the angles subtended by the n edges as seen
from the point r, or equivalently, the arclengths of the edges pro-
jected onto the unit sphereabout r. ThevectorsI'y, ..., [, areunit
normals of the polygonal conewith cross section P and apex r. See
Figurel. For any 1 < k < nthefunctions© and I'x can bewritten

_ Vg — T Vil — I
O(r) = cos ! . , 5
<) <||vk—r|| ||vk+1—r||) ©
and
(Vk — 1) X (Ve — T)
I'k(r) = , 6
O = =0 % Mer = 0] ©
where || - || is the Euclidean norm and vns1 = vi.  Equation (4)

most commonly appearsin scalar form [2, 6, 14]. With M = 1, the
corresponding expression —®(r) - n(r) is the form factor between
a differential patch at r and the polygonal patch P. This scalar
expression wasfirst derived by Lambert in the 18™ century [18].

Becausethelight field is atrue vector field, the vector irradiance
due to multiple sources may be obtained by summing the contri-
butions from each source individually. Thus, polyhedral sources
can be handled by applying equation (4) to each face and sum-
ming the resulting vectors. Alternatively, when the faceshave equal
brightness, equation (4) can be applied to the outer contour of the
polyhedronasseenfrom the point r [14]. Partially occluded sources
are handled similarly by summing the contributions of al thevisible
portions. Determining the visible portions of the sourcesin poly-
hedral environmentsis analogousto clipping polygons for hidden
surface removal [23].

The closed-form expression for vector irradiancein equation (4)
provides an effective means of computing related expressions, such
asderivatives. In theremainder of the paper we derive closed-form
expressions for derivatives of the irradiance and vector irradiance
dueto polyhedral sourcesin the presenceof occluders, and describe
several applications.

2 The Irradiance Jacobian

The derivative DF of a differentiable function F : IR® — IR® is
represented by a3 x 3Jacobianmatrix. We shall denotethe Jacobian
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Figure 3: (a) The view fromr of the two types of “ intrinsic” vertices. (b)
The vertex vector for the unoccluded sourcevertex v. (¢) The vertex vector
for the blocker vertex v, intheinterior of source P.

matrix of F atr by J,(F). Thatis,
J:(F) = DF(r) = [%X(Jr)] . @)

In this section we derive the Jacobian matrix of the vector irradiance
®, or more briefly, the irradiance Jacobian. The obvious approach
isto differentiate equation (4) with respect to the point r; astraight-
forward exercise easily performed by a symbolic manipulator. The
result holds for unoccluded polygonal sources.

To see why the irradiance Jacobian is more difficult to compute
when blockers are present, consider the arrangement in Figure 2.
First, observethat the irradiance at the point r can be computed by
applying equation (4) to thevisible portion of thesource, whichisthe
samein the presenceof either blocker A or blocker B. Although the
resulting expression can be differentiated, this doesnot result in the
irradiance Jacobian. Because the two blockers produce irradiance
functions with different slopes at r, the irradiance Jacobians must
also differ to account for blocker position.

To derive an expression that applies within penumbrae, we ex-
press ®(r) in terms of vertex vectors, which correspond to vertices
of the spherical projection of the polygon, as depicted in Figure 1.
Vertex vectors may point toward vertices of two distinct types: in-
trinsic and apparent. An intrinsic vertex exists on either the source
or the blocker, as shown in Figure 3. An apparent vertex results
when the edge of a blocker, as seen from r, crosses the edge of the
source or another blocker, as shown in Figure 4. We shall express
J:(®) in terms of derivatives of the vertex vectors, viewing them
as mappings from pointsin IR® to unit vectors. The derivative of a
vertex vector isa 3 x 3 matrix, which we call the vertex Jacobian.
Vertex Jacobianshide the geometric detail s of each vertex, yielding
arelatively simple closed-form expressionfor J,(®).

Letvi,Vs,. .., Vi, bethevertices of P’, the source P after clipping
away portionsthat are occluded with respect to the point r. Without
loss of generality, we may assume that P’ is a single polygon; if
it is not, we simply iterate over the pieces. The vertex vectors
ua(r), u(r), . .., Um(r) are defined by

Vi — T

u(r) = ——. 8
O= vl @

We aso definews(r), . .., Win(r) to bethe cross products
Wi(r) = Uk(r) x Ukea (). ©)

Henceforth, we assumethat ux and w are functions of position and
omit the explicit dependenceon r. Expressing @ and 'y in terms
of wk, we have

Ok =sin™ || wi||, (10)

and

Wi
Fk = . (11)
I wic |

Figure 4. (a) Theview fromr of the two types of “ apparent” vertices. (b)
The vertex vector for vy resulting from a blocker edge and a source edge.
(c) The vertex vector for v, resulting fromtwo blocker edges.

The form of equation (10) simplifies the following development,
although it is equivalent to equation (5) only for acute angles; that
is, only when uk - U1 > 0. Thisrestriction will be removed below.

To compute J(®) in terms of the vertex Jacobians
J(uy), ..., J(un) we first consider the k" term of the summation
in equation (4). Differentiating, we have

J(OIY) =T« VO, + 0 I(Ty), (12
wherel'y VO isthe outer product of the vector I'k and the gradient
VO We now compute VO, and J(I'k). For brevity, we denote

the vertex vectors ux and uk:1 by a and b respectively, and the cross
product a x b by w. Thenthe gradient of ©y with respecttor is

VO

vsnTt|w|
1 w'

— | —— ) J(W,
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— | == 1
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Similarly, differentiating I'x with respect to r we have

D(l)
[|wl|
Jw)  oww
Hwil ) w]?

<| ""‘"’T) Jw) (14)
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J(TW)

J(w)

From Equations (10)-(14), we obtain an expression for J(©«I'k) in
terms of J(w) and the vertex vectors a and b:

IO = [ﬁ (%) +sn | w| <| - x“’w)] %

If the factor of sin™* || w|| is now replaced by the angle between a
and b, the expression will hold for all angles, removing the caveat
noted earlier. The above expression may be written compactly as

J(© ) = E(a b) I(a x b), (15)

wherethe function E is the edge matrix defined by

—1 T T
yosab <| - M) .| s

w'w [|w]| w

E(a,b) = (i) !

ab

In equation (16) we have retained w as an abbreviation for a x b.
Becausethe edge matrix containsno derivatives, it can be computed



directly from the vertex vectorsa and b. To simplify the Jacobian
of a x b, we define another matrix-valued function Q by

0 Pz —py
QP =| -pz 0 px (17)
Py —Px 0

Thenfor any pair of vectorspand g, wehavep x q = Q(p)g. Writing
the cross product as a matrix multiplication leads to a convenient
expression for the Jacobian matrix of F x G, where F and G are
vector fieldsin IR, Thus,

J(F x G) = Q(F)I(G) — Q(G)I(F). (18)

Applying the above identity to equation (15), summing over al
edges of the clipped source polygon P’, and scaling by M/2x, we
arrive at an expression for the irradiance Jacobian dueto the visible
portion of polygonal sourceP:

I(@) = 203 B, ter) [QM)I () —~ Qu)IW)] . (19)
i=1

This expression can be simplified somewhat further by collecting
the factors of each J(u;) into a single matrix. We therefore define
the corner matrix C to be the matrix-valued function

C(a,b,c) = E(a, b)Q(a) — E(b, c)Q(c). (20

Then the final expression for the irradiance Jacobian can be writ-
ten as a sum over all the vertex Jacobians transformed by corner
matrices:

3@) =203 Clu, ) I(w), (2)
i=1

where we have made the natural identifications up = um and
Um1 = Uz. Note that each corner matrix C depends only on the
vertex vectors, and not their derivatives; al information concerning
apparent motion due to changing the position r is embodied in the
vertex JacobiansJ(uy), . . ., J(un), whichwenow examinein detail.

3 Vertex Jacobians

To apply equation (21) we require the vertex Jacobians, which we
now construct for both unoccludedand partialy occluded polygonal
sources. First, observe that each vertex vector u(r) is a smooth
function of r amost everywhere; that is, u(r) is differentiable at all
r € IR® except wheretwo or more edgesof distinct polygonsappear
to coincide, asdescribedin section 4. Differentiability followsfrom
the smoothnessof the Euclidean norm and the fact that the apparent
point of intersection of two skew linesvariesquadratically inr along
each of thelines[16]. Fromthisit isevident that the vertex Jacobian
existswhenever therea or apparent intersection of two edgesexists
andis unique.

When the vertex Jacobian exists, it can be constructed by deter-
mining its action on each of three linearly independent vectors; that
is, by determining the instantaneous changein the vertex vector u
asaresult of moving r. Differential changesin u are orthogonal to
u and collectively define adisk, or in the case of partial occlusion,
an ellipse. SeeFigure 5. The directions that are easiest to analyze
are the axes of the ellipse, which are the eigenvectors of the vertex
Jacobian. Wefirst treat intrinsic vertices and then generalizeto the
more difficult case of apparent vertices.

changein
vertex vector

changein
position

Figure 5: A differential changein the position r resultsin a changein the
unit vertex vector u. The locus of vectorsdu forms a disk, or more gnerally,
an ellipse in the plane orthogonal to u.

3.1 Intrinsic Vertices

Suppose that u is the vertex vector associated with an unoccluded
source vertex, as shown in Figure 3b. In this case the vertex Jaco-
bian J(u) is easy to computesinceit dependssolely on the distance
between r and the vertex, which we denote by «. Moving r in the
direction of the vertex leaves u unchanged, while motion perpen-
dicular to u causes an opposing changein u. The changesin u are
inversely proportional to the distance . This behavior completely
determinesthe vertex Jacobian. Thus, we have

J) = _1 (I—w'), (22)

Q

where the matrix | — uu" is a projection onto the tangent plane of
S? at the point u, which houses all differential motions of the unit
vector u. The samereasoning appliesto vertex vectors defined by a
blocker vertex, asin Figure 3c. In this case « is the distance along
u to the blocker vertex.

3.2 Apparent Vertices

Within penumbrae, apparent vertices may beformed by the apparent
crossing of non-coplanar edges. Thetwo distinct casesare depicted
inFigure4. Let ubethe vertex vector associated with such avertex,
wherethe determining edges are segments of skew lines £1 and £5.
Let sandt bevectorsparallel to £1 and £, respectively, asdepicted
inFigure6. Asinthe caseof intrinsic vertices, moving r toward the
apparent vertex leaves u unchanged, so J(u)u = 0. To account for
other motions, we definethe vectors's and t by

(I —uws
= (I —uwt,

-
|

which are projections of s and t onto the plane orthogonal to u.
Now consider the changein u asr moves parallel to S, asshownin
Figure 6a. In this case the apparent vertex moves adong £1 while
remaining fixed on £,. Therefore, the changein uis parallel to s
but opposite in direction to the changeinr. If a: isthe distanceto
L5 aong u, we have

~

IS = —ai. 23)

Evidently, S is an eigenvector of J(u) with associated eigenvalue
—Lat. A similar argument holdswhen r movesaong t, asshown
in Figure 6b. Here the apparent vertex moves along £, while
remaining fixed at £;. If as isthe distanceto £1 along u, we have

~

IWT = —ai, (24)

S



Figure 6: The vertex Jacobian J(u) with respect to two skew lines £ and
L is found by determining how the vertex vector u changesas r moves
parallel to (a) the vector s, and (b) the vector t.

which providesthe third eigenvector and corresponding eigenvalue.
Collecting these relationshipsinto amatrix equation, we have

uw[%?Lq=[—§ —i-q. (25)

(¢33 s

It followsimmediately that whenever thelines £1 and £, aredistinct
and non-colinear as viewed from the point r, then

—1/O{t

Ju) = A —1as A7t (26)

0

whereA =[S T u]. Notethat equation (26) reduces to equar
tion (22) when as = ay. Equation (26) therefore suffices for all
vertex vectors, but the special casefor intrinsic vertices can be used
for efficiency.

3.3 Polygon Depth-Clipping

To computetheirradiance or vector irradianceat apointr, it suffices
to clip al sources against all blockers, as seen from r, and apply
equation (4) to the resulting vertex lists. This operation is aso
sufficient to compute the corner matrices and the vertex Jacobians
at unoccluded source vertices. However, the vertex Jacobians for
the cases illustrated in Figures 3c, 4b, and 4c all require informa-
tion about the blockers that is missing from traditionally-clipped
polygons. Specifically, the distancesto blocker edgesdefining each
vertex are needed to form the matrices in Equations (22) and (26).

Thus, additional depth information must be retained along with
the clipped polygons for use in computing vertex Jacobians. We
propose a simple mechanism, called depth clipping, by which the
required information appears as additional vertices. Theideaisto
construct the clipped polygon using segmentsof source and blocker
edges and joining them by segments called invisible edges, which
cannot be seen from the point r. See Figure 7. The resulting
non-planar contour is identical to that of the traditionally-clipped
polygonwhenviewed fromr. Eachinvisible edgeproducesavertex
Jacobian of the form in equation (26); its end points encode the
distancesfrom r whilethe adjacent edgesprovidethetwo directions.
Each vertex not adjacent to an invisible edge produces a vertex
Jacobian of the form in equation (22).

The depth-clipped polygon and the emission M compl etely spec-
ify the irradiance Jacobian. Most polygon clipping algorithms can
be extended to generate this representati on using the plane equation
of each blocker. The depth-clipped polygon also clearly illustrates
the information required for irradiance Jacobians.

r f f <<<<< e

©

Figure7: (a) SourceP is partially occluded by two blockers as seen from
r. (b) Thevector irradianceat r dueto P can be computed using the simply-
clipped polygon. (c) TheirradianceJacobianat r requiresthe depth-clipped
polygon.

4 Properties of the Irradiance Jacobian

In this section we list some of the basic properties of the irradiance
Jacobian, beginning with existence. By definition, the Jacobian
J:(®) exists wherever @ is differentiable, which requires the ex-
istence of each directional derivative at r. Because we consider
only area sources, the variation of ® is continuous along any line
except when ablocker isin contact with the receiving surface. In-
stantaneous occlusion causes discontinuous changes in the vector

irradiance. Intheabsenceof contact occlusions, thevariationof ®is
not only continuousbut differentiable everywhereexcept alonglines
where edges appear to coincide; that is, points at which a source or
blocker edge appears to align with another blocker edge [12]. For
instance, when both blockersare present simultaneously in Figure 2,

theirradiance curve coincideswith curve B to the left of r, and with
curve A to theright. Therefore, the irradiance at r has a disconti-
nuity in the first derivative. Only contact occlusion and edge-edge
alignments causethe Jacobian to be undefined; other types of events
cause higher-order discontinuities in the vector irradiance, but are

first-order smooth.
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Figure 8: (a) The vertex Jacobian doesnot exist at the intersection of three
edges. A small change can produce (b) a single apparent vertex, or (c) two
apparent vertices.

From eguation (21) it would appear that the irradiance Jacobian
does not exist if any one of the vertex Jacobiansfails to exist; this
isnot always so. A vertex Jacobian may be undefined becausethe
vertex lies at the intersection of three edges, as shownin Figure 8a.
In cases such asthis, aminute changein r canlead to several possi-
ble configurationswith different vertex Jacobians. See Figures 8b
and 8c. However, the unoccluded area of the source still changes
smoothly despite such adifficulty at asingle vertex. To ensure that
equation (21) isvalid wherever ® isdifferentiable, wesimply restrict
the edges that are used in computing the vertex Jacobiansto those
that actually bound the clipped source. Thus, in Figure 8, blocker
B; isignored until it makesits presence known by the addition of a
new edge, asin Figure 8c.

One of themost useful propertiesof the Jacobian matrix isitscon-
nectionwith directional derivatives. For any ¢ € S2, thedirectional
derivative of ® at r inthedirection ¢ is

D®(r) = 3, (@) ¢. (27)



Although directiona derivatives of ® may be approximated to sec-
ond order with central differences, using the irradiance Jacobian
has several advantages. First, al directional derivatives of ®(r)
are easily obtained from the irradiance Jacobian at r, which re-
quires asingle global clipping operation; that is, sources need only
be clipped against blockers once. In contrast, difference approx-
imations require at least two clipping operations per directional
derivative. More importantly, directions of maximal change follow
immediately from the Jacobian but require multiple finite differ-
encesto approximate.

A fina property, which we build upon in the next section, is the
connection with the rate of change of surfaceirradiance. Differen-
tiating equation (3) with respect to position, we have

V¢ =& J(n) +n" I(), (28)

which associates the irradiance gradient with the irradiance Jaco-
bian. Note that J(n) is related to the curvature of the surface at
each pointr € M. For planar surfacesJ(n) = 0, so equation (28)
reducesto

V¢ =n"J(®), (29)

whichistheform we shall useto computeisolux contourson polyg-
onal receivers. When eval uating equation (29) several optimizations
arepossibleby distributing the vector multiplication acrosstheterms
of equation (21), which changes the summation of matrices into a
summation of row vectors.

5 Applications of the Irradiance Jacobian

In the first portion of the paper, we have seen how to compute the
irradiance Jacobian and the irradiance gradient. The steps can be
summarized asfollows:

Matrix IrradianceJacobian( Point r )

Matrix J <+ O

for each source P with emission M
begin
PeP depth-clipped against all blockers, asseenfrom r
for eachi: J; « vertex Jacobianfor thei ™ vertex of P
for eachi: E;j <+ edge matrix for thei™ edge of P
for eachi: Ci «— corner matrix using Ei_1 and E;
J«J+ 2 (sumof dl Ci Jy)
end

returnJ

Here theinner loops all refer to the vertices as seen from r; pairs of
vertices associated with invisible edges are counted as one. Gradi-
entscanthen be computed using equation (28) or equation (29). The
procedure above is a general-purpose tool with many applications,
several of which are described in the remainder of this section.

5.1 Finding Local Extrema

The first application we examine is that of locating irradiance ex-
trema on surfaces, which can be used in computing bounds on the
transfer of energy between surfaces[11]. Given the availability of
gradients, the most straightforward approach to locating a point of
maximal irradiance is with an ascent method of the form

M =1+ (1 = nn") Vo'(r), (30)
where r° is a given starting point, and the factor ~; is determined

by aline search that insures progressis made toward the extremum.
For example, the line search may simply halve ~; until an increase
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Figure 9: (a) Projecting the gradient onto a surface definesa 2D vector
field everywhere orthogonal to the level curves. (b) Rotating the projected
gradientsby — /2 createsavector field whoseflowlinesareisolux contours.
Local maxima are then encircled by clockwise loops.

in irradiance is achieved. The extremum has been found when
no further progress can be made. Minima are found similarly.
The principle drawbacks of this method are that it finds only local
extrema, and convergence can be very slow when the irradiance
function is flat. In the absence of a global method for locating
all extrema, seed points near each of the relevant extrema must be
supplied.

5.2 Direct Computation of Isolux Contours

Curves of constant irradiance over surfaces are known as isolux
contours[20]. Applicationsof isolux contoursin computer graphics
includevisualizing irradiancedistributions [21, 15] and simplifying
shading [4] and sampling [5]. In computer vision isolux contours
have been used to perform automatic image segmentation [10]. In
this section we show how isolux contours can be computed directly.

Every isolux contour on a surface M can be represented by a
functionr : [0, c0) — M that satisfies

o(r(s) = ¢(r(0) (3D

for al s > 0. To compute such a curve we construct a first-order
ordinary differential equation (ODE) to which it is a solution, and
solvethe ODE numerically.

The direction of most rapid increasein ¢(r) at apointr € M
is given by the gradient V¢(r), which generally doesnot lie in the
tangent plane of the surface. The projection of the gradient onto
the surfaceis atangent vector that is orthogonal to theisolux curve
passingthroughitsorigin. SeeFigure9a. If the projected gradientis
rotated by 90 degrees, we obtain a direction in which the irradiance
remains constant to first order. See Figure 9b. Thus, we definethe
isolux differential equation by

F=P(r)Ve'(r), (32)
with theinitial condition r(0) = ro, where

P(r) = R(n(r)) [I — n(r)n"(r)] , (33)

andR(2) isarotation by —=/2 about the vector z. Thematrix P(r) is
constant for planar surfaces. The solution of this ODE is an isolux
contour with irradiance ¢ = ¢(ro).

5.2.1 Solving the Isolux Differential Equation

Any techniquefor solving first-order ordinary differential equations
can be applied to solving the isolux differential equation. The
overriding consideration in selecting an appropriate method is the
number of irradiance values and gradients used in taking a step



along the curve. Obtaining this information involves a global clip-
ping operation, which is generally the most expensive part of the
algorithm.

Multistep methods are particularly appropriate for solving the
isolux ODE sincethey makeefficient use of the recent history of the
curve. For example, Milne's predictor-corrector method is a multi-
step method that predicts the point ri.1 = r(sw1) by extrapolating
from the three most recent gradients and function values using a
parabola. When the matrix P isfixed, Milne's predictor is given by

4h
I’Eﬂ =rg—3+ EP(ng_Z — Ok—1 *+20K) , (34)

where gk denotes the gradient at the point ry, and h is the step
size[1]. Given the predicted value, a corrector is then invoked to
find the nearest point on the curve. Becausethe contour is the zero
set of the function ¢(r) — c, the correction can be performed very
efficiently using Newton’s method. Beginning with the predicted
point rd, aNewton corrector generatesthe sequencer ¢, rZ, ... by

Vo'(ry)
|| VoT(ri) 1>

which convergesquadratically to apoint onthe curve. Theiteration
is repeated until

et =i+ [c— o) (35)

lc—o(ri)| <e, (36)

wherec isapreset tolerance. With thiscorrector, accurate polygonal
approximations can begenerated for arbitrarily longisolux contours.
Thiswould not be possible with the traditional Milne corrector, for
example, which would eventually drift away from the curve. With a
good predictor, very few correction steps are required, which saves
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o

Figure 10: A family of isolux contoursfor three unoccluded sources.

5.2.2 Examples of Isolux Contours

The predictor-corrector method described above was used to com-
puteisolux contoursfor simpletest caseswith both unoccludedand
partially occluded sources. The step size h and the tolerance for
the corrector were user-supplied parameters. Use of the Newton
corrector made the curve follower fairly robust; even abrupt turns
at or near derivative discontinuitiesin the irradiance function were
automatically compensated for.

Togenerateafamily of curvesdepicting equal stepsinirradiance,
similar to atopographic map, we must find starting points for each

curve with the desired irradiance valuescy > ¢; > -+ > ¢ The
Newton corrector can be used to find a point on the (k + 1)* curve
by finding aroot of the equation ¢(r) — ck+1 beginning at any point
on the k™ curve. The curve families in Figures 10 and 11 were
automatically generated in this way. Figure 10 shows a family of
isolux contoursresulting from three unoccluded rectangul ar sources.
Three distinct families were generated, starting at each of the three
local maximuma, which werefound by the ascent method described
insection5.1. Figure 11 showsafamily of isolux contoursresulting
from a rectangular source and a simple blocker. These contours
surround both a peak and avalley.

Because distinct isolux contours cannot cross, any collection of
closed contours has an obvious partial ordering defined by contain-
ment. To display filled contours, as shown in Figures 12a and 12b,
the regions can be painted in back-to-front order after sorting ac-
cording to the partial order.
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Figure11: Isoluxcontoursona planar receiver dueto arectangular source
and simple blocker abovethe plane of the receiver.

5.3 Iso-Meshing

Because the isolux contours described in the previous section are
generated by direct computation rather than by post-processing an
image, they may be used in the image generation process. For
example, isolux contours can be used to drive a meshing algorithm
for global illumination.

Theideaissimilar tothat of discontinuity meshing[8, 13], which
can identify important discontinuitiesin the radiance function over
diffuse surfaces. Isolux contours provide additional information
about radiance functions, and can be employed for mesh generation
either in a preprocessing step for modeling direct illumination, or
as part of aradiosity post-processto create a high-quality mesh for
rendering afinal image [13].

To best exploit the information in the contours, the mesh el-
ements of an iso-mesh should follow the contours. To generate
a mesh with this property from isolux contours, we have applied
the constrained Delaunay triangulation algorithm used earlier by
Lischinski et a. [13] for discontinuity meshing. This approach
forces the edges of the mesh elementsto align with the isolux con-
tours rather than crossing them. It also creates triangles with good
aspect ratios. Figure 13 showsthe result of applying this algorithm
to the families of isolux contours shown in Figure 12. Meshes
of varying coarseness can be generated by selecting subsets of the
points along the contours.



Figure 12: Filled isolux contours corresponding to the previous figures.
Each regionis shaded accordingto the constant irradianceof its contour.

6 Conclusions and Future Work

We have presented a closed-form expression for theirradiance Jaco-
bian dueto polygonal sourcesof uniform brightnessin the presence
of arbitrary polygonal blockers. The expression is closely related
to the well-known analytic formulafor point-to-patch form factors,
and is evaluated in much the same way when blockers are present;

only aminor extension of standard polygon clipping is required.

Several applicationsthat make useof gradients obtained from the
irradiance Jacobian have been demonstrated, including the compu-
tation of isolux contours and local irradiance extrema, both in the
presence of occluders.

Isolux contours provide auseful characterization of irradiancein
regions away from the derivative discontinuitiesthat can be handled
with discontinuity meshing. We have demonstrated how a family
of isolux contours can form the basis of amesh generated with con-
strained Delaunay triangulation. Thisis one meansof interpolating
isolux contours, and also demonstrates a new approach to meshing
for global illumination.

Theirradiance Jacobianmay al sofind other applicationsin global
illumination. In approachesthat do not employ an explicit mesh,
gradientscan beusedto guidesamplinginaspirit similar to previous
approaches[22, 5], but using analytically computed gradients. Al-
ternatively, irradiance gradients can be used to define higher-order
interpolants within the elements of an existing mesh.
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