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Abstract

We present an algorithm for generating uniformly dis-
tributed random samples from arbitrary spherical triangles.
The algorithm is based on a transformation of the unit
square and easily accommodates stratified sampling, an ef-
fective means of reducing variance. With the new algorithm
it is straightforward to perform stratified sampling of the
solid angle subtended by an arbitrary polygon; this is a fun-
damental operation in image synthesis which has not been
addressed in the Monte Carlo literature. We derive the re-
quired transformation using elementary spherical trigonom-
etry and provide the complete sampling algorithm.

CR Categories and Subject Descriptors: I.3.5 [Com-
putational Geometry and Object Modeling]: Geometric Al-
gorithms.

Additional Key Words and Phrases: Monte Carlo, solid
angle, spherical triangle, stratified sampling.

1 Introduction

Monte Carlo integration is used throughout computer graph-
ics; examples include estimating form factors, visibility,
and irradiance from complex or partially occluded lumi-
naires [3, 5]. While many specialized sampling algorithms
exist for various geometries, relatively few methods exist for
sampling solid angles; that is, for regions on the unit sphere.
The most common example that arises in computer graphics
is the solid angle subtended by a polygon. We attack this
problem by solving the sub-problem of sampling a spherical
triangle.

The new sampling algorithm can be formulated using el-
ementary spherical trigonometry. Let T be the spherical
triangle with area A and vertices A, B and C. Let a, b, and
c denote the edge lengths of T, and let �, �, and  denote
the three internal angles, which are the dihedral angles be-
tween the planes containing the edges. See Figure 1a. To
generate uniformly distributed samples over T we seek a bi-
jection f : [0; 1]2 ! T with the following property: given any
two subsets S1 and S2 of the unit square with equal areas,
f(S1) and f(S2) will also have equal areas. The function
f can be derived using standard Monte Carlo methods for
sampling bivariate functions; for example, see Spanier and
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Gelbard [6] or Rubinstein [4]. To apply these methods to
sampling spherical triangles we require the following three
identities:

A = �+ � +  � � (1)

cos� = � cos cos� + sin  sin � cos b (2)

cos = � cos � cos� + sin � sin� cos c (3)

The first is known as Girard’s formula and the other two are
spherical cosine laws for angles [1].

2 The Sampling Algorithm

The algorithm proceeds in two stages. In the first stage

we randomly select a sub-triangle bT � T whose area bA is
uniformly distributed between 0 and the original area A. In
the second stage we randomly select a point along an edge
of the new triangle. Both stages require the inversion of a
probability distribution function.
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Figure 1: (a) The vertex bC is determined by specifying the area

of the sub-triangle. (b) The point P is then chosen to lie along the

arc between bC and B.

Sub-triangle bT is formed by choosing a new vertex bC on
the edge between A and C, as shown in Figure 1a. The
sample point P is then chosen in the arc between B and
bC. The point P is determined by its distance � from B and

by the length of the new edge bb; these values are computed
using the conditional distribution functions

F1(bb ) �
bA

A
and F2( � jbb ) �

1� cos �

1� cosba
;

where both bA and ba are taken to be functions ofbb. Given two
random variables �1 and �2 uniformly distributed in [0; 1], we

first find bb such that F1(bb ) = �1, and then find � such that

F2( � jbb ) = �2. Then bb will be distributed with a density
proportional to the differential area of each edgeba, and � will
be distributed along the edge with a density proportional to
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the differential area of the triangle with a vertex at B and
base through P, which is (1 � cos �)d�. To find the edge

lengthbb that attains the area bA = A �1, we use equations (1)
and (2) to obtain

cosbb =
cos(�� b�) cos� � cos b�

sin(�� b�) sin �
; (4)

where � � bA��. Then from equations (1) and (3) we have

u cos b� + v sin b� = 0, where

u � cos(�) � cos�;

v � sin(�) + sin� cos c:

It follows that

sin b� =
�up

u2 + v2
and cos b� =

�vp
u2 + v2

:

The sign is determined by the constraint 0 < b� < �, but is
immaterial in what follows. Simplifying equation (4) using
the above expressions, we obtain

cosbb =
[ v cos �� u sin � ] cos� � v

[ v sin �+ u cos � ] sin�
: (5)

Note that cosbb determines bb, since 0 < bb < �, and that bb in

turn determines the vertex bC. Finally, we may easily solve

for z � cos � using F2( � jbb ) = �2 and cosba = bC �B.
To succinctly express the sampling algorithm let [x jy ]

denote the normalized component of the vector x that is
orthogonal to the vector y. That is,

[x jy ] � Normalize (x� (x � y)y) : (6)

The algorithm for mapping the unit square onto the triangle
T takes two variables �1 and �2, each in the unit interval,
and returns a point P 2 T � IR3.

point SampleTriangle( real �1, real �2 )

Use one random variable to select the new area.
bA �1 � A;

Save the sine and cosine of the angle �.

s sin( bA� �);

t cos( bA� �);

Compute the pair (u; v) that determines b�.
u t� cos�;
v  s+ sin� � cos c;

Let q be the cosine of the new edge length bb.

q  [v � t � u � s] � cos� � v

[v � s + u � t] � sin �
;

Compute the third vertex of the sub-triangle.
bC q �A +

p
1� q2 � [C jA ];

Use the other random variable to select cos �.

z  1 � �2 � (1� bC �B);

Construct the corresponding point on the sphere.

P z �B +
p
1� z2 � [ bC jB ];

return P;
end

If �1 and �2 are independent random variables uniformly
distributed in [0; 1], as produced by most pseudo-random
number generators, then P will be uniformly distributed in
triangle T. Note that cos�, sin �, cos c, and [C jA ] need
only be computed once per triangle, not once per sample.
3 Results

Results of the algorithm are shown in Figure 2. On the
left, the samples are identically distributed, which produces
a pattern equivalent to that obtained by rejection sampling;
however, each sample is guaranteed to fall within the trian-
gle. The pattern on the right was generated by partitioning
the unit square into a regular grid and choosing one pair
(�1; �2) uniformly from each grid cell, which corresponds to
stratified or jittered sampling [2]. The advantage of stratified
sampling is evident in the resulting pattern; the samples are
more evenly distributed, which generally reduces the vari-
ance of Monte Carlo estimates based on these samples.

Figure 2: Uniform and stratified sampling. The samples on the

right were generated from stratified points in the unit square.

The sampling algorithm can be applied to spherical poly-
gons by decomposing them into triangles and performing
stratified sampling on each component independently, which
is analogous to the method for planar polygons [7]. This
provides an effective means of sampling the solid angle sub-
tended by a polygon.
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