
Stratified Sampling of Spherical Triangles

James Arvo

Program of Computer Graphics�

Cornell University
Abstract

We present an algorithm for generating uniformly dis-
tributed random samples from arbitrary spherical triangles.
The algorithm is based on a transformation of the unit
square and easily accommodates stratified sampling, an ef-
fective means of reducing variance. With the new algorithm
it is straightforward to perform stratified sampling of the
solid angle subtended by an arbitrary polygon; this is a fun-
damental operation in image synthesis which has not been
addressed in the Monte Carlo literature. We derive the re-
quired transformation using elementary spherical trigonom-
etry and provide the complete sampling algorithm.

CR Categories and Subject Descriptors: I.3.5 [Com-
putational Geometry and Object Modeling]: Geometric Al-
gorithms.

Additional Key Words and Phrases: Monte Carlo, solid
angle, spherical triangle, stratified sampling.

1 Introduction

Monte Carlo integration is used throughout computer graph-
ics; examples include estimating form factors, visibility,
and irradiance from complex or partially occluded lumi-
naires [3, 5]. While many specialized sampling algorithms
exist for various geometries, relatively few methods exist for
sampling solid angles; that is, for regions on the unit sphere.
The most common example that arises in computer graphics
is the solid angle subtended by a polygon. We attack this
problem by solving the sub-problem of sampling a spherical
triangle.

The new sampling algorithm can be formulated using el-
ementary spherical trigonometry. Let T be the spherical
triangle with area A and vertices A, B and C. Let a, b, and
c denote the edge lengths of T, and let �, �, and denote
the three internal angles, which are the dihedral angles be-
tween the planes containing the edges. See Figure 1a. To
generate uniformly distributed samples over T we seek a bi-
jection f : [0; 1]2 ! T with the following property: given any
two subsets S1 and S2 of the unit square with equal areas,
f(S1) and f(S2) will also have equal areas. The function
f can be derived using standard Monte Carlo methods for
sampling bivariate functions; for example, see Spanier and

�580 Engineering and Theory Center Building, Ithaca, New
York 14853, http://www.graphics.cornell.edu
Gelbard [6] or Rubinstein [4]. To apply these methods to
sampling spherical triangles we require the following three
identities:

A = �+ � + � � (1)

cos� = � cos cos� + sin sin � cos b (2)

cos = � cos � cos� + sin � sin� cos c (3)

The first is known as Girard’s formula and the other two are
spherical cosine laws for angles [1].

2 The Sampling Algorithm

The algorithm proceeds in two stages. In the first stage

we randomly select a sub-triangle bT � T whose area bA is
uniformly distributed between 0 and the original area A. In
the second stage we randomly select a point along an edge
of the new triangle. Both stages require the inversion of a
probability distribution function.

B

A α

C

a

c

(a)

a

b
γ

C

(b)

β

β

γ
P

θ

B

C

0 C

z

A

P

C | B[]

Figure 1: (a) The vertex bC is determined by specifying the area

of the sub-triangle. (b) The point P is then chosen to lie along the

arc between bC and B.

Sub-triangle bT is formed by choosing a new vertex bC on
the edge between A and C, as shown in Figure 1a. The
sample point P is then chosen in the arc between B and
bC. The point P is determined by its distance � from B and

by the length of the new edge bb; these values are computed
using the conditional distribution functions

F1(bb) �
bA

A
and F2(� jbb) �

1� cos �

1� cosba
;

where both bA and ba are taken to be functions ofbb. Given two
random variables �1 and �2 uniformly distributed in [0; 1], we

first find bb such that F1(bb) = �1, and then find � such that

F2(� jbb) = �2. Then bb will be distributed with a density
proportional to the differential area of each edgeba, and � will
be distributed along the edge with a density proportional to

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

the differential area of the triangle with a vertex at B and
base through P, which is (1 � cos �)d�. To find the edge

lengthbb that attains the area bA = A �1, we use equations (1)
and (2) to obtain

cosbb =
cos(�� b�) cos� � cos b�

sin(�� b�) sin �
; (4)

where � � bA��. Then from equations (1) and (3) we have

u cos b� + v sin b� = 0, where

u � cos(�) � cos�;

v � sin(�) + sin� cos c:

It follows that

sin b� =
�up

u2 + v2
and cos b� =

�vp
u2 + v2

:

The sign is determined by the constraint 0 < b� < �, but is
immaterial in what follows. Simplifying equation (4) using
the above expressions, we obtain

cosbb =
[v cos �� u sin �] cos� � v

[v sin �+ u cos �] sin�
: (5)

Note that cosbb determines bb, since 0 < bb < �, and that bb in

turn determines the vertex bC. Finally, we may easily solve

for z � cos � using F2(� jbb) = �2 and cosba = bC �B.
To succinctly express the sampling algorithm let [x jy]

denote the normalized component of the vector x that is
orthogonal to the vector y. That is,

[x jy] � Normalize (x� (x � y)y) : (6)

The algorithm for mapping the unit square onto the triangle
T takes two variables �1 and �2, each in the unit interval,
and returns a point P 2 T � IR3.

point SampleTriangle(real �1, real �2)

Use one random variable to select the new area.
bA �1 � A;

Save the sine and cosine of the angle �.

s sin(bA� �);

t cos(bA� �);

Compute the pair (u; v) that determines b�.
u t� cos�;
v s+ sin� � cos c;

Let q be the cosine of the new edge length bb.

q [v � t � u � s] � cos� � v

[v � s + u � t] � sin �
;

Compute the third vertex of the sub-triangle.
bC q �A +

p
1� q2 � [C jA];

Use the other random variable to select cos �.

z 1 � �2 � (1� bC �B);

Construct the corresponding point on the sphere.

P z �B +
p
1� z2 � [bC jB];

return P;
end

If �1 and �2 are independent random variables uniformly
distributed in [0; 1], as produced by most pseudo-random
number generators, then P will be uniformly distributed in
triangle T. Note that cos�, sin �, cos c, and [C jA] need
only be computed once per triangle, not once per sample.
3 Results

Results of the algorithm are shown in Figure 2. On the
left, the samples are identically distributed, which produces
a pattern equivalent to that obtained by rejection sampling;
however, each sample is guaranteed to fall within the trian-
gle. The pattern on the right was generated by partitioning
the unit square into a regular grid and choosing one pair
(�1; �2) uniformly from each grid cell, which corresponds to
stratified or jittered sampling [2]. The advantage of stratified
sampling is evident in the resulting pattern; the samples are
more evenly distributed, which generally reduces the vari-
ance of Monte Carlo estimates based on these samples.

Figure 2: Uniform and stratified sampling. The samples on the

right were generated from stratified points in the unit square.

The sampling algorithm can be applied to spherical poly-
gons by decomposing them into triangles and performing
stratified sampling on each component independently, which
is analogous to the method for planar polygons [7]. This
provides an effective means of sampling the solid angle sub-
tended by a polygon.

Acknowledgments

Many thanks to Pete Shirley for his valuable suggestions
and for urging the author to write this paper. This work
was supported by the NSF/ARPA Science and Technology
Center for Computer Graphics and Scientific Visualization
(ASC-8920219) and performed on workstations generously
provided by the Hewlett-Packard Corporation.

References

[1] Berger, M. Geometry, Volume II. Springer-Verlag, New York,

1987. Translated by M. Cole and S. Levy.

[2] Cook, R. L. Stochastic sampling in computer graphics. ACM

Transactions on Graphics 5, 1 (1986), 51–72.

[3] Hanrahan, P., Salzman, D., and Aupperle, L. A rapid hierar-

chical radiosity algorithm. Computer Graphics 25, 4 (July 1991),

197–206.

[4] Rubinstein, R. Y. Simulation and the Monte Carlo Method.

John Wiley & Sons, New York, 1981.

[5] Shirley, P., Wang, C., and Zimmerman, K. Monte carlo methods

for direct lighting calculations. ACM Transactions on Graphics

(1995). To appear.

[6] Spanier, J., and Gelbard, E. M. Monte Carlo Principles and

Neutron Transport Problems. Addison-Wesley, Reading, Mas-

sachusetts, 1969.

[7] Turk, G. Generating random points in triangles. In Graph-

ics Gems, A. S. Glassner, Ed. Academic Press, New York, 1990,

pp. 24–28.

