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ABSTRACT

Finding appropriate transfer functions for direct volume rendering is a difficult

problem because of the large amount of user experimentation typically involved.

Ideally, the dataset being rendered should itself be able to suggest a transfer func-

tion which makes the important structures visible. We demonstrate that this is

possible for a large class of scalar volume data, namely that where the region of

interest is the boundary between different materials. A transfer function which

makes boundaries readily visible can be generated from the relationship between

three quantities: the data value and its first and second directional derivatives

along the gradient direction. A data structure we term the histogram volume cap-

tures the relationship between these quantities throughout the volume in a position

independent, computationally efficient fashion. We describe the theoretical impor-

tance of the quantities measured by the histogram volume, the implementation

issues in its calculation, and a method for semi-automatic transfer function gen-

eration through its analysis. The techniques presented here make direct volume

rendering easier to use, not only because there are much fewer variables for the

user to adjust to find an informative rendering, but because using them is more

intuitive then current interfaces for transfer function specification. Furthermore,

the results are derived solely from the original dataset and its inherent patterns

of values, without the introduction of any artificial structures or limitations. Ex-

amples with volume datasets from a variety of disciplines illustrate the generality

and strength of the techniques.
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Chapter 1

Introduction

1.1 The task of finding transfer functions

Direct volume rendering is a powerful technique for visualizing the structure of

volume datasets. As devices for the acquisition of volume data are created and im-

proved upon, the applications of direct volume rendering are growing from medicine

and computational fluid dynamics to include astronomy, physics, meteorology, and

geology. The most attractive aspect of direct volume rendering is actually its defin-

ing characteristic: it maps directly from the dataset to a rendered image without

any intermediate geometric calculations. This is in contrast to traditional iso-

surface rendering, where the rendering step is proceeded by the calculation of an

isosurface for a particular data value. Direct volume rendering can also avoid the

time-consuming processes of segmentation and classification, because visualization

can be done without any high-level information about the material content at each

voxel.

Direct volume rendering is based on the premise that the data values in the

volume are themselves a sufficient basis for creating an informative image. What

1
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makes this possible is a mapping from the numbers which comprise the dataset to

the optical properties that compose a rendered image, such as opacity and color.

This critical role is performed by the transfer function. Because the transfer func-

tion is central to the direct volume rendering process, picking a transfer function

appropriate for the dataset is essential to creating an informative, high-quality

rendering.

The most general transfer functions are those that assign opacity, color, and

emittance [LCN98]. However, much direct volume rendering uses transfer functions

assigning only an opacity, with the color and intensity derived from simulated

lights which illuminate the volume. For the purposes of this thesis, the term

opacity functions is used to refer to this limited subset of transfer functions. Once

the opacity function has been applied to the volume, the surfaces of the opaque

regions are then shaded according to a simple shading model, such as the Phong

model [Pho75]. Although this thesis explores opacity functions only, its results

would be helpful in creating more general types of transfer functions as well.

In order to gain some intuition about the role opacity functions play in vi-

sualizing the structure of a volume dataset, it helps to look at opacity functions

applied to two dimensional slices of sample datasets. Figure 1.1 shows the process

for three datasets, with (from top to bottom) a slice of the dataset, a plot of the

opacity function, the result of applying the opacity function to the slice, and an

image rendered using the shown opacity function. The dataset analyzed in the

left column is a synthetic dataset of a cylinder, which will be used repeatedly for

illustrative purposes. In the middle column is a computed tomography (CT) scan

of an engine block1. The last column shows one of the neuron datasets from the

1From the Chapel Hill Volume Rendering Test Datasets, Volume II
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Figure 1.1: Opacity function demonstration for (from left to right) synthetic cylin-

der, CT engine block, and EM dendrite. Going from top to bottom: a slice of

the dataset, a plot of the opacity function which assigns opacity α according to

data value v, the result of applying the opacity function to the slice, and an image

rendered using the shown opacity function.
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Collaboratory for Microscopic Digital Anatomy (CMDA), in which the Program

of Computer Graphics is a research participant [EGLea96]. The neuron data was

tomographically generated from a sequence of transmission electron microscopy

(EM) images2.

Note that in each of these cases, the primary purpose of the opacity functions

is to make opaque those values that occur around the boundaries of objects. This

allows the shape of the objects to be seen in the rendered image without being

obscured by the surrounding medium. If the opacity function makes these bound-

aries partially transparent, we can look through outer surfaces in the object (such

as the engine block) to see internal structure. Since the opacity function is ap-

plied to the whole volume in a position-independent way, volume rendering relies

on the premise that the interesting structural components of the volume, such as

boundaries, have a reliable correlation with data value. If this is the case, then

there should be an opacity function which produces an informative rendering.

The tools used to find opacity functions and render images might look some-

thing like Figure 1.2, which shows the direct volume rendering interface that was

built for the CMDA project3. The user sets the viewpoint in window (a), which

provides feedback with a wireframe box indicating the orientation and aspect ratio

of the volume. The rendered image appears in window (b). Not shown are the

interface for setting the position and color of the lights, and a tool for inspecting

two dimensional slices of the data. The tool used to set the opacity function is

shown in window (c). The user sets the number and location of control points

2Dataset courtesy of National Center for Microscopy and Imaging Research;
specimen courtesy of Prof. K. Hama of the National Institute for Physiological
Sciences, Okazaki, Japan

3The interface widgets are created with Tcl/Tk [Ous94], and the actual render-
ing is performed by the Stanford VolPack volume a rendering library [LL94]
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(a)

(b)

(c)

Figure 1.2: Cornell Volume Rendering User Interface. The viewpoint is set in

window (a), and the rendered result is shown in window (b). In window (c) is

the tool for adjusting the opacity function. The user sets the opacity function by

directly editing its graph, a series of linear ramps joining adjustable control points.

Data value is on the horizontal axis, and opacity is on the vertical.
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which define an opacity function as a series of linear ramps.

In practice, a frustrating amount of time is spent adjusting the location of these

points to make the image look “right”. The general problem of transfer function

specification is very difficult, but even simply finding a good opacity function is

challenging. To make a high-quality rendering, an opacity function must satisfy at

least two guidelines:

• It has to be correctly localized with respect to data value. That is, if the

boundary is always associated with some value v, the opacity function should

give v (and not a high or lower value) maximum opacity.

• The opacity for the remaining data values should be assigned in such a way

that minimizes the creation of misleading artifacts in the rendering. For

instance, if too few values are made opaque, the surface may appear broken

or jagged.

Unfortunately, satisfying these constraints is an unintuitive task. Users looking

at slices of the dataset can easily spatially locate features of interest, but finding

data values which consistently correspond to the features of interest throughout

the volume is not straight-forward. The second guideline is related to the fact

that every direct volume rendering technique has strengths and weaknesses, and

poorly designed opacity functions can reveal the weaknesses. Again, the selection

of opacity functions is not intuitive, so typically the user searches for an opacity

function by trial and error, adjusting it and repeatedly re-rendering to see the

effects on the rendered output.
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1.2 Direct volume rendering of boundaries

The question could be asked- “If the goal is to render the boundaries of objects, why

is direct volume rendering being used, as opposed to isosurface rendering?” The

standard argument for direct volume rendering as opposed to isosurface rendering

is that in the former, “every voxel contributes to the final image”, while in the

isosurface rendering, only a small fraction of voxels (those containing the isovalue)

contribute to the final image [Lev88]. This argument is not very convincing, since

there is no consistent correlation between the quality of the image and the number

of voxels contributing to its formation. Too many opaque voxels result in a cloudy

image, or an image where an interesting portion of the structure is unintentionally

obscured. It is just as important that the transfer function leave some parts of the

volume transparent as it is that it make the interesting parts opaque; otherwise

the volume rendered image would provide no additional insight into the structure

of the volume.

The basic benefit of direct volume rendering over isosurface rendering is that it

provides much greater flexibility in determining how the voxels contribute to the

final image. Voxels over a range of values can all contribute to the image, with

varying amounts of importance, depending on the transfer function. Also, while an

isosurface can only show structure based solely on data value, the transfer function

can do so based on other quantities as well, such as gradient magnitude.

This motivates why direct volume rendering can be used in situations where

the structure of the data is amorphous, as in gaseous simulations [Max95]. More

importantly, it motivates the use of direct volume rendering in medical imaging

situations where there noise or measurement artifacts distort the isosurfaces away

from the shape of the object boundary. To the extent that the objects’ surfaces are
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associated with a range of values, the transfer function for direct volume rendering

can make a range of values opaque or translucent.

Figure 1.3: Slice of neuron in tomographic plane. Artifacts from the lack of pro-

jection data at some angles are visible as the bright spots on either side of the

dendrite, as well as the light streaks.

As an example to exhibit the usefulness of direct volume rendering versus iso-

surface rendering, consider some neuron data from the CMDA project. Figure 1.3

shows a slice of a spiny dendrite dataset. Note the dark regions on either side of

the neuron, and the light streaks which emanate from its top and bottom. These

are artifacts from the tomographic process which reconstructs three dimensional

information from a series of two dimensional projections. Because there are ranges

of angles in which projection data cannot be obtained, there are orientations for

which the quality of the tomographic reconstruction is poor, causing the surface

of the neuron to be blurred or distorted. A further difficulty is the fact that

the radio-opaque dye which renders the neuron visible is sometimes absorbed un-

evenly. Fig. 1.4 shows two renderings of a mammalian neuron dataset, using the

same viewing angle, shading, and lighting parameters, but rendered with differ-

ent algorithms: a shear-warp direct volume rendering produced with the Stanford

VolPack rendering library[LL94] and a non-polygonal ray-cast isosurface rendering.

Towards the bottom of the direct volume rendered image, there is some fogginess

surrounding the surface, and the surface itself is not very clear. As can be con-
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(a) Direct volume rendered (b) Isosurface rendered

Figure 1.4: Comparison of volume rendering methods
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firmed by looking directly at slices of the raw data, this corresponds exactly to a

region of the dataset where the material boundary is in fact poorly defined. The

surface rendering, however, shows as distinct a surface here as everywhere else,

and in this case the poor surface definition in the data is manifested as a region

of rough texture. This can be misleading, as there is no way to know from this

rendering alone that the rough texture is due to measurement artifacts, and not a

feature on the dendrite itself.

1.3 Relationship to edge detection, segmentation,

and classification

The over-all goal of this work is to allow the user of a direct volume rendering

system to visualize the structure of a volume more easily. This thesis presents

methods to automatically detect, and help visualize, the boundaries of objects in

the volume. With this goal, it may seem that the task is similar to that of edge

detection in computer vision, or that of segmentation or classification in medical

imaging. However, there are significant differences. Each of these comparisons are

considered in turn.

Edge detection methods are fundamental to computer vision, because edge de-

tection is often the first stage of a lengthy image interpretation process. The goal

of edge detection is to locate the pixels in the image that correspond to the edges

of the objects seen in the image. This is usually done with a first and/or second

derivative measurement following by a test which marks the pixel as either belong-

ing to an edge or not[Fau93]. The result is a binary image which contains only the

detected edge pixels. However, for the purposes of opacity function generation, the
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spatial location or orientation of the edges is not relevant. The opacity function

we apply to the volume will be applied everywhere the same way: it is a single

function that assigns opacity with no respect to position. As was demonstrated in

Figure 1.1, our goal is to locate boundaries not in the spatial domain, but in the

data value domain.

Another difference between opacity function generation and the task of edge

detection is that volume visualization works with a more limited class of data. In

order for a dataset to be visualized by direct volume rendering, there needs to be

some correlation between the data value and the interesting structure, otherwise

no transfer function will be successful. On the other hand, this is not a necessary

restriction for edge detection, since the inevitable variations in illumination mean

that individual objects (and their edges) take on wide ranges of values. While

these kinds of intensity fluctuations are naturally handled in edge detection, direct

volume rendering of a volume dataset with similar data value variations would be

very difficult.

Segmentation is the process of distinguishing objects in the dataset from their

surroundings so as to facilitate the creation of geometric models. For example,

in medical imaging it is often important to measure the shape, surface area, or

volume of tissues in the body. Once the dataset is segmented, those quantities

are easily measured. Segmentation is an active area of ongoing research. Manual

segmentation is a slow and laborious process requiring expert knowledge, often

involving the tracing of object outlines in a series of dataset slices. On the other

hand, automated techniques are rarely robust and reliable, often requiring exten-

sive supervision[WGKJ96].

On a very general level, both segmentation and the problem of transfer function
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specification are faced with having to distinguish between the major structural

components in a dataset. But these two tasks differ fundamentally in their result.

Segmentation leads to a three dimensional model based on volume data, while

a transfer function is just one parameter of the direct volume rendering process,

which creates simply an image. Both processes are important. Useful science

can be accomplished without segmentation, and the CMDA project is an excellent

example. The biologists may eventually go through the work of segmenting their

datasets, but they can learn about the neurons’ size and structure from direct

volume renderings of unsegmented datasets.

Closely related to segmentation is the process of classification, which assigns a

material occupancy to each voxel based on any of a wide variety of data characteris-

tics, such as data value (scalar or vector), derivative measures, or local histograms.

The material occupancy assignment so created is called a “classification function”.

The classification function is often binary (either a voxel is wholly material x or

it contains no material x), though more continuous classification functions better

support the possible later steps of modeling and rendering[Lai95]. Thus, the class-

ification function is like an opacity function in that it maps from the data space

to a number between 0.0 and 1.0 in a position independent way.

Since the goal in direct volume rendering is to make objects in the volume

visible, one obvious approach would be to make the interior of the objects opaque.

Thus, one could simply use a classification function for the opacity function. In-

deed, some authors used these terms synonymously[Lev88]. However, the speed

of many rendering algorithms (such as ray tracing [Nov94] or the run-length en-

coding used by Lacroute [LL94]) varies with the number of voxels which contain

opacity. In this situation it may be better for the opacity function to keep interior
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voxels transparent, though that is precisely where the classification function would

be highest. In this light, material classification functions do not make very good

opacity functions. Accordingly, the methods in this thesis seek to find opacity

functions which make the objects’ boundaries opaque, not their interiors.



Chapter 2

Previous work

The canonical references for direct volume rendering of scalar fields are Levoy

[Lev88] and Drebin et al.[DCH88]. Levoy presents two transfer function designs

for visualizing two distinct classes of data. One transfer function is for visualizing

isovalue contours in smoothly varying data; the other is for displaying boundaries

in datasets containing adjoining regions of relatively constant value. Both methods

assign opacity as functions of data value and gradient magnitude. Drebin et al.

use a transfer function which sets opacity as a function of data value alone, and

strives to differentiate between materials by assigning different colors to separate

ranges of data values. Today, most transfer functions used in volume rendering are

still set according to the methods presented by these two authors. Examples of

recent work employing Levoy-style transfer functions is described in [Mur95] and

[YESK95]. An example of transfer functions based on data value alone is described

in [PMea96].

Direct volume rendering research today tends to focus either on making the

rendering algorithms faster, or extending existing rendering methods to work with

a wider variety of data sets. Exciting developments include the shear warp fac-

14
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torization [LL94], and the use of texture maps for rendering at interactive rates

on machines with 3-D texture memory [GK96]. Examples of existing techniques

applied to a new domain are the extension of splatting [Wes90] to non-rectilinear

volumes [Mao96], and using ray casting for vector field visualization [Fru96]. Often,

direct volume rendering is not the tool of choice for visualization of scalar fields,

and isosurface rendering is used instead, as in geology [PBL96] or computational

medicine [SJM95]. The generation of polygonal isosurfaces is still an area of active

research [IYK96, SHLJ96].

To date there has been little research into the generation of transfer functions

for direct volume rendering. Two recent papers describe methods for assisting the

user in the exploration of possible transfer functions. The first method [HHKP96]

uses genetic algorithms to ”breed” a good transfer function for the dataset in ques-

tion. The system randomly generates a set of transfer functions, and renders small

images for each one. Presented with this set of renderings, the user then picks the

few renderings that seem to best display the volume data, and a new population of

transfer functions is stochastically generated based on those that the user picked.

This process iterates until the user feels that the best transfer function has been

found. Alternately, a image-processing metric like entropy, variance, or energy is

used as an objective fitness function to evaluate the rendered images without hu-

man guidance, and the process eventually converges on a transfer function which

maximizes the fitness function. The method succeeds in generating good render-

ings, and frees the user from having to edit the transfer function manually.

The second method [MABea97] addresses the problem of “parameter tweaking”

in general, with applications to light placement for rendering, motion control for

articulated figure animation, as well as transfer functions in direct volume render-
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ing. Here, the goal is not to find the one best parameter setting, but to find as

wide a variety of parameter settings as possible, relying on a user-specified metric

to determine similarity between rendered images. The system randomly generates

a very large set of transfer functions, and then formats small thumbnail render-

ings resulting from these transfer functions into a two dimensional arrangement

called a ”design gallery”. The user peruses these thumbnail images, selecting the

most appealing rendering. When applied to the problem of volume rendering, this

method also seems to find reasonable transfer functions, but like the genetic al-

gorithm method, it is at the cost of completely divorcing the user from first-hand

experimentation with transfer functions.

It is important to identify the idea behind both of these approaches. Instead of

interacting with the parameter space of transfer functions directly, the user explores

it indirectly, seeing only the results of the parameter setting on the rendering.

Rather than creating a better interface for transfer function editing, the methods

avoid the issue entirely by having the user pick transfer functions based on the

resulting rendered images. In both cases, the process which generates the transfer

functions is random, so the user is resigned to choose among those presented, and

the quality of the final transfer function is always uncertain. The genetic algorithm

method is not guaranteed to find a good transfer function, regardless of how long

the user “breeds” them. The design gallery algorithm may or may not happen

upon a good setting in its initial random generation of transfer functions, and the

user would have to start the process over from the beginning to try to find better

settings. Significantly, in both cases, the generated transfer functions are not at

all constrained by any measured properties of the data.

It should also be pointed out that both methods only generate good transfer
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functions for renderings from one particular viewpoint . If the viewpoint changes,

the genetic algorithm will iterate differently, and the layout algorithm for the design

gallery may generate completely different results. Because of this, it could be said

that these two methods are not so much for finding good transfer functions as they

are for finding good renderings .

While the two methods above could be termed “image-driven”, the approach

described in this thesis is “data-driven”. It applies solely to those domains of

volume rendering where the user’s goal is to visualize the surfaces of materials

represented in the volume. The method for transfer function generation is entirely

derived from that goal. In this sense, the method described here has a level of

validity or correctness not attained by either of the previous methods.

Although the previous work described above on the specific problem of finding

transfer functions for direct volume rendering is not suitable for our needs, there is

other work on related problems that is relevant. Bergman et al. [BRT95] address

the problem of colormap selection in visualizing two dimensional scalar fields, to

aid in the production of “false color” images. Because the human perceptual sys-

tem perceives variations in hue differently than variations in intensity, the authors

have developed a tool which chooses a colormap based on the user-specified goal of

the visualization task, as well as the data’s spatial frequency characteristics. More

recently, Bajaj et al. [BPS97] describe a tool for assisting the user in selecting

isovalues for effective isosurface volume visualizations of unstructured triangular

meshes for isosurface rendering. By exploiting the mathematical properties of the

mesh, important measures of an isosurface such as surface area and mean gradient

magnitude can be computed with great efficiency, and the results of these mea-

surements are integrated into the same interface which is used to set the isovalue.
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Because the interface provides a compact visual representation of the metrics eval-

uated over the range of possible isovalues, the user can readily decide, based on

their rendering goals, which isolevel to use. The importance to this thesis is that

the contour spectrum is a good example of how an interface can use measured

properties of the data to guide the user through the parameter space controlling

the rendering.



Chapter 3

Mathematical foundations

3.1 Boundary model

The methods presented in this thesis make the task of volume rendering surfaces

more intuitive and less labor intensive than previous methods. The algorithm

is based on the computation of boundary characteristics in a volume and using

this information to guide the user towards opacity function settings which readily

display the boundaries. Towards that end, a mathematical model has been chosen

for what constitutes an ideal boundary. We now describe the boundary model

upon which the techniques of this thesis are based.

We assume that at their boundary, objects have a sharp, discontinuous change

in the physical property measured by the values in the dataset. In MRI this

property might be density of hydrogen nuclei, in CT and EM it is radio-opacity of

the tissue. Also, we assume that the data is band-limited prior to sampling, but

not with the usual Nyquist criterion. Rather, the measurement process is assumed

to have a Gaussian frequency response, which effectively blurs the sharp edges with

a Gaussian filter. Figure 3.1 shows a step function representing an ideal boundary

19
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(a)

?

(b)

=

(c)

Figure 3.1: The ideal physical boundary (a) is convolved with a Gaussian filter (b)

representing the frequency response of the measurement process, producing the

measured boundary prior to sampling (c) which exhibits the shape of the erf()

function.

prior to measurement, the Gaussian filter which performs the band-limiting by

blurring, and the resulting measured boundary (prior to sampling). The resulting

curve (Figure 3.1(c)) happens to be the integral of the Gaussian kernel, which

is called the error function, notated “erf()”[KK68]. Actual measurement devices

necessarily band-limit, so they always blur boundaries somewhat. Their frequency

response is never exactly a Gaussian function, however, since this requires infinite

support, and infinitely high frequencies cannot be measured. Although certain

mathematical properties of the Gaussian function are exploited later, the inexact

match of real-world sampling to the Gaussian ideal has not been found to severely

limit application of the techniques presented here. A final assumption made for

the purposes of this analysis is that the blurring is isotropic, that is, uniform in

all directions. Again, the algorithms presented in this thesis will often work even

if a given dataset doesn’t have this characteristic, but results may be improved if

it is pre-processed to approximate isotropic blurring. Having previously assumed

that objects are made of material which attains the same data value everywhere

in their interior, this is effectively equivalent to assuming that the boundaries of

objects will be uniform over their entire surface. The consequences of these various
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assumptions will be evident when histogram volume calculation is discussed in

Chapter 4.

3.2 Directional derivatives along the gradient

Although it was suggested in Section 1.2 that isosurfaces are not always sufficient

for visualizing objects in real world volume data, the method presented in this

thesis still indirectly employs them as an indicator of object shape. That is, based

(a)

(b)

(c)

Figure 3.2: Isosurfaces tend to conform to object shape. For a cylindrical object

(a) with a soft boundary, a small patch of an isosurface (b) is shown within the

boundary, together with a line segment (c) which follows the gradient direction,

perpendicular to the isosurface patch and to the object boundary.

on the mathematical property that the gradient vector at some position always

points perpendicular to an isosurface through that position, we use the gradient

vector as a way of finding the direction which passes perpendicularly through the
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object boundary. Figure 3.2 demonstrates, for a simple cylindrical object with a

soft boundary, how a line segment along the gradient direction lies perpendicular

to a patch of the boundary isosurface, and how the isosurface patch conforms to

the shape of the boundary. However, in real datasets, the isosurfaces don’t always

perfectly conform to the local shape of the underlying object. But on average,

over the whole volume, the gradient vector does tend to point perpendicular to the

object boundary. Therefore, our approach will be to rely on the statistical proper-

ties of the histogram to provide the overall picture of the boundary characteristics

throughout the entire volume.

The directional derivative of a scalar field f along a vector v, denoted Dvf , is

the derivative of f as one moves along a straight path in the v direction. This thesis

studies f and its derivatives along a path which is normal to the object boundary

— moving along the gradient direction — in order to create an opacity function.

Because the direction along which we’re computing the directional derivative is

always that of the gradient, we employ a mild abuse of notation, using f ′ and f ′′

to signify the first and second directional derivative along the gradient direction,

even though these would be more properly denoted by D∇̂ff and D2

∇̂ff , where ∇̂f

is the gradient direction. We treat f as if it were a function of just one variable,

keeping in mind that the axis along which we analyze f always follows ∇̂f , which

constantly changes orientation depending on position. Figure 3.3 shows how the

gradient direction changes with position to stay normal to the isosurfaces of a

simple object.
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(a) f(x) (b) Isosurfaces of f (c) ∇f

Figure 3.3: The gradient direction ∇f (c) changes with position in the data (a),

but it maintains its perpendicular orientation with respect to the isosurfaces (b).

3.3 Studying f , f ′, and f ′′ in a boundary

Even though the first and second directional derivatives are quantities defined in

three dimensions, the significant relationship between them can be reduced to a

one dimensional case, because we only care about the value and its derivatives as

we move along the gradient direction. Thus, in analyzing the relationship between

f , f ′, and f ′′, it suffices to study a one dimensional sampling perpendicular to

the surface. Figure 3.4 analyzes one segment of a slice from the synthetic cylinder

dataset. Shown are plots of the data value, and the first and second derivatives,

as we move across the cylinder’s boundary. The direction of the gradient obvi-

ously varies throughout the volume, but the observed relationship between f and

its directional derivatives is constant, because the boundary is assumed uniform

everywhere. Note that at the mid-point of the boundary, the first derivative is at a

maximum, and the second derivative has a zero-crossing. Because of blurring, the

boundary is spread over a range of positions, but the maximum in f ′ and/or the

zero-crossing in f ′′ provides a way to define an exact spatial location of a bound-
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x

f(x)f ′(x)f ′′(x)

Figure 3.4: Ideal boundary analysis. The data value and its first and second deriva-

tives are sampled along a short segment which passes through an object boundary
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ary. Indeed, two edge detectors common in computer vision, Canny [Can86] and

Marr-Hildreth [MH80], use the f ′ and f ′′ criteria, respectively, to find edges.

3.4 The transformation from position domain to

value domain

Remember that our ultimate goal is to arrive at a transfer function that makes

the values at the boundary opaque. Observe that in Figure 3.5(a), the data value

increases monotonically1. This means there is a one-to-one relationship between

the data value and position. Therefore, it is possible to transform the first and

second derivatives from functions of position to functions of data value. Five data

values, v1 through v5, have been indicated on the vertical axis. The pattern of

horizontal and vertical lines shows that for each of these five data values, we have

an associated first and second derivative values. This association is formed through

the relationship between data value and position which is governed by the graph

of f . If we were to plot the derivatives associated with data value as we moved

through the range of data values, we would get the curves seen in Figure 3.5(b).

Data value, not position, is on the horizontal axis, on which v1 through v5 are

shown. The crucial change is that information about position has been entirely

removed from the picture, and we are left with the relationship between the data

value and its derivatives.

There is a more elaborate conception of the graphs portrayed in Figure 3.5(b)

1This is, of course, the ideal situation. If the segment along which f and its
derivatives has been measured does not lie directly between large regions of two
distinct materials, the monotonicity condition may not hold. Again, we rely on
the statistical properties of the histogram to provide the overall picture of the
boundary characteristics.
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x

f(x)f ′(x)f ′′(x)

v2

v3

v4

v5

v1

(a) f , f ′, f ′′ versus position

f(x)
v2 v3 v4 v5v1

(b) f ′, f ′′ versus f

Figure 3.5: Relationships between f , f ′, f ′′
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that is well worth describing, since it can give us a more intuitive feel for why

those graphs have their particular shape. For the time being, consider just the

relationship between data value and the first derivative. Both of these quantities

are functions of position, so we could draw a three dimensional graph showing

this, as in Figure 3.6. Below the three dimensional curve we see data value versus

x

x

f(x)

f(x)

f ′(x)

f ′(x)

Figure 3.6: The three dimensional plot of f and f ′ as functions of position x is pro-

jected along the three different axes so as to demonstrate the relationship between

each pair of variables.

position, and to the right, first derivative versus position. Both of these graphs are

projections of the three dimensional curve. But there is a third way to project this

curve: parallel to the position axis, so as to cast away all position information. We
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are then left with the relationship between data value and first derivative, exactly

the curve seen in Figure 3.5(b).

The same can be done for the relationship between data value and its second

derivative, as seen in Figure 3.7. In the projections which are below and to the

x

x

f(x)

f(x)

f ′′(x)

f ′′(x)

Figure 3.7: The three dimensional plot of f and f ′′ as functions of position x

is projected along the three different axes so as to demonstrate the relationship

between each pair of variables.

right of the three dimensional curve, we recognize the graphs of data value ver-

sus position and second derivative versus position. But again, we can project the

three dimensional parametric curve along the position axis, distilling out the rela-

tionship between data value and its second derivative, to get the second curve in
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Figure 3.5(b)

Now that Figure 3.5(b) is more thoroughly motivated, we can represent its

content in a different way. Since we have “projected away” position information

and reformulated the first and second derivatives as functions of data value, we

can create a three dimensional plot of the first and second derivatives as functions

of data value, as seen in Figure 3.8. We recognize that two of the projections of

this curve are the same as in Figure 3.5(b). The full three dimensional curve has

an approximately helical shape, as evidenced by the fact that the third projection

of the curve (upper right) closes back on itself.

The significance of these curves, the three dimensional one as well as its projec-

tions, is that they provide a basis for automatically generating opacity functions.

By analyzing an ideal boundary we have arrived at a position-independent relation-

ship between the data value and its derivatives. Therefore, if a three dimensional

record of the relationship between f , f ′ and f ′′ for a given dataset contains curves

of the type shown in Figure 3.8, we can assume that they are manifestations of

boundaries in the volume. With a tool to detect those curves and their position,

one could generate an opacity function which makes the data values corresponding

to the middle of the boundary (indicated with cross-hairs) the most opaque, and

the resulting rendering should show the detected boundaries. Short of that, one

could use a measure which responds to some specific feature of the curve (the zero

crossing in f ′′, or the maximum in f ′) and base an opacity function on that. This

is the approach taken in this thesis.
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f(x)

f(x)

f ′(x)

f ′(x)

f ′′(x)

f ′′(x)

Figure 3.8: The three dimensional parametric plot of f , f ′, and f ′′ is projected

along the three different axes so as to reveal the position-independent relationships

between these three variables. The cross-hairs indicate the positions along the

curves corresponding to the middle of the boundary.



Chapter 4

Histogram volume calculation

4.1 Histogram volume structure

A histogram is a structure for representing a discrete approximation of a probability

distribution function. Given some variable x, a histogram of x can be thought of

as a series of “bins” which collect occurrences of x based on the value x attains.

The value of the histogram at some bin is the number of occurrences of x (“hits”)

in that bin. The usefulness of histograms is that they can provide a compact

summary of large amounts of data, in the sense that statistical quantities (such as

the mean or variance) which can be measured directly from the data can often be

measured more easily from a histogram of that data.

In our case, we have three variables, f , f ′, and f ′′, but we want to do more

than measure their individual probability distributions. We are interested in the

probabilities associated with the relationship between the three variables. The

most straight-forward way to do this is with a three dimensional histogram, with

one axis for each of the variables. The span of each axis represents a fixed range

of values for the corresponding variable. Each axis is divided into some number of

31
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(one dimensional) bins, causing the interior volume is to be divided into a three

dimensional array of rectilinear bins, not unlike the voxels of a standard volumetric

dataset. Each bin in the three dimensional histogram represents the combination

of a small range of values in each of the three variables. The value stored in each

bin records the number of voxels in the original dataset which had a combination of

f , f ′, and f ′′ values covered by that bin. This structure is termed the “histogram

volume”, seen in Figure 4.1.

f(x)

f ′(x)

f ′′(x)

Figure 4.1: Histogram volume structure. Each of the three axes (for f , f ′, and

f ′′) are divided into bins; the volume is thereby divided into a three dimensional

histogram.

4.2 Histogram volume creation

Having decided on a structure with which to represent the probabilistic relationship

between f , f ′, and f ′′, we now must find a way to measure that relationship as it
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occurs in a given dataset.

In Chapter 3, we found a position-independent relationship between f , f ′,

and f ′′ that characterized an ideal boundary. However, to find that relationship,

we afforded ourself the luxury of first knowing where the boundary was in the

idealized dataset. For example, when plotting the data value and its derivatives

as a function of position in Figure 3.4, we knew exactly where to place a path

which crossed through the boundary. In the case of real volume data, we do not

know where the boundaries are, and as discussed previously, we should not need

to know. Yet we need some way to measure f , f ′, and f ′′ so as to reveal the same

relationship.

This thesis has taken the simple approach of measuring f , f ′, and f ′′ at each

point of a uniform lattice. Figure 4.2 helps illustrate why this can work. In 4.2(a),

the thickness of the boundary is sampled continuously to produce smooth graphs

of the data value versus derivative relationships, as was done in Figure 3.4. In

4.2(b), the boundary is sampled at a high frequency along the same path. Instead

of producing a smooth plot of first or second derivative versus data value, we

now have a scatterplot, but the sequence of measurements traces out the same

relationships as before1. Finally, in 4.2(c) the boundary is sampled everywhere

on a grid which uniformly covers the dataset, and which has no particular spatial

relationship to the boundary. Nonetheless, the scatterplots of first and second

derivative versus data value have the exact same shape as before, although now

the points are distributed differently. Specifically, a much greater number of sample

points have accumulated near the f(x) axis, where the derivative values are nearly

1For visual clarity in the depiction of samples along the grayscale boundary
(Figure 4.2(b), left), fewer samples are indicated than are plotted in the two scat-
terplots.
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f(x)

f(x)

f ′(x) f ′′(x)

(a) Continuous linear sampling

f(x)

f(x)

f ′(x) f ′′(x)

(b) Dense linear sampling

f(x)

f(x)

f ′(x) f ′′(x)

(c) Sampling at gridpoints

Figure 4.2: Sampling the boundary: from continuous to discrete. Even when the

measurements are taken over a grid which has no particular spatial relationship to

the boundary, the relevant curves in the scatterplot are recorded, indicating the

presence of a boundary.
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zero, because there are many more samples within the homogeneous regions inside

and outside the cylinder.

Figure 4.2(c) encapsulates the ramifications of our previous assumptions. The

reason why curves appear in the scatterplots at all is our initial assumption of

band-limited data acquisition, which causes all sharp physical boundaries to be

measured as smooth transitions. We also made an assumption about material

uniformity by stating that when materials are measured, they attain the same

data value everywhere. This implies that the scatterplots will be coherent along

the data value axis. Variations in the data value associated with the exterior or

interior of the object would “smear” the scatterplots horizontally. In addition, we

had made the assumption that the band-limiting was isotropic, which causes the

measured boundaries to be uniform regardless of position or orientation. Variations

in the thickness of the boundary would change the values of the derivatives, which

would smear the scatterplots vertically.

The sole purpose of the histogram volume is to capture and represent the scat-

terplots of Figure 4.2(c) in a single structure. Thus, to the extent that our various

assumptions about boundaries and band-limiting are valid, for every boundary

that occurs in a dataset, we should be able to discern in the histogram volume the

relationship between the data value and its derivatives. These relationships were

first seen in Figure 3.8 and are evident in the scatterplots of Figure 4.2(c).

4.3 Implementation

Before we can create histogram volumes, there are several implementation issues

that need to be resolved, starting with the spatial resolution of the grid on which
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we sample f , f ′, and f ′′ throughout the volume. If the grid is too sparse, we risk

missing the boundary. Instead of having a dense and continuous distribution of

“hits” in the histogram volume, we would have only sparse or broken coverage of

the curves we are looking for. If the grid is too dense, we have excess computation.

The approach taken in this thesis is to measure f , f ′, and f ′′ exactly once

per voxel, at the original sample points of the dataset. There are two reasons

for this. First is ease of computation. Because we are working only with the

original data points of the volume, there is no need to perform reconstruction to

measure f , and the measurements of f ′ and f ′′ are greatly facilitated by the use of

masks, a computational tool to measure properties of discrete data. These will be

explained shortly. Second, because bandlimiting ensures that there is always some

boundary blurring, and because the boundaries of real objects are apt to assume

a variety of positions and orientations relative to the sampling grid, sampling over

the whole dataset will insure that the sample points fall at a variety of positions

within the boundary region, leading to more complete coverage of the curves in

the scatterplots and histogram volume. Of course, the more bandlimiting there

is, the more blurred the boundaries will be, leading to a greater accumulation of

hits along the curves in the histogram volume and in the scatterplots. A more

mathematical treatment of this relationship is given in Appendix A.

The remaining implementation issues of histogram volume creation are unfor-

tunately matters of parameter setting. Though the goal of this research is to

reduce the total number of parameters that need to be adjusted before informative

renderings can be achieved, there are in fact a few input parameters necessary for

the creation of the histogram volume itself. This is why the generation of transfer

functions is (at best) semi -automatic.
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One variable in the histogram volume creation is the histogram resolution,

that is, how many bins to use. The trade-off here is between the large storage and

processing requirements caused by having many bins, and the inability to resolve

patterns in the histogram volume caused by having too few. In our experiments,

good results have been obtained with histogram volumes of sizes between 803 and

2563, though there is no reason that the histogram volumes need to have equal

resolution on each axis. In general, better results have been obtained from using

larger histogram volumes. While a 2563 volume does not represent an exceed-

ingly large storage or computational challenge to modern systems, the ability to

get decent results from, for instance, a 1283 histogram volume, with the associated

nearly 8-fold speed increase, makes the use of smaller histogram volumes an attrac-

tive alternative. A brief comparison of results from using different size histogram

volumes is given in Chapter 6.

A more significant issue is the the range of values that each axis of the histogram

volume should represent. Obviously along the data value axis, we should include

the full range, since we want to capture all the values at which boundaries might

occur. But along the axes for the first and second derivatives, it may make sense

to include something less than the full range. This is because derivative measures

are by nature very sensitive to noise, and thus will take on very high (or very low)

values wherever noise occurs. If significant noise is present in the volume data, and

if we included the full range of derivative values in the histogram volume, then the

important and meaningful sub-range of derivative values might be compressed to

a relatively small number of bins. This would hamper the later step of detecting

patterns in the histogram volume. Of course, we have no a priori way of knowing

what the meaningful ranges of derivatives values are. Currently, the derivative
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value ranges are set by hand, and this is a subject in need of further research.

The most significant implementation issue is the method of measuring the first

and second directional derivatives. The first derivative is actually just the gradient

magnitude. From vector calculus [MT96] we have:

Dvf = ∇f · v, (4.1)

thus

D∇̂ff = ∇f · ∇̂f = ∇f · ∇f‖∇f‖ = ‖∇f‖. (4.2)

Unfortunately there is no similarly compact formula for D2

∇̂ff , the second direc-

tional derivative along the gradient direction. Twice applying Equation 4.2 gives:

D2
∇̂ff = D∇̂f (‖∇f‖) = ∇(‖∇f‖) · ∇̂f

=
1

‖∇f‖∇(‖∇f‖) · ∇f (4.3)

Or, using the Taylor expansion of f along ∇̂f [Fau93] gives:

D2
∇̂ff =

1

‖∇f‖2
(∇f)T Hf ∇f (4.4)

where Hf is the Hessian of f , a 3 × 3 matrix of second partial derivatives of f

[MT96]. Alternatively, we can use the Laplacian ∇2f to approximate D2
∇̂ff :

D2
∇̂ff ≈ ∇

2f =
∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 (4.5)

The approximation is exact only where the isosurfaces have zero mean surface

curvature [Fau93].

As all these derivative measures require taking first or second partial deriva-

tives of the data along the axial directions, we need to develop masks which can

measure these quantities. Masks are vectors of scalar weights, designed to measure
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certain properties of sampled data. The mask is centered at the sample point of

interest, and the products between corresponding mask weights and sample values

are summed to produce the final measurement. The combination of weights in the

mask determine its functionality. As a simple example, Figure 4.3 demonstrates a

mask ([−0.5 0 0.5]) which measures the first derivative of one dimensional data.

Derivative measurement with this mask is called central differencing and is very

[ -0.5 0 0.5 ]

-21 + 0 + 89 = 68

10 10 15 42 110 178 205 210 210

 

0 2 16 48 68 48 16 2 0

xx

f(x) f ′(x)

Figure 4.3: Using a mask to measure first derivative. The data values 42, 110,

and 178 are multiplied by the mask values −0.5, 0, and 0.5 respectively, and the

products are summed to produce the final measurement.

commonly used in image processing[GW93]. Appendix B describes how central

differences can be generalized to measure first and second partial derivatives in

three dimensions.

Even though we have a way of measuring all the necessary partial derivatives

in the volume, we still need to chose among the different measurement approaches

for D2

∇̂ff . Each of the three expressions for D2

∇̂ff given above suggest different

implementations. While the Hessian method (Equation 4.4) has been found to

be the most numerically accurate, the others have proven sufficiently accurate in

practice to make them appealing by virtue of their computation efficiency. The

Laplacian (Equation 4.5) computation is direct and inexpensive, but the most sen-
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sitive to quantization noise. The gradient of the gradient magnitude (Equation 4.3)

is better, and its computational expense is lessened if the gradient magnitude has

already been computed everywhere for the sake of volume rendering (e.g., as part

of shading calculations). A more thorough characterization of the different second

derivative measures is given in Appendix C. Deciding which derivative measures

to use is the final parameter for histogram volume creation.

We can now give an algorithm for histogram volume creation:

• Initialize the histogram volume to all zero values.

• Make one pass through the volume looking for the highest values of f ′ and

f ′′, and the lowest value of f ′′. (Assume zero for the lowest value of f ′). Set

ranges on the histogram volume axes accordingly.

• Make a second pass through the volume:

– Measure f , f ′, and f ′′ at each sample point,

– Determine which bin in the histogram volume corresponds to the mea-

sured combination of f , f ′, and f ′′, and

– Increment the bin’s value.

4.4 Histogram volume inspection

In Section 4.2 we stated that if there are boundaries in the original dataset that

conform to our boundary model, there should be curves like that of Figure 3.8 in

the histogram volume. We now verify this fact by looking at histogram volumes

from datasets known to contain boundaries. Although one may be tempted to

volume render the histogram volume from various viewpoints in order to visualize
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its content, this turns out to be difficult and unrevealing due to the speckled

nature of the histogram volume. A better way to visualize histogram volumes is

to project them along either the first or second derivative axis. This produces two

dimensional scatterplots of data value versus first derivative, or data value versus

second derivative, as were seen in 4.2(c).

v1 v2

(a)
v1 v2

f(x)

f ′(x)

(b)
v1 v2

f(x)

f ′′(x)

(c)

Figure 4.4: Dataset cross-section and histogram scatterplots for cylinder. A cross-

section of the dataset is shown in (a), illustrating that there is only one boundary

in the volume, with the two material values tagged v1 and v2. (b) is a projection

of the histogram volume showing the relationship between f and f ′; (c) likewise

shows the relationship between f and f ′′. In both (b) and (c) the data values v1

and v2 are indicated on the f(x) axis.

We start by looking at synthetically generated datasets, beginning with a simple

dataset— a cylinder like that of Figure 3.4. Figure 4.4(a) shows the cylinder

in cross-section. The histogram volume is then projected along the f ′′ axis to

produce a f ′ versus f scatterplot (Figure 4.4(b)) and along the f ′ axis to produce

a f ′′ versus f scatterplot (Figure 4.4(c)). In these scatterplot images, the data

value and its derivatives are oriented on the axes as they were in Figure 4.2 to

facilitate comparison. The darkness in the scatterplots encodes the number of hits

for a given (value, gradient) pair— the darker, the more hits. These scatterplots
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conform closely to the curves that were seen in Figure 4.2(a).

As a second verification of our discussion, and as a demonstration of the utility

of the histogram volume to capture information about objects’ boundaries, we

analyze a second synthetic dataset which contains two materials distinct from the

background. Figure 4.5(a) shows the dataset in cross-section. An outer shell with

v1v1 v2 v3

(a)
v1 v2 v3

f(x)

f ′(x)

(b)
v1 v2 v3

f(x)

f ′′(x)

(c)

Figure 4.5: Dataset cross-section and histogram scatterplots for two material cylin-

der. (a) is a cross-section of the data, (b) and (c) are projections of the histogram

volume showing f ′ versus f and f ′′ versus f , respectively. As there are three dis-

tinct values v1, v2, v3 in the dataset, with a boundary between each pair of values,

there are three curves in the scatterplots. The curves start and end at the three

data values v1, v2, and v3, indicated on the f(x) axis.

an intermediate data value (v2) surrounds an inner shell with a high data value

(v3), and the core is the same as the background value (v1). Hence there are three

boundaries. This fact is also revealed in Figure 4.5(b) and Figure 4.5(c) by the

presence of three curves, one for each boundary.

Now we look at histogram volumes for real datasets, starting with a CT scan of

a turbine blade2. As the blade is made of a single kind of metal, we would expect

to find a single boundary indicated by the histogram volume or its projections.

2Dataset courtesy of GE Corporate Research and Development
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Figure 4.6 illustrates this. The two large dark spots in the histogram projections

v1 v2

(a)
v1 v2

f(x)

f ′(x)

(b)
v1 v2

f(x)

f ′′(x)

(c)

Figure 4.6: Dataset cross-section and histogram scatterplots for turbine blade. The

cross-section (a) shows that there is only one boundary. This is supported by the

scatterplots of f ′ versus f (b) and f ′′ versus f (c).

arise from the large regions of nearly constant value within the air or the metal.

The curves are the result of the boundary between the two, and their shape matches

those of Figure 4.4, indicating a good match between the properties of an ideal

boundary, and the actual properties of this dataset. Another exemplary dataset is

the engine block CT scan first seen in Figure 1.1. Figure 4.7 shows a dataset slice

and the two scatterplots for the engine dataset. The most prominent boundary

curve is for the transition from the background value (v1) to the intermediate value

(v2), which comprises the majority of the engine block’s interior. A fainter curve

is discernible between the intermediate value (v2) and a high value (v3). Finally,

a very faint and diffuse curve is evident arching over the other two boundaries,

spanning from the background value (v1) to the highest value (v3). It makes sense

that these last two curves should be so much fainter than the first, because, as we

can tell from looking at the image of the dataset cross-section, the surface area of

the boundary between the background value and the intermediate value is much
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v1 v2 v3

(a)
v1 v2 v3

f(x)

f ′(x)

(b)
v1 v2 v3

f(x)

f ′′(x)

(c)

Figure 4.7: Dataset cross-section and histogram scatterplots for engine block. The

cross-section in (a) shows that there are three kind of material, tagged with v1,

and v2, and v3. We can also see that like the nested cylinders in Fig. 4.5, there

is a boundary between every pair of values. Though not especially clear, the

scatterplots of f ′ versus f (b) and f ′′ versus f (c) support this.

greater than the area of either of the other two boundaries. Thus, there are fewer

voxels contributing to corresponding curves on the scatterplot.

We finish with Figure 4.8 which shows the scatterplots for one of the CMDA

neuron datasets, generated by electron microscope (EM) tomography. Unlike the

previous datasets, there is no obvious evidence of clean boundaries in the scatter-

plots, only the vague shape of the curves we are looking for. The main for reason

for this is that CT scans provide a better match to our assumed ideal boundary

characteristics than does electron microscope tomography. It is these EM datasets,

where the boundary is less than ideal, which will be the most severe test of the

algorithms developed in this thesis.

It should be noted that a related technique has been used in computer vision

for feature identification. Panda and Rosenfeld [PR78] use two dimensional scat-

terplots of data value and gradient magnitude to perform image thresholding for



45

v1 v2

(a)
v1 v2

f(x)

f ′(x)

(b)
v1 v2

f(x)

f ′′(x)

(c)

Figure 4.8: Dataset cross-section and histogram scatterplots for neuron. The cross-

section of the data (a) shows that there is no one constant value either inside

or outside the neuron, though two data values v1 and v2 have been tagged and

indicated on the f(x) axes of the f ′ versus f (b) and f ′′ versus f (c) scatterplots.

The neuron boundary seen in the cross-section is irregular because a range of

values occur on either side of the boundary. Correspondingly, the scatterplots are

much more diffuse than for previous datasets. However, the scattering of hits still

roughly conforms to the over-all shape of the curves we are looking for.
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night vision applications. They, however, do not assume a particular boundary

model, instead limiting their analysis of the scatterplot to identifying particular

distributions within regions of low and/or high gradient magnitude.

4.4.1 Techniques for scatterplot visualization

The techniques which have made possible the display of the various scatterplots

shown so far should be described in greater detail, since the process for scatterplot

visualization has a large effect on how informative they are. We use the first

derivative versus data value scatterplot for the turbine blade as our example.

Figure 4.9 illustrates how simple approaches to scatterplot display are not ef-

fective. In Figure 4.9(a), a linear mapping was used to determine gray level from

the number of hits in the scatterplot. The problem is that the image is too faint

because the number of voxels in the background material (air) overwhelms the

number of voxels everywhere else. This can be alleviated somewhat with a gamma

correction (Figure 4.9(b)), but important detail within the boundary region curve

is not visible.

To solve this problem we have use a standard contrast enhancement technique

from image processing called histogram equalization3[GW93]. Histogram equaliza-

tion flattens the histogram of the gray levels in an image, so that all gray levels

are utilized approximately equally. Figure 4.9(c) shows the result of histogram

equalization on Figure 4.9(a). This is an improvement, but since the image is now

too dark, we apply a gamma correction of 3.0 to make the image lighter. The fine

structure with the boundary curve region of the scatterplot is now visible. The

3The fact that the image we are processing in this situation is itself a histogram
is not especially meaningful or important.
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f(x)

f ′(x)

(a)

f(x)

f ′(x)

(b)

f(x)

f ′(x)

(c)

f(x)

f ′(x)

(d)

Figure 4.9: Methods for scatterplot visualization. In (a), the mapping from number

of voxels accumulated to gray level is linear. The dark spot in the lower left

represents the voxels within background material, air. In (b), a gamma correction

of 0.22 was applied to make the image darker, but detail is still lacking. (c) shows

the result of applying histogram equalization to (a), and (d) shows the result of

following histogram equalization with a gamma correction of 3.0.
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amount of gamma correction applied after histogram equalization was chosen by

hand for each of the different datasets shown in this thesis.



Chapter 5

Opacity function generation

5.1 Mathematical boundary analysis

In order to develop a method for opacity function generation that uses our bound-

ary model and the information stored in the histogram volume, we need to look

at the equation used to describe the ideal boundary data value as a function of

position, as plotted in Figure 3.4:

v = f(x) = vmin + (vmax − vmin)
1 + erf( x

σ
√

2
)

2
(5.1)

In its current form, the ideal boundary gets its characteristic shape from the erf()

function. We define this important function and plot it in Figure 5.1.

erf(x) ≡ 2√
π

∫ x

0

e−t
2

dt (5.2)

Note in Figure 5.1 that since erf() is centered around the origin, the boundary

function f(x) is also centered around where position x is zero. There are two

essential differences between f(x) and erf(x). First, in f(x) the argument of erf()

is scaled by 1/σ
√

2. The σ parameter controls the thickness, or spread, of the

49
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-1.0

-0.5
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y = erf(x)

x

Figure 5.1: The error function, erf()

boundary. For large σ, the argument of erf() is reduced, and the boundary is

stretched out more. The boundary is much narrower and sharper with a small

σ. Second, erf()’s range has been shifted and scaled so that the range of f(x) is

between vmin and vmax. As x approaches negative infinity, erf( x

σ
√

2
) approaches

−1, and thus f(x) approaches vmin. Conversely, as x approaches positive infinity,

f(x) approaches vmax. At x = 0, the middle of the boundary, f(x) is half-way

between vmin and vmax.

The first and second derivatives of f are as follows:

f ′(x) =
vmax − vmin
σ
√

2π
e−

x2

2σ2 (5.3)

f ′′(x) = −x(vmax − vmin)

σ3
√

2π
e−

x2

2σ2 (5.4)

Our choice of boundary parameterization means that f ′(x) is a normalized Gaus-

sian, with σ being the usual standard deviation. Since the Gaussian has inflection

points at ±σ, this is where f ′′(x) attains its extrema. The same positions can

serve as (somewhat artificial) delimiters for the extent of the boundary. We define

the “thickness” of the boundary to be 2σ. Figure 5.2 shows how the the definition

of thickness roughly accounts for the region in which the data value transitions

between the values on either side of the boundary.

The equations for f ′(x) (Equation 5.3) and f ′′(x) (Equation 5.4) look very
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x

f(x)f ′(x)f ′′(x)

thickness

σ−σ 0

Figure 5.2: Relationship between thickness and the boundary function. The thick-

ness of material boundaries is defined to be 2σ, which extends from one extremum

in f ′′ to the other. The middle of the boundary is defined to be where x = 0.

similar because of the special derivative properties of ex. In fact, the only difference

between f ′(x) and f ′′(x) is a scaling factor 1
−σ2 and the position x:

f ′′(x)

f ′(x)
= − x

σ2
(5.5)

This is intriguing because it means there is a way to infer the position x along a

boundary knowing just σ and the first and second derivatives. σ can be recovered

if the extremal values of f ′(x) and f ′′(x) are known. Recall from Figure 5.2 that

f ′(x) has its maximum at 0, and that f ′′(x) has a maximum at −σ and a minimum
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at σ. This gives us two different ways of calculating σ.

f ′(0)

f ′′(−σ)
=

vmax−vmin
σ
√

2π
e−

0
2σ2

−−σ(vmax−vmin)

σ3
√

2π
e−

(−σ)2

2σ2

= σ
√
e

f ′(0)

f ′′(σ)
=

vmax−vmin
σ
√

2π
e−

0
2σ2

−σ(vmax−vmin)

σ3
√

2π
e−

σ2

2σ2

= −σ
√
e

⇒ σ =
f ′(0)√
e f ′′(−σ)

= − f ′(0)√
e f ′′(σ)

(5.6)

Knowing σ, one can then recover position from f ′(x) and f ′′(x) with Equation 5.5:

x =
−σ2f ′′(x)

f ′(x)
(5.7)

Section 3.4 described the ability to transform the first and second derivatives

as functions of position into functions of data value. That transformation takes on

special importance in light of Equation 5.7. f ′ and f ′′ are functions of position in

that equation, but there is no reason why they couldn’t also be functions of data

value. In that case, we would have a way to map from data value back to position

along a boundary. Since our goal is to produce an opacity function which makes

the middle of boundaries opaque, this information is exactly what is necessary for

opacity function generation.

Fortunately, the histogram volume contains that information. The histogram

volume was created by recording the position-independent relationship between

the data value and its derivatives. In that case, the position that was “projected

out” in the histogram formation was the (x, y, z) position within the volume. Now,

having created the histogram volume, in the next section we will analyze it in order

to re-create “position” information with Equation 5.7. This time, the “position”

in question is actually a signed distance to the nearest boundary, which will be

extremely helpful in the creation of opacity functions.
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5.2 Opacity functions of data value

We now define some important functions of data value. g(v) is the average first di-

rectional derivative of f over all the positions x at which f(x) = v. h(v) is likewise

the average second directional derivative at value v. These two functions can be

f(x)

f ′(x)

f ′′(x)

v

h(v)

g(v)
f ′(x)

f ′′(x)

Figure 5.3: Calculating g(v) and h(v) from the histogram volume. A schematic of

the histogram volume is shown, with the axes labeled. The slice of the histogram

volume at data value v is extracted, and the accumulation of sample points within

this slice is shown as a diffuse dark region. The coordinates of the centroid of the

region along the f ′ and f ′′ axes are the g(v) and h(v) values.

obtained from the histogram volume for a given dataset as Figure 5.3 illustrates.

The slice of the histogram volume at data value v records the distribution of the

measured first and second derivative values for all the sample points with data

value v. The centroid of the distribution on the slice is then calculated. The co-

ordinate of the centroid along the f ′ axis is g(v), and along the f ′′ axis it is h(v).

If there are data values v which received no hits in the histogram volume (that is,

value v never occurs in the original volume dataset), then h(v) and g(v) are left
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undefined.

Knowing g(v) and h(v) for the range of data values, we can calculate σ with

Equation 5.6. For more robust results, instead of using just the maximum or

minimum of h(v), we can use both1:

σ =
2
√
e maxv(g(v))

maxv(h(v))−minv(h(v))
(5.8)

Now we can produce the mapping p(v) that was referred to earlier, giving a position

along a boundary as a function of data value:

p(v) =
−σ2h(v)

g(v)
(5.9)

≈ −σ2f ′′(f−1(v))

f ′(f−1(v))
= x

p(v), like f(v) and g(v), is undefined for values v which never occur in the original

volume dataset.

Mathematically, we see that p(v) is a local inverse of f(x), since p(v) = x,

and by definition f(x) = v. Intuitively, p(v) implies which side of the nearest

boundary a data value v tends to fall. For values closer to vmin, the position p(v)

will be negative; for values closer to vmax, p(v) will be positive. At the value half-

way between vmin and vmax, p(v) will be zero, the position at the middle of the

boundary. In practice, it is useful to modify Equation 5.9 to account for the fact

that due to low-level measurement noise, the gradient magnitude at the interior

of materials is rarely exactly zero. Knowing how it differs from zero is a matter

of experience, but assuming one can find a scalar quantity gthresh which is higher

than the ambient gradient magnitude2, Equation 5.9 is re-formulated, with a slight

1An implicit assumption in this equation is that g attains its maxima at f(0),
and that h attains its extrema at f(±σ).

2As will be shown in the next chapter, there is some freedom in which value is
chosen for gthresh, but this is the defining constraint.
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loss of mathematical accuracy, as

p(v) =
−σ2h(v)

max(g(v)− gthresh, 0)
(5.10)

To demonstrate the steps involved in the calculation of the position function

p(v), we consider another synthetic dataset, containing two concentric spheres

with distinct data values. Figure 5.4 shows a central cross-section of the dataset,

v1 v2 v3

(a)
v1 v2 v3

f(x)

f ′(x)

(b)
v1 v2 v3

f(x)

f ′′(x)

(c)
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24.76

0 v

g(v)

(d)

50 100 150 200 250

9.84

0 v

h(v)

(e)

50 100 150 200 250

6.62

0 v

p(v)

(f)

Figure 5.4: Precursors to α(v) calculation for nested concentric spheres. A dataset

cross-section and the usual scatterplots are shown in (a), (b), and (c). The three

data values v1, v2, v3 are tagged in the dataset cross-section and marked on the

horizontal axes of the two scatterplots. The functions g(v) and h(v) were calculated

from the histogram volume and are plotted in (d) and (e). From g(v) and h(v),

p(v) is calculated with Equation 5.10, and shown in (f).

as well as the usual scatterplots. The boundaries that occur in the dataset can

be learned by inspecting the cross-section or by interpreting the scatterplots. The
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background value v1 shares a boundary with the lower material value v2, and the

lower material value has a boundary with the higher one v3. The figure next shows

plots of the functions g(v), h(v), and p(v). Note that for this dataset, the graph

of g(v) closely mimics the shape of the f ′ versus f scatterplot, and the graph of

h(v) closely mimics the f ′′ versus f scatterplot. The plot of p(v), calculated with

Equation 5.9, also has the expected shape, similar to two graphs of f(x) rotated

ninety degrees. This is a graphical demonstration of the concept that p(v) is a local

inverse of data value f(x). Because p(v) does the opposite of f(x) by mapping

from data value to position, we can see from the graph of p(v) that there are two

data values which occur in the middle of boundaries. As expected, they are the

data values half-way between v1 and v2, and half-way between v2 and v3.

Once p(v) is known, it is a relatively simple matter to generate an opacity

function which makes the boundaries of objects visible in the rendered image.

Since the middle of a boundary is always where the position is zero, we need only

make opaque those data values v for which p(v) is near zero. Exactly how this

is done is determined by the user, who specifies a function b(x), which we term

the boundary emphasis function. The function b(x) maps from position along a

boundary to opacity. Since b(x) should be non-zero only near zero, we have not

been especially careful in preventing p(v) from attaining infinite values due to a

low g(v); such a data value v should not contribute to the final image. With b(x),

the user can directly control the proximity of the rendered boundary to the object

interior, and whether rendered boundaries will appear thick or thin, sharp or fuzzy.

The final opacity function α(v) is then defined as

α(v) = b(p(v)) (5.11)

For those values v where p(v) is undefined, we define α(v) to be zero.
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Figures 5.5 and 5.6 illustrate and discuss how the choice of the boundary em-

phasis function affects the opacity function and the rendered image, using the same

concentric spheres dataset analyzed in Figure 5.4. Instead of exploring the param-

eter space of all possible opacity functions α(v), the user explores the parameter

space of b(x) and lets the information from the histogram volume, embodied in

p(v), constrain the search to those opacity functions which display object bound-

aries. Defining opacity as a function of position within a boundary then becomes

a more intuitive task than defining opacity as a function of data value, as there is

a more predictable relationship between changes made to the boundary emphasis

function and the corresponding change in rendered results.

It should be stressed that the user does not set the initial location of the peaks

in α(v), since this is determined by the information in p(v). However the user

can modify the location of the peaks, as well as their width, height, and shape.

This is the main benefit of the method presented in this thesis: if the histogram

volume has successfully captured information about the boundaries in the dataset,

the user enjoys high-level control over the character of the rendered boundaries

without being required to give an exact specification of α(v). For instance, the

user can specify (as in Figure 5.5) that the opacity linearly ramp up and down

near the boundary. Unless the user somehow has an intuition for the position

function p(v), it is unlikely that he or she would be able to manually create the

opacity function α(v) which achieves this. Furthermore, the α(v) generated by this

method is usually sensible enough that it can be manually edited if desired. For

example, since this technique will attempt to make all boundaries opaque, a useful

supplement to the interface would be a feature which allows removal of the peaks

in α(v) for one or more boundaries, so as to remove the corresponding boundaries
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(a) Semi-transparent
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Figure 5.5: Using b(x) to control the proximity of the rendered boundary to the

object interior. In (a), a simple boundary emphasis function b(x) (at top) makes the

positions between −2 and 2 opaque, peaking at zero, the middle of the boundary.

Below (middle), the resulting opacity function α(v) is shown. The data values

near 80 and 176 for which p(v) (Fig.5.4) was zero receive maximum opacity. The

rendering (bottom) nicely shows the boundaries of the two spheres. In (b), the

peak in b(x) (top) has been shifted upward, to emphasize values closer to the

interior of the spheres. Correspondingly, the peaks in α(v) (middle) have shifted

upward, and in the rendering (bottom), the spheres appear slightly smaller.
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Figure 5.6: Using b(x) to control the character of the rendered boundary. In (a),

the boundary emphasis peak (top) has been raised to make the rendered boundary

more opaque. Accordingly, the peaks in α(v) (middle) have raised, and the ren-

dered boundary (bottom) is indeed more opaque. In (b), the shape of the boundary

emphasis function (top) has been changed to be more discontinuous. This char-

acteristic is reflected in the resulting α(v) (middle), as well as in the rendering

(bottom).
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from the rendering.

Even though we have made some strong assumptions about the boundary char-

acteristics in the volume dataset, the technique described here typically works well

even if the material boundaries are not “ideal”. Essentially, by taking the quotient

of the second and first derivatives, and by having b(x) assign opacity to positions

around zero, we are more apt to make opaque those data values associated with

both low second derivatives and high first derivatives, consistent with the criteria

usually used in computer vision edge detectors. Or, even if p(v) is not a perfect

indicator of “position relative to boundary”, the sign change in f ′′ around its zero-

crossing affords us some control over whether we want to emphasize regions closer

to or further from the object’s interior.

In the case of poor data, there are some adjustments to the method presented

here which may yield better results. When the material boundaries are far from

ideal, the calculation of σ from Equation 5.6 is apt to produce a poor results.

Evaluating Equation 5.9, we can see that σ2 appears as a scaling factor, so at

worst, this will require the user to experiment with different scalings in the domain

of b(x). Also, the g(v) and h(v) calculated from the histogram volume may be very

noisy. Some improvements have been noted from smoothing these slightly. Results

from these experiments, and from utilizing the technique on a variety of datasets

are presented in Chapter 6.
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5.3 Opacity functions of data value and gradient

magnitude

The opacity functions considered so far have assigned opacity based on data value

alone. Value-based opacity functions are easy to implement and facilitate simple

and efficient rendering algorithms. Higher quality renderings can sometimes be

obtained, however, if the opacity is assigned as a function of both data value and

gradient magnitude. We term these two dimensional opacity functions. Defining

these two dimensional opacity functions by hand is especially challenging because

there are even more degrees of freedom than in one dimensional, value-based opac-

ity functions. Fortunately, the ideas presented so far easily generalize to allow

semi-automatic generation of two dimensional opacity functions.

Analogous to the definition of h(v), we define h(v, g) to be the average second

derivative over all locations where the data value is v and the gradient magnitude

is g. As before, this information can be extracted from the histogram volume, as

illustrated in Figure 5.7. For data value v and first derivative g there is a one

dimensional histogram which records the distribution of second derivative values

for those sample points which had both data value v and gradient magnitude g.

h(v, g) is the average of the distribution of second derivative values. In direct

emulation of Equations 5.10 and 5.11, we define a new position function, and from

that an opacity function:

p(v, g) =
−σ2h(v, g)

max(g − gthresh, 0)
(5.12)

α(v, g) = b(p(v, g)) (5.13)

α(v, g) is defined to be zero for those (v, g) pairs which never occur in the volume.

σ is calculated exactly the same as before, using Equation 5.8. But whereas before
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f ′(x)

f ′′(x)
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f ′′(x)

h(v, g)

Figure 5.7: Calculating h(v, g) from the histogram volume. As in Figure 5.3, a

histogram volume schematic is shown, but now a single scanline of the volume is

extracted where data value is v and the first derivative is g. The accumulation of

sample points along this line is shown as a diffuse dark region. The location of the

center of the region is h(v, g).

a position was found for each data value, we are now finding position for every

combination of data value and gradient magnitude. The resulting opacity function

is thus two dimensional instead of one dimensional. As in the case of value-based

opacity functions, the method presented here will generate two dimensional opacity

functions which make all detected boundaries opaque. A simple “lasso” tool could

then be used to select different regions in the two dimensional opacity function to

render one boundary at a time.

To demonstrate the generation of two dimensional opacity functions, consider

the dataset first seen in Figure 4.5, containing two concentric cylindrical shells each

at distinct data values. As can be seen in Figure 5.8(a), this dataset is similar to the

nested spheres used in the previous section, in that it has a background value v1,

and two material values v2 and v3. However, here the v3 region shares a boundary
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Figure 5.8: Precursors to the α(v, g) calculation for nested cylindrical shells. (a)

shows a cross-section of the data, labeling the regions of the three distinct data

values. The color image in (b) represents the p(v, g) function that was computed

from Equation 5.12. The values of p(v, g) are shown with a colormap, the legend

of which is shown. In (c) a simple boundary emphasis function is plotted.

not just with the v2 region, but also with the v1 background region. If one wanted to

visualize just the v1–v3 boundary with a value-based opacity function, the opacity

function would have to make the values halfway between v1 and the v3 opaque.

Unfortunately, these are precisely the values near v2, the value within the outer

cylindrical shell. Thus the outer shell would obscure the v1–v3 boundary in any

rendering. For this reason, one dimensional opacity functions are not sufficient to

selectively render the boundaries in this dataset.

Figure 5.8(b) shows p(v, g) as calculated from Equation 5.12, with the aid of a

colormap which is orange for positive values, blue for negative values, and purple

in between the two extremes. Additionally, there is a small band of dark gray for

values very close to zero. Where p(v, g) is undefined, the image is white. Note that

as one moves along the arches from left to right, p(v, g) changes from negative to

positive, hitting zero at the peak of the arches. This is closely analogous to the
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plot of p(v) for the nested spheres (Figure 5.4(f)) in the previous section, where

position went from negative to positive as we moved up the data value axis. The

position information p(v, g) is then fed into a simple boundary emphasis function

b(x), shown in Figure 5.8(c). Even though the user-specified b(x) is still a simple

function of one variable, it facilitates the creation of a two dimensional opacity

function.

The relationship between the two dimensional opacity function and the final

rendering is shown in Figure 5.9. The initial opacity function calculated with

Equation 5.13 (and the b(x) plotted in Fig. 5.8(c)) is shown at the bottom of

Figure 5.9(a). As there were three boundaries recorded in the histogram volume,

there are three bright regions in the opacity function, one for each boundary.

To allow seeing internal structure, none of the boundaries have been rendered

fully opaque. When we remove one of the regions of high opacity from α(v, g)

(Figure 5.9(b)), the corresponding boundary disappears from the rendering. In

Fig. 5.9(b), what remains is the surface of the inner cylindrical shell. Since this

object has boundaries with both the background and the lower object value, we

can selectively render one or the other part of the surface, as demonstrated in

Fig 5.9(c).

Though a contrived example, this serves to demonstrate the power of the

method for two dimensional opacity function generation. In the one dimensional

case, each detected boundary was marked by a spike in the opacity function of data

value. Here, each detected boundary is marked by a bright spot in the two dimen-

sional opacity function. This immediately gives the user a feel for what types of

boundaries occur in the volume. By making only the middle of boundaries opaque,

the different significant regions in the opacity function can be easily differentiated
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Figure 5.9: Renderings of nested cylinders and corresponding α(v, g). (a) shows

the two dimensional opacity function α(v, g) initially generated from Equation 5.13

and a simple b(x). As with the scatterplots, the data value is on the horizontal axis,

and gradient magnitude on the vertical. Black areas represent transparency; white

is fully opaque. All three boundaries are visible in the corresponding rendering.

By zeroing out areas in α(v, g), other boundaries can be removed with ease, as

seen in (b) and (c).
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from each other by the user, and then edited to control which boundaries are

rendered. Other examples of the effectiveness of this technique in generating two

dimensional opacity functions are given in Chapter 6.

5.4 Comparison with Levoy’s two dimensional

opacity functions

The main result of Levoy’s influential paper, “Display of Surfaces from Volume

Data”[Lev88], was to demonstrate the usefulness of volume rendering for what

might otherwise be considered the domain of isosurface rendering— the visual-

ization of surfaces in regularly sampled volume data. He demonstrated that not

only is direct volume rendering appropriate for this task, but that in some aspects

it is superior to isosurface rendering. It avoids the explicit creation of a surface

geometry, and it displays ambiguous or under-sampled features as “faint wisps”,

a more accurate representation than that given by isosurfacing. His success can

be attributed to the careful design of the opacity functions which he developed

for the two visualization tasks described in his paper. Because there are many

similarities between the goals addressed in Levoy’s paper and in this thesis, we

review the opacity functions which Levoy designed and the visualization problems

which motivated them. We conclude the chapter with some observations about

the differences between Levoy’s methods and the ones advanced in this thesis.

5.4.1 Visualizing isosurfaces in smoothly varying data

Levoy’s first task was visualizing isosurfaces of electron density functions. These

datasets are characterized by smooth and slow variations of the data value through-
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out the volume. From the four sample cross-sections of such a dataset shown in

Figure 5.10: Slices of electron density dataset

Figure 5.10 (taken from Levoy’s paper), we can see that these datasets do not

exhibit any of the characteristics assumed for this thesis. There are no regions

of relatively constant value contained by boundary regions where the data value

changes quickly. The discontinuities which exist with material boundaries are not

present in electron density functions. Still, it is important to review the opacity

function Levoy developed for this type of data because it is the only style of two

dimensional opacity function which has since received any significant attention in

the volume rendering literature[Mur95, YESK95, LCN98]. Also, the opacity func-

tion he designed for this application has proven to have utility for a wider variety

of datasets.

Because Levoy uses volume rendering instead of true isosurface extraction to

visualize the isovalue contours, the rendered surfaces will necessary have some

thickness. Levoy states that the “most pleasing image” results from making the

isosurface appear to have equal thickness everywhere. One way to achieve this is

with a opacity function which takes into account the gradient of the data value.

Specifically, if we assume that the data value varies linearly with position near the
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isosurface, then the range of values which needs to be made opaque is proportional

to the magnitude of the gradient. When the data value changes quickly as a

function of position, a wider range of values need to be made opaque so as to create

an opaque region of fixed thickness, and conversely low rates of change in data value

require opacity for a narrower ranges of values. The plot of the two dimensional

opacity function which achieves this is shown in Figure 5.11(a), a diagram taken

from Levoy’s paper. Also, to facilitate comparison with the gray-scale graphical

representation of the two dimensional opacity functions presented in this thesis,

a gray-scale representation of Levoy’s function is shown in Figure 5.11(b). We

continue the convention used in Chapter 5, letting v = f(x) and g = |∇f(x)|,

though Levoy’s figures employ a slightly more complicated notation.

(a)

v

g

v0

α(v, g)

0.0 αv

(b)

Figure 5.11: Levoy’s opacity function for isovalue surfaces. In (a), a three dimen-

sional plot of the function, from Levoy’s paper. The data value axis extends to the

lower right, and the gradient magnitude axis extends to the upper right, with opac-

ity on the vertical axis. In (b), a gray scale representation of the same function.

In (a), the isovalue is notated fv, while in (b) it is notated v0.

There are three degrees of freedom in this type of opacity function which need

to be defined before stating its formula:
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• v0: the isovalue around which the opacity will be assigned (Levoy refers to

this quantity as fv)

• r: the desired thickness of the isosurface, in units of voxel edge length

• α0: the maximum opacity of the isosurface (notated αv by Levoy)

Strictly speaking, Levoy defines his opacity as a function of position x within

the volume, but the terms which appear in his formula are the data value at x,

v = f(x), and the gradient magnitude at x, g = |∇f(x)|. Thus the opacity

function can be expressed as:

αiso(v, g) = α0


1 if g = 0 and v = v0

1− 1
r

∣∣∣v−v0

g

∣∣∣ if g > 0 and v − rg ≤ v0 ≤ v + rg

0 otherwise

(5.14)

It is the second line of Equation 5.14 which establishes the proportionality between

the gradient magnitude and the range of data values which are assigned opacity.

This in turn creates the “V” shape of the opaque region in (v, g) space, flaring

linearly with gradient magnitude (Figure 5.11)

5.4.2 Visualizing region boundary surfaces

The second visualization task addressed in Levoy’s paper is the rendering of “region

boundary surfaces” in the specific context of CT medical imaging technology. Like

the visualization task discussed in this thesis, Levoy’s goal is to visualize the inter-

faces between adjacent regions of uniform material. However, since Levoy restricts

himself to the domain of CT datasets, he makes strong assumptions about the

spatial inter-relationship between the material regions. Quoting from this paper:
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“We assume that scenes contain an arbitrary number of tissue types

bearing CT numbers falling within a small neighborhood of some known

value. We further assume that tissues of each type touch tissues of at

most two other types in a given scene. Finally, we assume that, if

we order the types by CT number, then each type touches only types

adjacent to it in the ordering.”

To characterize the opacity function Levoy developed for this case, we notate the

“CT numbers” (the materials’ data values in the CT scan) as vi, where each

material is tagged with an integer i. Next, an opacity αi is assigned to material i

so that the various materials can be visually differentiated in the rendering. Values

which fall between the known material values vi and vi+1 are assigned an opacity

by linearly interpolating between αi and αi+1. Finally, and most importantly, to

accentuate the boundaries between the regions, the opacity is scaled by the gradient

magnitude. Figure 5.12(a) shows the plot of the opacity function which appeared

in Levoy’s paper, and Figure 5.12(b) shows the gray-scale representation.

The final opacity function is then:

αbound(v, g) = g

 αi+1
v−vi

vi+1−vi + αi
vi+1−v
vi+1−vi if vi ≤ v ≤ vi+1

0 otherwise
(5.15)

In comparing our method with the second of Levoy’s two opacity functions, it

should be stressed that he assumes the CT numbers vi are known for each type of

biological material. This thesis, however, aims to be more general and require less

prior knowledge. Because the opacity function generation presented in this thesis

is grounded in the measured properties of the data, the user is (ideally) freed from

setting material data values by hand. Levoy is nonetheless justified in making his

assumption, because in medical imaging situations where CT is being used, there
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α(v, g)
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(b)

Figure 5.12: Levoy’s opacity function for region boundary surfaces. In (a), a three

dimensional plot of the function, using the same axes as in Figure 5.11(a). In (b),

a gray scale representation of the function. The three known material values are

labeled fvA , fvB , and fvC in (a), while in (b) they are notated simply vA, vB, and

vC . Similarly, the material opacities αvA , αvB , αvC in (a) are notated αA, αB, and

αC in (b).

is a high degree of consistency between scans in the data values which arise from

human tissue types.

The assumption about having a strict progression of nested regions with increas-

ing data values is stronger than any assumption made in this thesis. For instance,

the nested cylindrical shells in Section 5.3 violate Levoy’s assumption but are well

handled by our method for two dimensional opacity function generation. On the

other hand, this thesis makes the strong assumption that all boundaries have the

same thickness. Levoy makes no assumptions whatsoever about the the thickness

of boundaries, nor does he rely on any particular boundary model for defining

the opacity function. He simply requires that the boundary region have higher

gradient magnitude that the material interior, so that scaling the opacity by the

gradient magnitude (Equation 5.15) causes material interiors to be suppressed in

the rendering.



Chapter 6

Results

In this chapter we apply the techniques previously described to a variety of “real

world” volume datasets. In addition, the examples will demonstrate the effects

of various adjustments to the algorithm which have been alluded to in previous

chapters without illustration. We will analyze the following datasets:

• Turbine Blade: A CT dataset is blurred slightly as a pre-process to make the

blade’s boundary better match the ideal boundary, and to improve rendered

surface quality.

• Engine Block: The effectiveness of two dimensional opacity functions is

shown. Two dimensional opacity functions reveal structural details of the

dataset not visible with any one dimensional opacity function.

• CT Head: This example illustrates the effect of changing histogram volume

size on the quality of the generated opacity functions. Also, renderings made

with our two dimensional opacity functions permit a comparison between our

method and Levoy’s method for boundary visualization.

72
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• Spiny Dendrite (hippocampus): Given a dataset in which the measured

boundaries are not ideal, some experimentation with gthresh and the bound-

ary emphasis function is needed in order to create an informative rendering.

• Spiny Dendrite (neostriatum): Some experimentation with the boundary

emphasis function is needed to produce an informative rendering with a one

dimensional opacity function. This dataset also demonstrates the alteration

to a two dimensional opacity function necessary to produce a clear render-

ing of the dendrite boundary. Finally, Levoy’s opacity function for isovalue

contours is used to produce a comparable rendering.

6.1 Turbine Blade: Effect of dataset blurring

We start with the “turbine blade” dataset, a CT scan of a propeller blade from the

engine of a fighter jet. The turbine blade itself is only about three inches tall. The

dataset is available from GE Corporate Research and Development1. The raw data

consists of unsigned 16-bit values; for this analysis it was quantized to eight bits

by linearly scaling the range 0− 8612 to 0− 255 and then clamping values above

255. The voxels in the original data are not isotropic; in the Z direction, along the

length of the blade, the sample spacing was half that in the X-Y plane. The data

was down-sampled in the X-Y plane by blurring slightly with the following cubic

polynomial kernel h(x), shown in Figure 6.1, and then sampled at every other data

1For information contact Bill Lorensen, lorensen@crd.ge.com
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point.

h(x) =


1
2
|x|3 − |x|2 + 2

3
for |x| ≤ 1

−1
6
|x|3 + |x|2 − 2|x|+ 4

3
for 1 < |x| ≤ 2

0 otherwise

(6.1)

-2 -1 1 2

0.5

1.0
h(x)

x

Figure 6.1: Cubic spline used prior to down-sampling

A close-up of a slice of the downsampled dataset, as well as the usual scatter-

plots are shown in Figures 6.2(a-c). The histogram volume was computed using

the Hessian second derivative measure, at a resolution of 2563. The scatterplots

show the curves which indicate the presence of a boundary between the two major

material data values, but the curves do not quite have the shape of those for an

ideal boundary. In the scatterplot of first derivative versus data value, for exam-

ple, (Figure 6.2(b)), we can see that the boundary curve is slightly wider and more

rounded than the more pointed parabolic shape of the ideal curve, like that seen

in Figure 4.2(a).

To demonstrate that judicious blurring of the dataset causes the boundaries to

better match the boundary model, we convolve along each axis with the normalized

Gaussian kernel b(x) seen in Figure 6.3, and then calculate a new histogram volume.

As a result of the blurring, the curves in both scatterplots are closer to the ideal
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(a) Unblurred dataset
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Figure 6.2: Analysis of turbine blade dataset
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Figure 6.3: Gaussian kernel used for blurring. The standard deviation σ is 0.75

shape. However, as is visible in Figure 6.2(d), creating a better match to the

boundary ideal reduced some clarity in the fine detail of the dataset.

Figures 6.2(g) and 6.2(h) show plots of g(v) and h(v) as calculated from the

histogram volume of the blurred dataset. Their form is consistent with the fact that

there is a single boundary: at the data value half-way between the values for air

(approximately 10) and metal (approximately 175), g(v) has a single peak and h(v)

has a zero-crossing. The plot of g(v) illustrates the gthresh quantity which originated

in Section 5.2. Within the range of values for air and metal, the gradient magnitude

is not zero because of slight measurement noise. gthresh is set (by hand) to the value

of gradient magnitude within the materials, as indicated in Figure 6.2(g) with

a dotted line. Next, two calculations of p(v) (with Equation 5.10) are plotted.

Figure 6.2(i) shows p0(v) calculated without the gthresh modification described in

Section 5.2 and defined in Equation 5.10. Figure 6.2(j), showing pgt(v) calculated

with the indicated gthresh, is a much better match to the curve we would expect for

a distinct boundary. It is clear that an appropriate setting for gthresh is important

for making p(v) accurately reflect position within the boundary.

Having obtained an appropriate p(v) function, it is now easy to obtain a render-

ing of the dataset which shows only the surface of the turbine blade. Figure 6.5(a)

shows the boundary emphasis function b(x) used, which strives to makes the opaque

boundary region about five units thick (where one unit is the length of a voxel
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edge). The opacity linearly ramps up to 0.8 at the middle of the boundary, and is

0.0 at 2.5 units on either side of the middle. Figure 6.5(b) shows the opacity func-

tion α(v) calculated (with Equation 5.11) from the pgt(v) and b(x) just described.

As we would expect for a nearly ideal boundary, the opacity function mirrors the

triangular shape of the boundary emphasis function. Since the specified b(x) is

highest at x = 0, α(v) is highest for the data value v such that p(v) = 0, which is

approximately 89.

A minor problem with the analysis performed so far is that the σ calculation

was not optimal. According to Equation 5.8, with the g(v) and h(v) calculated,

σ = 1.284 for this dataset, implying a boundary thickness of 2σ = 2.568. Judging

from the cross-section seen in Figure 6.2(d), this may be plausible. However if

we inspect the result of applying the opacity function α(v) to the same piece

of the cross-section in Figure 6.5(c), it does not look like the thickness of the

opaque boundary region is five voxels, as prescribed by the b(x) used. It was found

that a boundary emphasis function which makes the opaque boundary region any

thinner led to a rendering with gaps in the surface. Rendered surface quality is

also a problem when trying to visualize the unblurred version of the dataset, since

its boundary region is so thin. Using the b(x) shown with the blurred dataset,

however, the rendered surface seen in Figure 6.5(d) appears smooth and solid.

By making the maximum opacity in b(x) only 0.8, instead of 1.0, we can see the

support struts inside through the outer surface of the blade. For comparison,

Figure 6.4 shows a slice through the blade which reveals the position of the struts

inside.
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Figure 6.4: Cross-section of blade showing struts

6.2 Engine Block: Effectiveness of two dimen-

sional opacity functions

The CT scan of the “engine block” has become a reference dataset which appears

throughout the volume rendering literature. While the method for one dimensional

opacity function generation works passably with the dataset, the two dimensional

opacity functions are very effective.

The dataset is available with the Stanford VolPack volume rendering library

distribution, or can be downloaded from the Stanford Computer Graphics Labo-

ratory web page2. It is a 256× 256× 110 volume of 8-bit values. Because the CT

scan contains a lot of background (air), the dataset can be significantly cropped

without impinging on the engine block itself3. We use the Hessian second deriva-

tive measure to produce a 2563 histogram volume which includes first derivative

values between zero and 126.7 and second derivative values between −127.6 and

127.6.

Figures 6.6(a) through 6.6(c) show a slice of the dataset and the two scat-

2ftp://www-graphics.stanford.edu/pub/volpack/data/engine/
3Along the X axis, we use voxels 56 through 211 inclusively; along the Y axis,

16 through 224.
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Figure 6.5: Rendering the turbine blade dataset
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Figure 6.6: Analysis and renderings of engine block with one dimensional opacity
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terplots. As mentioned in Section 4.4, there is the obvious mark of a boundary

between the data values around 10 and 140, as well as fainter indications of bound-

aries between 140 and 255, and between 10 and 255. Incidently, from the fact that

the curves ending at value 255 appear to be clipped on their right side, we can

infer that the quantization of the raw data to eight bit values involved a somewhat

aggressive clamping of high values.

Figures 6.6(d) through 6.6(f) are the plots of g(v), h(v), and p(v) calculated

from the histogram volume. The plot of g(v) includes an indication of the gthresh

which was used for this dataset. Like the nested cylindrical shells which were ana-

lyzed in Section 5.2, the engine block has three boundaries, including one spanning

the highest and lowest values, from about 10 to 255. As is visible in the scatter-

plot of second derivative versus data value, the presence of this boundary exerts a

negative influence on the average second derivative for the data values above 140,

which pushes the plot of h(v) downward for the same range of values. Offsetting

the location of the sign change in h(v) in turn causes the curious shape of the

p(v) graph— around value 150 the graph of p(v) turns upward, not downward as

we would expect. Because h(v) is negative instead of positive at the data value

v where g(v) − gthresh is zero, in accordance with Equation 5.10, p(v) is positive

instead of negative. However, the lower boundary, between 10 and 140, has such a

greater surface area that it is not influenced by the other boundary, thus for lower

data values, the plots of g(v), h(v), and p(v) look as they should.

This demonstrates that datasets containing boundaries with overlapping ranges

of data value cannot be correctly analyzed with this algorithm to produce accurate

opacity functions of data value alone. In spite of this, the algorithm still generates

passable results. Using a simple triangular spike centered at x = 0.1 and extend-
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ing one unit on each side for the boundary emphasis function (Figure 6.6(g)), the

opacity function generated (Figure 6.6(h)) produced the rendering seen in Fig-

ure 6.6(j). The outer boundary is rendered well. The boundary emphasis function

was centered at x = 0.1 instead of x = 0 to reduce the amount of air which is

erroneously made opaque. Manually removing the lower of the two bumps in α(v)

produced the rendering seen in Figure 6.6(k). We see that the surface boundaries

are partially occluded by voxels which are not part of the boundary and should

have been made opaque. This is caused by the small spike on the left side of

the higher bump in α(v). Manually removing it (Figure 6.6(i)), we see the higher

material boundary clearly (Figure 6.6(l)).

We now render the same dataset using two dimensional opacity functions. The

first step is to calculate the function p(v, g) from Equation 5.13. The result is

shown in Figure 6.7(a), with the aid of a colormap which is blue for negative

values, orange for positive values, with a dark portion near zero. Because of this

dark portion, we can see in the image of p(v, g) those places in (v, g) space where

the position is near zero, which corresponds to the middle of a boundary. The

three dark regions visible in the image of p(v, g) help clarify the fact that there

are three boundaries in the engine block dataset, even if the three curves in the

first derivative versus data value scatterplot (Figure 6.6(b)) aren’t easily visible.

The same boundary emphasis function used earlier for one dimensional opacity

function generation is used again to generate the two dimension opacity function

seen in Figure 6.7(b). Three regions in the opacity function have been outlined

and labeled; the placement of these outlines was established by the locations of

the positive and negative positions visible in the p(v, g) image.

The opacity function was used unchanged to produce the rendering in Fig-
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Figure 6.7: Analysis and renderings of engine block using two dimensional opacity
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ure 6.7(c). For Figure 6.7(d), the regions 1, 2, and 3 of the opacity function were

included, excluding the small area below region 1, thereby removing the small

pieces of background which were incorrectly made opaque in the previous render-

ing. The outer surface in this rendering is noticeably cleaner and more consistent

than that seen in the rendering from the one dimensional opacity function, Fig-

ure 6.6(j). Next, region one was removed from the opacity function to show the sur-

face of the higher material components of the dataset (Figure 6.7(e)). Next, region

two is removed from the opacity function, producing a rendering (Figure 6.7(f))

which shows only the boundary between the highest and lowest data values. Com-

paring the last two renderings, we learn structural information about the dataset

which cannot be visualized with any one dimensional opacity function.

6.3 CT Head: Effect of changing histogram vol-

ume size

The CT scan of a female cadaver’s head which Levoy used in his original paper

has, like the “engine block”, become a reference dataset often used to demonstrate

volume rendering algorithms. This dataset is available with the Stanford VolPack

library distribution, or it can be downloaded from the Stanford Computer Graph-

ics Laboratory web page4. It is a 256× 256× 225 volume of 8-bit values. Because

the CT scan contains a lot of background (air), the dataset can be significantly

cropped without impinging on the cadaver head itself5. We use the Hessian sec-

ond derivative measure to produce a 2563 histogram volume which includes first

4ftp://www-graphics.stanford.edu/pub/volpack/data/head/
5Along the X axis, we use voxels 13 through 196 inclusively; along the Y axis,

2 through 248.
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derivative values from zero to 66.0, and second derivative values from −43.0 to

43.0.

Figure 6.8 begins with a slice of the dataset and the two scatterplots. The

two boundaries that are most evident from the scatterplots are those between air

(around value 15) and soft tissue (value 90), and between soft tissue and bone

(value 175). This is confirmed by looking at the plots of g(v), h(v), and p(v)

in Figures 6.8(d) through 6.8(f). The nearly ideal shape in the lower segment of

p(v)’s graph (below value 90) indicates a clean boundary, while the upper segment

of p(v)’s graph (above value 90) is somewhat distorted.

Still, using a simple boundary emphasis function (Figure 6.8(g)) results in an

opacity function with two main peaks which successfully display the air-skin and

tissue-bone boundaries. The rendering in Figure 6.8(j) was produced with the

opacity function in Figure 6.8(h). Besides seeing the surface of the skin, we also

can discern the gauze over the forehead and under the chin that was used to

immobilize the head during scanning. The spikes projecting from the mouth are

an artifact in the dataset due to dental fillings scattering the X-rays. By removing

the lower of the two peaks (Figure 6.8(i)), the surface of the skull becomes visible

(Figure 6.8(k)). The third smaller peak did not correspond to any significant

boundary.

As was mentioned in Section 4.3, generation of opacity functions is possible

from histogram volumes smaller that the 2563 sizes used elsewhere in this thesis.

Figure 6.9 shows the analysis of the CT head using a 643 histogram volume. The

plots of g(v), h(v), and p(v) in Figures 6.9(a) through 6.9(c) are similar to those for

the 2563 histogram volume (Figures 6.8(d) through 6.8(f)), but they are noticeably

smoother. As a result, the generated opacity functions are also smoother, which
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Figure 6.8: CT head analysis and rendering
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Figure 6.9: CT head analysis and rendering using 643 histogram volume
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is sometimes a benefit if the rendering algorithm produces artifacts as a result

of sharp changes in the opacity function6. However, smoother g(v), h(v), and

p(v) functions are less accurate with respect to the original dataset, and this can

be a very significant problem. For instance, the need for a higher gthresh setting

(Figure 6.9(a)) means that the new p(v) function (Figure 6.8(f)) has a steeper

slope, and thus the peaks in the new opacity function (Figure 6.9(e)) are narrower

than before, even though we have used the exact same boundary emphasis function

(Figure 6.9(d)), and nothing has changed about the underlying dataset. In spite

of this, the new opacity functions still lead to acceptable renderings of the air-skin

boundary (Figure 6.9(g)) and the tissue-bone boundary (Figure 6.9(h)).

6.3.1 Comparison with renderings using Levoy’s method

Section 5.4 gave an overview of Levoy’s two dimensional opacity functions and

compared them to the ones presented in this thesis. We now compare the results

of the two methods on the CT head dataset, as this is the only dataset we have

renderings of using Levoy’s technique. Levoy used the second of his two opacity

functions, those designed for visualizing “region boundary surfaces” as described

in Section 5.4.2. However, the exact settings he used for the opacity function (that

is, the CT numbers he chose for each material), were not described, nor were any of

the lighting or shading parameters for the rendering. The images which appeared

in his paper, shown in Figure 6.10, will serve as the basis for the comparison.

Before showing renderings using our two dimensional opacity functions, we

display in Figure 6.11 the results of the p(v, g) calculation (from Equation 5.12),

6For instance, the popular shear-warp volume rendering algorithm suffers from
this problem because it relies on bi-linear interpolation within the volume instead
of tri-linear interpolation.
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Figure 6.10: Renderings of the CT head from Levoy’s paper
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Figure 6.11: Precursors to α(v, g) calculation for CT head. The p(v, g) calculated

is shown in (a), and a new boundary emphasis function is shown in (b)

as well as a new boundary emphasis function b(x). The new boundary emphasis

function has a narrower peak so that we can better differentiate the regions in

α(v, g) that correspond to the different boundaries. The p(v, g) shown is based on

a new histogram volume which includes more of the range of gradient values than

the one used in the previous figures7.

Just as inspection of p(v) graphs provided information about the boundaries

in a volume which could be displayed with one dimensional opacity functions, the

graphical representation of p(v, g) serves as a visual summary of the boundaries

which can be rendered using a two dimensional opacity function. For instance,

the long black streak near the center of p(v, g) is the indication of the tissue-bone

boundary. Bone takes on a range of values in the CT scan because its radio-

opacity is not constant. The gradient magnitude at the midpoint of the tissue-

7The new histogram volume has a size of 2563 and includes first derivative
values zero through 85.8. The gthresh used for the p(v, g) calculation was zero.
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bone boundary varies in proportion with the bone value, since the soft tissue

radio-opacity is more constant. Thus the black streak, marking the middle of

the boundary, slants towards higher data values as one moves upward along the

gradient magnitude axis.

A great deal can be learned about the structure of a dataset through experi-

mentation with the two dimensional opacity function α(v, g) generated from the

histogram volume. Figure 6.12 demonstrates this for the main structural com-

ponents of the CT head by showing opacity functions and the renderings which

they produced. Figure 6.12(a) shows the initial α(v, g) as calculated from Equa-

tion 5.13. No adjustments were needed to produce the renderings. We can see

the gauze strips very clearly, but the sides of the head are obscured. By removing

some of the opaque regions (Figure 6.12(b)) from α(v, g) at low data values and

low gradient magnitudes, the gauze can be completely removed from the rendering

without disturbing the air-skin boundary. The precise editing of α(v, g) needed to

achieve this effect was guided by the p(v, g) image. In Figure 6.12(c), the air-skin

boundary is removed, revealing the surface of the skull.

So far, we have shown that the semi-automatically generated two dimensional

opacity functions succeed in capturing the boundaries in the dataset, and that

minimal editing of the opacity function is needed to see the main boundaries.

Thus, our method is at least as powerful as Levoy’s, because we were able to

visualize the same boundaries, but without needing to know the CT values for

the materials beforehand. Furthermore, adjustments to the boundary emphasis

function can be used for fine control of the rendered boundary appearance.

However, there is one last boundary in this dataset which was never visualized

in Levoy’s paper. Although disallowed by Levoy’s own material adjacency restric-
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Figure 6.12: Renderings of CT head with two dimensional opacity functions. In

(a), the initially generated α(v, g) shows the air-skin boundary. With minor editing

(b), the gauze and surrounding material is cleared. Careful removal of the lowest

boundary curve region reveals the tissue-bone boundary (c).



93

tions (Section 5.4.2), there are boundaries between bone and air in the dataset.

More precisely, in the skull’s various sinus cavities, there are boundaries between

bone and air which contain only a thin intermediate layer of mucus membrane.

Because of the resolution of this particular CT scan, the measured boundaries of

the sinus regions effectively span the data values for air and bone directly, thus the

boundary can be selected with the right two dimensional opacity function. The

tissue-bone boundary can be removed from the rendering with a simple change

in the opacity function (Figure 6.13(a)), revealing the previously unseen bone-air

boundary within the skull. Figure 6.13(b) shows the same boundary from another

viewpoint, and a transparent layer of the air-skin boundary has re-introduced for

reference. The shape of the frontal nasal cavity (above the eyes) is especially easy

to discern. Also visible is are the mastoid air cells, a spongy region of the temporal

bone in the skull, near the ears[Moo85].

Because of where it lies in (v, g) space, the air-bone boundary can not be visu-

alized with any one dimensional opacity function, since the soft tissue surrounding

the skull would obscure it. Also, it can not be visualized with Levoy’s method for

region boundary display, because he is essentially using a one dimensional opacity

function followed with a scaling by the gradient magnitude (recall Figure 5.12).

The ability to see the air-bone boundary is more an indication of the potential

power of two dimensional opacity functions in general, than it is a specific demon-

stration of our method’s effectiveness. The information captured in the histogram

volume, and made visible in p(v, g), provided the guidance in editing the α(v, g)

function needed to reveal the boundary.
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Figure 6.13: Rendering of CT head dataset displaying the air-bone boundary. (a)

shows the opacity function and renderings, using the same viewpoint as in Fig-

ure 6.12. The rendering in (b) uses the same viewpoint as in Figures 6.8 and 6.9,

and some of the air-skin boundary has been reintroduced.
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6.4 Spiny Dendrite (hippocampus): Experiment-

ing with gthresh and b(x) peak width for one

dimensional opacity functions

We now analyze the neuron dataset first seen in the comparison of surface versus

direct volume rendering (Figure 1.4). The dataset is a tomographic reconstruction

of a spiny dendrite on a hippocampal pyramidal neuron from a rat. The specimen

is courtesy of Prof. K. Hama of the National Institute for Physiological Sciences,

Okazaki, Japan. The National Center for Microscopy and Imaging Research ac-

quired a series of images of the two micron thick specimen with an intermediate

high voltage electron microscope. The images were processed with single tilt axis

tomography to create a volume of floating point values. This was quantized to

eight bits by histogramming the raw data to determine the floating point range

that best contained the important values. The histogram volume generated for

this dataset has a resolution of 2563, and was calculated using the Hessian second

derivative measure.

As was mentioned in Section 4.4, the scatterplots for this dataset (Figures 6.14(b)

and 6.14(c)) do not show clear evidence of any boundaries, as compared to the

scatterplots for the other CT datasets analyzed in previous sections. This is also

evident from the graphs of g(v) and h(v) (Figures 6.14(d) and 6.14(e)). Instead

of having a noticeable maximum at the data value associated with the boundary,

and being low elsewhere, the predominant feature of g(v) is its minimum at the

data value associated with the background value (around 80). The graph of h(v)

is also atypical— instead of having one distinct zero-crossing, it lies very close to

the v axis along the range of values approximately between 75 to 140.
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Figure 6.14: Analysis of hippocampal neuron dataset
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We show next the results of two p(v) calculations, based on different choices for

the value of gthresh. Figure 6.14(d) illustrates how gthresh1 was chosen to coincide

with the average gradient magnitude within the background value. The resulting

p(v) (Figure 6.14(f)) has three zero-crossings in the data value range from 75 to

140, theoretically indicating the presence of three boundaries in the volume. Yet

the cross-section shows that there are basically just two types of material in the

dataset, background and dendrite, and we are interested in the (single) boundary

between the two. The problem is that the histogram volume did not succeed in

properly measuring the soft boundary that exists between the dendrite and the

background. As a result, straight-forward application of Equation 5.10 with what

appears to be the correct gthresh did not create a position function p(v) which is

suitable for further analysis.

However, we can choose a gthresh so as to create a position function p(v) with

a single zero-crossing. Raising gthresh tends to stretch the graph of p(v) away

from the v axis, eliminating multiple zero-crossings. Using the gthresh2 indicated

in Figure 6.14(d) leads to the position function p(v) seen in Figure 6.14(g). The

new p(v) has only one zero-crossing, which is circled for clarity.

This kind of experimentation with gthresh should be explained, since it may

appear to be somewhat ad hoc. As one can see from the scatterplot of data value

and second derivative (Figure 6.14(c)), there is a general tendency for the second

derivative to decrease as data value increases. This property is better represented

by the fainter pattern of voxels with very high and very low second derivatives

(located in the upper left and lower right portions of the scatterplot, respectively),

than by the much larger number of voxels clustered along the region of near-zero

second derivative values. Looking at the second derivative scatterplot, one can
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visually interpolate between the faint distribution of voxels with very high and

very low second derivative values in order to find the approximate zero-crossing of

this faint pattern. In our experience, the single zero-crossing in p(v) that is revealed

by increasing gthresh is well-correlated with the zero-crossing in the scatterplot. We

now proceed with the second stage of opacity function generation, by experimenting

with different boundary emphasis functions.

For an initial b(x) we start with a tent function centered at zero, spanning 0.3

voxels on either side, seen in Figure 6.15(a). The reason for the small scale in the

domain of b(x) is that the non-ideal shape of the g(v) and h(v) graphs led to a very

inaccurate estimation of the boundary blurring parameter σ, calculated to be 0.45

with Equation 5.8. This implies a boundary thickness of 2σ = 0.9, but inspection of

dataset cross-sections would suggest the thickness is closer to 2.5. Still, the initial

b(x) is too wide, because the resulting opacity function (Figure 6.15(b)) is non-

zero for too many different values, so the rendering (Figure 6.15(c)) shows no clear

structure. This can be improved by narrowing the peak in b(x) (Figure 6.15(d)),

which similarly narrows the peak in α(v) (Figure 6.15(e)), and the new rendering

(Figure 6.15(f)) is somewhat clearer.

Continuing to make the b(x) peak narrower (Figure 6.16(a)) leads to an even

narrower peak in α(v) (Figure 6.16(b)), and finally the rendering (Figure 6.16(c))

shows the surface structure of the neuron. Again, this process was not as automatic

as would be ideal, but to arrive at this rendering (starting with the p(v) calculated

previously) required empirically decreasing only one variable, the width of the

triangular peak in b(x). From here, we can further decrease the amount of “haze”

surrounding the neuron by moving the peak in b(x) slightly to the right, to slightly
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Figure 6.15: Renderings of hippocampal neuron dataset
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Figure 6.16: Renderings of hippocampal neuron dataset, continued
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higher position values (Figure 6.16(d))8. The peak in the new opacity function

moves in the same direction, putting greater emphasis on higher data values, so as

to emphasize the boundary region closer to the interior of the neuron. The change

in the resulting opacity function is slight (Figure 6.16(e)), but there is less semi-

transparent material surrounding the neuron in the rendering (Figure 6.16(f)).

6.5 Spiny Dendrite (neostriatum): Comparison

of one and two dimensional opacity functions,

including Levoy’s

We finish with a second spiny dendrite dataset from the National Center for Mi-

croscopy and Imaging Research, a tomographic reconstruction of part of a dendrite

from the neostriatum of a rat’s brain. The specimen was provided by Drs. C. Ing-

ham and G. Arbuthnott (University of Edinburgh, Scotland) and C. Wilson (Uni-

versity of Tennessee, Memphis). The tomographic reconstruction and numerical

conversions used with this dataset are the same as those used in Section 6.4

Figure 6.17 starts with a cross-section of the dataset and continues with the

various analysis results. The cross-section (Figure 6.17(a)) indicates that this

dataset is similar to the one analyzed and rendered in the previous section— there

are significant variations in the data value within the background and dendrite

caused by inconsistent radio-opaque dye absorption and tomographic artifacts.

This is confirmed by inspection of the scatterplots (Figures 6.17(b) and 6.17(c)),

which do not clearly contain the characteristic boundary curves. The graphs of

g(v), h(v), and p(v) (Figures 6.17(d), 6.17(e), 6.17(f)) are similar to those for

8The peak in b(x) is centered at 0.0025 instead of 0.0.
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Figure 6.17: Analysis of neostriatum neuron dataset
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the previous dendrite dataset, although with this dataset experimentation with

gthresh was not needed. Setting gthresh to the average gradient magnitude within

the background results in a position function p(v) with only a single zero crossing,

at data value 140.

Figure 6.18 show two renderings of the dataset based on slightly different

boundary emphasis functions. Some experimentation produced the boundary em-

phasis function seen in Figure 6.18(a), which led to the opacity function in Fig-

ure 6.18(b) and the rendering in Figure 6.18(c). Although the rendering shows the

surface of the dendrite fairly well, we can reduce the amount of surrounding haze

by moving the spike in the boundary emphasis function to the right— to higher

position values (Figure 6.18(d))— which in turn causes the spike in the opacity

function (Figure 6.18(e)) to move to higher data values. The new rendering is

clearer, although at the expense of having the thin features in the dendrite shrink

in size.

This dataset can also be used to demonstrate the effectiveness of two dimen-

sional opacity functions. This starts with the two dimensional position function

p(v, g), shown with a colormap in in Figure 6.19(a). The important feature in

this image is the vertical gray band indicating an average second derivative near

zero, signifying the middle of a boundary. The gray band being vertical indicates

a consistent correlation with one data value, approximately 140, the same data

value at which the one dimensional position function p(v) had its zero-crossing.

The initial two dimensional opacity function α(v, g) shown in Figure 6.19(b)

was generated from the same boundary emphasis function and gthresh as used to

generate the one dimensional opacity function in Figure 6.18(e). The rendering in

Figure 6.19(d) indicates that this opacity function left some of the background near
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Figure 6.18: Renderings of neostriatum neuron dataset with one dimensional opac-

ity functions
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the dendrite opaque. Although the purpose of the gthresh modification in the def-

inition of the position function (Equation 5.12) was to eliminate the contribution

of background values to the opacity function (so as to remove them from the ren-

dering), this is difficult with two dimensional opacity functions because there can

be a wide range of gradient magnitudes within the background. Simply increasing

gthresh (as was done in the previous section) to the highest background gradient

magnitude is not helpful with the dendrite datasets. Doing so would eliminate

significant portions of the dendrite boundary from the rendering, because where

the boundary is very gradual, the gradient magnitude can be lower than gthresh.

Instead, the flexibility of two dimensional opacity functions allows us to remove

the contribution of the high gradients for only the data values associated with the

background, leaving the dendrite boundary unaffected. This modification to α(v, g)

is shown in Figure 6.19(c), and the resulting rendering is shown in Figure 6.19(e).

The boundary is now very uniformly clear and distinct, compared to the best

rendering obtained with a one dimensional opacity function. Whether or not the

dendrite should have a more “fuzzy” appearance where its measured boundary

is less distinct, a natural result of using a one dimensional opacity function, is a

choice available to the user.

As a final comparison with Levoy’s two dimensional opacity functions, we now

render the same dataset with the first of Levoy’s opacity functions, the one designed

for visualizing the isovalue contours in smoothly varying data. Strictly speaking,

this is a misapplication of the opacity function, because it was not intended for

the display of material surfaces. However, the large variations in the data value

and boundary characteristics in the neuron datasets make its use more appropri-

ate. The two main parameters for the opacity function seen in Figure 6.20(a) —
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Figure 6.20: Rendering of neostriatum neuron dataset with Levoy’s two dimen-

sional opacity function
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the width of the “V” in (v, g) space and the data value at which to center it —

were set by trying to match the appearance of the semi-automatically two dimen-

sional opacity function shown in Figure 6.19(c). In fact, the resulting rendering in

Figure 6.20 looks very similar to Figure 6.19(e), although the rendered surface is

slightly cleaner with Levoy’s opacity function.

This effectively demonstrates that for datasets where there is a single bound-

ary that has been imperfectly measured, Levoy’s opacity function can be useful,

provided that appropriate settings for its parameters are known. However, Levoy’s

method still has an element of trial and error, because nothing about the interface

would indicate if there are multiple boundaries, and the single boundary rendered

by this method may be obscuring other boundaries within. Normally, the user

would still have to explore the parameter space of this opacity function in order to

find the best rendering. Thus, even when the semi-automatically generated opac-

ity functions are not actually used in the rendering process, they give information

about all the boundaries present in the volume. This information can be used to

guide the user towards appropriate settings in the use of other types of opacity

functions, such as Levoy’s.



Chapter 7

Conclusions and future work

In the volume rendering community, the problem of transfer function specification

is acknowledged to be one of the remaining hard problems that needs to be solved

before direct volume rendering gains widespread acceptance in a variety of disci-

plines. This thesis has presented a solution to this problem for those situations

where the goal of the rendering is to visualize material boundaries in scalar vol-

ume datasets, with transfer functions which assign opacity only. This solution is

based on the “histogram volume”, a data structure which measures the position-

independent relationship between the data value and its derivatives throughout

the volume.

At a general level, the histogram volume allows opacity function generation

to be separated into two steps— the first automatic, the second controlled by

the user. After the histogram volume has been created, it contains information

which permits the automatic calculation of the position function, mapping from

data value to a signed distance to the boundary center. The user can then create

the boundary emphasis function to map from this spatial domain to opacity. The

composition of these two steps is an opacity function. Fortunately, the second
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mapping is easy to create, since the user is controlling only the character of the

rendered boundary, while the difficult portion— detecting and locating the bound-

aries in the data value domain— has been done automatically with the histogram

volume. With the techniques presented here for semi-automatic opacity function

generation, a large amount of guesswork has been removed from the process, and

the interface has been simplified and made more intuitive.

This thesis has also demonstrated the usefulness of two dimensional opacity

functions, first proposed by Levoy in 1988 [Lev88] but used only infrequently since

then. Fortunately, the same interface for setting the boundary emphasis function

can be used to control either one or two dimensional opacity functions with equal

ease.

The histogram volume analysis which is used to generate the position function

is based on a certain mathematical boundary model, but there are other possi-

ble ways of analyzing the histogram volume to extract the necessary information.

We have shown that for every boundary that occurs in a dataset, there will be

a characteristic curve in the histogram volume. Therefore, it would be fitting

to use an object recognition technique from computer vision, such as the Hough

transform, to find those curves wherever they appear in the histogram volume.

The use of the Hough transform for this purpose was briefly explored, but con-

cerns about its computational cost, mathematical complexity, and the correctness

of its implementation, led to its being abandoned in favor of the much simpler

techniques. Nonetheless, the Hough transform and related methods still warrant

further exploration.

One important possible improvement to the presented technique is better mod-

eling of the ideal boundary. Each imaging modality, such as CT and MRI, has a
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characteristic frequency response, which in turn determines the nature of mea-

sured boundaries. We assumed a Gaussian frequency attenuation which made the

computation of the position function extremely easy. However, a more accurate

mapping from data value to position should be possible with more sophisticated

models of frequency response, including those that model directional variation in

frequency response, a characteristic of all standard scanners. This may necessitate

measuring different kinds of derivatives, or recording them in other formats than

a histogram volume, but the mapping from position to opacity could still be done

with boundary emphasis functions.

There is also at least one interesting generalization of our method. MRI scan-

ners can measure many different quantities (proton density, spin decay rate, dif-

fusion, etc), and many MRI datasets contain vector information, with two, three,

or more separate measurements at each voxel. Within each material, these sepa-

rate data values will be roughly constant. Because this characteristic of material

uniformity was the main driving assumption in the development of the techniques

in the context of scalar data, it should be possible to extend them to non-scalar

data which shares the characteristic. Though the data structures and methods of

derivative measurement would be different, the algorithms and results would be

largely the same: all the boundary regions in the volume would be made visible

more easily and the user would again enjoy high-level control over the rendered

boundaries. There would be the additional benefit of robustness in the bound-

ary detection, because the spatially coincident boundaries in all the data channels

would reinforce one another.

Besides these fundamental changes and generalizations of the algorithm, there

are a number of smaller modifications which deserve exploration. There is room



112

for improvement in how the directional derivatives are measured. The histogram

volume analysis stage relies on a method for collapsing either an entire slice or a

scanline of the histogram volume down to one value. Currently an average value

is used, but it might be advantageous to use another measure, such as mode or

median. Finally, in its current form, the algorithm can not account for noise

in the data besides establishing a simple threshold mechanism which allows a

crude compensation for the ambient gradient magnitude caused by noise-induced

fluctuations in data value. Better noise handling, either as a pre-process filtering

or an integral part of the derivative measurement is certainly an area for further

investigation.

Direct volume rendering has proven itself to be a potentially very valuable tool

in a wide variety of applications. The power of the tool is currently being limited

by the difficulties faced by its users in trying to set the transfer function. This

thesis has offered a solution to the problem for rendering an extremely important

class of scalar volume datasets— those in medical and biological applications—

where the goal is visualizing the structure of material boundaries. In keeping

with the spirit of direct volume rendering, whereby the data values map to the

rendered image without any geometric pre-computation or algorithmic alteration,

this method makes the boundaries visible based on a fundamental relationship

measured in the dataset itself. The position-independent relationship between the

data value and its first and second derivatives allows for two advancements: the

automatic detection of the boundaries present in the volume, as well as an intuitive

interface for controlling how those boundaries are rendered.

The traditional trial-and-error path to a useful transfer function has been re-

placed by a novel and powerful high-level interface for transfer function editing.
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The core idea is to let the data help the user find the transfer function. Coupling

the interface for transfer function specification to the underlying dataset guaran-

tees some appropriateness of the transfer function for the task of visualizing the

structure of material boundaries. It is the author’s hope that this idea will have

relevance to other visualization applications where the promise of direct volume

rendering has yet to realized.



Appendix A

Bandlimiting and the “thickness”

of boundaries

A.1 Bandlimiting and thickness in terms of σ

Our goal here is to show the relationship between the boundary’s frequency content

and its thickness, and how this relationship effects our ability to record the presence

of the boundary in the histogram volume. The Fourier transform is an important

part of this analysis, and because there are variety of possible definitions for the

transform, we state the particular definitions being used here:

F (ω) = F(f)(ω) ≡
∫ ∞
−∞

f(x)e−iωx dx (A.1)

f(x) = F−1(F )(x) ≡ 1

2π

∫ ∞
−∞

F (ω)eiωx dω (A.2)

We will use the following to model the data value as a function of position

within a boundary region:

f(x) =
1 + erf( x

σ
√

2
)

2
(A.3)
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Recall from Section 5.2 that the “thickness” of a boundary is defined to be 2σ.

Setting vmin = 0 and vmax = 1 in the the formula for f(x) given in Section 5.1

produces Equation A.3. Any other values for the variables vmin and vmax repre-

sent some scaling or shifting of the boundary, and the Fourier transform is not

meaningfully changed by these operations.

To find the Fourier transform of the f(x) given above, we could simply apply

the definition of the Fourier transform to f(x), and then reduce the resulting

expression. We can avoid this labor, however, by exploiting a useful property of

the transform under integration, expressed here with
F←→ pointing to the two

expressions which are transforms of each other:

g(x)
F←→ G(ω) ⇒

∫ x

−∞
g(y)dy

F←→ G(ω)

iω
+ πG(0)δ(ω) (A.4)

This states, in terms of a function g(x) and its Fourier transform G(ω), how to

find the transform of an integral if we already know the transform of the function

being integrated. Aside from a “DC” term πG(0)δ(ω) (which we will henceforth

ignore1), when we integrate a function, the corresponding transform is divided by

iω. We will use Equation A.4 to find the transform of f(x) because doing so will

bring us directly in contact with the attenuation in frequency space caused by the

bandlimiting inherent in the measurement.

In order to exploit the property expressed in Equation A.4, we find the deriva-

tive of f(x):

f ′(x) =
1

σ
√

2π
e−x

2/2σ2

(A.5)

1The DC (direct current) component of the Fourier transform represents the
average value of the function. Since all the relevant characteristics of the bound-
ary’s Fourier transform are in terms of non-zero frequencies, the DC component is
not important for this analysis.
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By our choice of f(x), f ′(x) is a normalized Gaussian function with standard

deviation σ. Its Fourier transform is[KK68]:

F(f ′)(ω) = e−σ
2ω2/2 = e−ω

2/2(1/σ)2

(A.6)

Thus the transform of a Gaussian function is another Gaussian function, and there

is an exact reciprocal relationship between their standard deviations. While the

standard deviation in f ′(x) is σ, in F(f ′)(ω) it is 1/σ. Having f ′(x) and its

transform F(f ′)(ω), we can now use Equation A.4 to state the transform of the

measured boundary function:

F(f)(ω) =
1

iω
e−σ

2ω2/2 (A.7)

It is possible to utilize the same process to find the transform of the un-blurred

boundary function, which represents the boundary prior to the measurement pro-

cess. This is the so-called Heaviside step function h(x):

h(x) =


0 x < 0

1/2 x = 0

1 x > 0

(A.8)

By definition, the derivative of the step function is the delta function δ(x). The

Fourier transform of the delta function is trivial to compute:

δ(x)
F←→ 1 (A.9)

Then by again using Equation A.4 we can find the transform of the step function:

h(x)
F←→ 1

iω
(A.10)

Since we know from Fourier theory that the spectrum of the convolution of two

functions is exactly the product of the two functions’ spectra, we see from the ex-

pression for F(f)(ω) (Equation A.7) that the spectrum of the measured boundary
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is the product of the spectrum of the step function (1/iω) times a Gaussian func-

tion e−σ
2ω2/2. Thus, e−σ

2ω2/2 is precisely the attenuation in frequency caused by

the bandlimiting in the measurement process. We can now state the relationship

between measured boundary thickness and bandlimiting:

The boundary thickness will be 2σ when the bandlimiting due to mea-

surement is equivalent to multiplication in frequency space by a Gaus-

sian function with standard deviation 1/σ.

A.2 Bandlimiting and thickness in the context of

the Nyquist criterion

Because neither 1/iω nor e−σ
2ω2/2 ever fall to zero as ω approaches infinity, the

boundary spectrum F(f)(ω) will always have non-zero magnitude . Also, due to

the 1/iω factor, F(f)(ω) is infinitely high near ω = 0, and is thus not integrable.

Thus, it is not possible to discuss what fraction of the boundary spectrum falls be-

low the Nyquist frequency for a given Gaussian attenuation. Rather, it only makes

sense to discuss the Nyquist criterion in relation to the Gaussian attenuation itself.

The relevant attribute of the Gaussian function is its width, since this gives an in-

dication of the range of frequencies which pass through the measurement process.

As the Gaussian function is always positive, we must contrive some measure of its

width. A common engineering practice is to measure the “Full Width Half Max”—

the horizontal width of the function’s graph at half of its maximum height. For

a Gaussian with standard deviation η, the the FWHM is 2η
√

2 ln 2 [KK68]. As

the measurement attenuation Gaussian has standard deviation 1/σ, its FWHM is

2
√

2 ln 2/σ.
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One plausible way relate the boundary thickness to the Nyquist rate is to

set the FWHM of the Gaussian function in frequency space to equal the range

of frequencies which satisfy the Nyquist criterion. If we specify that the distance

between data sample points is one unit (that is, the length of a voxel’s edge is one),

then the Nyquist frequency is π radians per sample, and the range of frequencies

which satisfy the Nyquist criterion are from −π to π. Then we have:

2
√

2 ln 2

σ
= 2π (A.11)

Solving Equation A.11 for σ to find the boundary thickness 2σ yields:

√
2 ln 2

σ
= π ⇒ σ =

√
2 ln 2

π
⇒ thickness = 2σ =

2
√

2 ln 2

π
≈ 0.74956 (A.12)

Thus, the boundary thickness will be about 75% of the distance between sample

points. For comparison, if we had set the FWHM of the Gaussian attenuation

to fit in half the Nyquist range (−π/2 to π/2), then the corresponding boundary

thickness would be twice as large, approximately 150% of the inter-sample distance.

It may seem that this boundary thickness will not be large enough to be de-

tected by the histogram volume, if at any given location on the object surface only

about one voxel can fit within the boundary region. However, we are helped by

the fact that significant objects in a dataset tend to have large surface areas, and

that the surfaces tend to take on a variety of orientations and positions relative

to the sampling grid. To some extent this was illustrated with Figure 4.2 in the

discussion of histogram volume formation.

At this point, however, we are also equipped to make a more quantitative

probabilistic argument. If an object measured in a volume dataset has surface area

A, the boundary region surrounding the object will have a volume approximately

equal to 2Aσ, since the boundary thickness is 2σ. Assuming that the dataset
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sample points are distributed evenly throughout the volume inside the boundary

region, the amount of the boundary region volume gives the approximate number

of sample points within the boundary region. Thus, if the Gaussian attenuation

in frequency space has a standard deviation 1/σ, we can compute an approximate

number of hits along the the curves in the histogram volume:

approx . number of hits along histogram curves = 2Aσ (A.13)

This relationship explains why the scatterplot curves for small surface area bound-

aries were lighter than those for larger surface area boundaries. We can also do a

“back of the envelope” calculation to show that having the boundary thickness be

only 1.0 is not undetectably thin. Suppose we have a 1283 dataset which contains

a sphere with a diameter 64 samples across. Its surface area is then 4πr2, and with

r = 32 and thickness = 1, this implies about 12, 868 samples within the bound-

ary region, representing sufficient hits along the boundary curve in the histogram

volume.



Appendix B

Generating masks for volume

derivative measurement

B.1 One dimensional masks from reconstruction

filters

Figure 4.3 demonstrated the use of a simple mask which was used to measure the

first derivative in one dimensional data. This appendix will describe a process

which produces masks for measuring derivatives in one dimension, as well as how

to generalize one dimensional masks to measure first and second partial derivatives

in three dimensions1.

It was stated in Chapter 4 that reconstruction of a continuous data value func-

tion between sample points in the volume dataset is not necessary for measuring

1In Chapter 3 we employed an abuse of terminology, using “first derivative” for
“first directional derivative along the gradient direction”. In this section we return
to the strict usage; “first derivative” means the first derivative of a function of one
variable (and likewise for a second derivative).
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any of the quantities needed in the histogram volume creation. Instead, discrete

masks can be used to measure the first and second partial derivatives which are

needed for the directional derivative calculations. Although we will not need to ex-

plicitly reconstruct the data value anywhere, a simple way to derive the necessary

masks is through consideration of reconstruction filters and convolution.

Given a sequence of sampled data points vi, the creation of a continuous func-

tion which interpolates smoothly between them starts with a train of delta function

spikes at unit intervals, scaled by the original data values:

g(x) = · · ·+ v−1δ(x+ 1) + v0δ(x) + v1δ(x− 1) + v2δ(x− 2) + · · · (B.1)

A continuous reconstructed signal can then be obtained by convolving g(x) with a

continuous kernel h(x):

(g ? h)(x) = · · ·+ v−1h(x+ 1) + v0h(x) + v1h(x− 1) + v2h(x− 2) · · · (B.2)

Copies of the kernel are effectively placed at each sample point and scaled by the

corresponding data value. The first derivative of the reconstructed function is

easily computed, by the linearity of taking derivatives:

d(g ? h)

dx
(x)

= · · ·+ v−1
dh

dx
(x+ 1) + v0

dh

dx
(x) + v1

dh

dx
(x− 1) + v2

dh

dx
(x− 2) · · ·

= · · ·+ v−1h
′(x+ 1) + v0h

′(x) + v1h
′(x− 1) + v2h

′(x− 2) · · ·

= [· · · v−1 v0 v1 v2 · · · ]T [· · · h′(x+ 1) h′(x) h′(x− 1) h′(x− 2) · · · ](B.3)

Equation B.3 defines the infinite sum as the dot product of two vectors, one listing

the data values vi, and one containing evaluations of the derivative of the kernel

h. If the position x where we calculate the derivative of the reconstructed function
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happens to be an integer k, we can express this as:

d(g ? h)

dx
(k) = (B.4)

[· · · vk−2 vk−1 vk vk+1 vk+2 · · · ]T [· · · h′(2) h′(1) h′(0) h′(−1) h′(−2) · · · ]

Assuming that the reconstruction kernel h has finite support, there can only be a fi-

nite number of non-zero values in the vector [· · ·h′(2)h′(1)h′(0)h′(−1)h′(−2) · · · ].

The finite vector containing all the non-zero values is a mask for measuring the first

derivative of regularly sampled data. Since most reconstruction kernels are even

functions (h(−x) = h(x)), the mask will have an odd number of values, with h′(0)

at the center position. Equation B.4 shows how a mask is used: after centering

the mask at the data point of interest (vk), the products between corresponding

data and mask values are summed to produce the final measurement.

Given any continuous reconstruction kernel h(x), we can evaluate its first

derivative at integer positions to generate a first derivative mask. Of course, the

first derivative has to exist at the integer positions in order for this to be valid. As

an example, we take the Catmull-Rom cubic spline c(x):

c(x) =


3
2
|x|3 − 5

2
|x|2 + 1 for |x| ≤ 1

−1
2
|x|3 + 5

2
|x|2 − 4|x|+ 1 for 1 < |x| ≤ 2

0 otherwise

(B.5)

One can verify that c′(x) is continuous; evaluating c′(x) at the integers yields:

[· · · c′(2) c′(1) c′(0) c′(−1) c′(−2) · · · ] = [· · · 0 − 0.5 0 0.5 0 · · · ]

(B.6)

Thus the Catmull-Rom kernel generates the first derivative mask [−0.5 0 0.5].

In the same way that first derivative masks were derived above, masks for

measuring the second derivative of regularly sampled data can be created from a
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kernel h(x):

[· · · h′′(2) h′′(1) h′′(0) h′′(−1) h′′(−2) · · · ]

In this case, the second derivative of the reconstruction kernel must exist at all in-

teger locations for the mask to be valid. For instance, by differentiating c(x) twice,

one will find that the Catmull-Rom kernel does not generate a second derivative

mask because its second derivative is discontinuous at ±1 and ±2.

B.2 Two common masks and a kernel which gen-

erates them

As was noted in Section 4.3, a common mask for measuring the first derivative is

[−0.5 0 0.5], called the “central difference” method. The name arises from the

derivative approximation for a function s(x):

s′(x) ≈ s(x+ d)− s(x− d)

2d

=
1

2d
s(x+ d)− 1

2d
s(x− d)

= [s(x− d) s(x) s(x+ d)]T [
1

2d
0 − 1

2d
] (B.7)

Setting d = 1 gives the [−0.5 0 0.5] mask. In the interests of implementation

simplicity and computational speed, this thesis adopts central differences for the

first derivative mask. In the context of volume rendering, central differences are

often used to calculated the gradient magnitude as part of the shading calculations

[LCN98]. There are more sophisticated derivative measurement techniques avail-

able [MMMY96], but a thorough exploration of them is tangential to the goal of

this thesis.
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There is another simple and common mask for our second derivative measure-

ment, [1 − 2 1], sometimes called the “second central difference” method. The

name arises from the fact that the mask can be derived by twice applying the

method of central differences (now with d = 1/2), as follows:

s′′(x) ≈ s′(x+
1

2
)− s′(x− 1

2
)

≈ s(x+ 1)− s(x)− (s(x)− s(x− 1))

= s(x+ 1)− 2s(x) + s(x− 1)

= [s(x− 1) s(x) s(x+ 1)]T [1 − 2 1] (B.8)

This mask does not respond to sequences of constant or linearly changing values.

Its result is non-zero only when the sample data point positioned at the middle of

the mask is higher or lower than the average of its two neighbors. This thesis uses

[1 − 2 1] for the second derivative mask, again in the interests of implementation

simplicity and computational speed.

There is an important theoretical question regarding the validity of using these

two masks in combination for the histogram volume computation. Recall from

Chapter 3 that we traced along an ideal boundary to reveal a characteristic rela-

tionship between the data value and its first and second derivatives, as illustrated

in Figure 3.8. The point (f(x), f ′(x), f ′′(x)) was plotted for each position x along

the boundary in order to form the three dimensional curve which indicates the

presence of a boundary. For such a case, the boundary function f(x) studied was a

continuous function with analytically known derivatives, thus reconstruction was

not an issue.

However, when we are measuring derivatives of sampled data with masks, we

are implicitly reconstructing the function. That is, the result of using a mask
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is mathematically equivalent to convolving the sample points with a continuous

kernel and analytically finding the derivative of the reconstructed function. Thus,

there is a basic incompatibility if there does not exist a reconstruction kernel

which can generate both the first and second derivative masks being used. For

such a case, the first and second derivatives measures would be based on different

reconstructions of the same data. There is no guarantee that the relationship

observed in Figure 3.8 will hold if the first and second derivatives are taken from

entirely different functions.

It is therefore imperative that we find a reconstruction kernel which generates

[−0.5 0 0.5] and [1 − 2 1] as its first and second derivative masks, respectively.

A piece-wise quintic polynomial kernel q(x) was found which has all the necessary

derivative characteristics2:

q(x) =


1− |x|2 − 9

2
|x|3 + 15

2
|x|4 − 3|x|5 for |x| ≤ 1

−4 + 18|x| − 29|x|2 + 43
2
|x|3 − 15

2
|x|4 + |x|5 for 1 < |x| ≤ 2

0 otherwise

(B.9)

The kernel, as well as its first and second derivatives, is plotted in Figure B.1.

Although q(x) looks very similar to the Catmull-Rom kernel c(x) (also plotted)

the differences become apparent upon taking derivatives, revealing that q(x) is a

higher degree polynomial than c(x). Because q(x), unlike c(x), has continuous

second derivatives, it can be used to generate a second derivative mask.

This quintic kernel was never implemented in the software for histogram volume

generation, because it was never needed for any derivative measurements. Rather,

its mere existence provides necessary justification for the approach taken in this

2The polynomial was found as the solution to a set of differential equations using
the Mathematica symbolic math program from Wolfram Research, Champaign,
Illinois.
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Figure B.1: The quintic kernel q(x) and its derivatives. In (a) q(x) is plotted along

with the Catmull-Rom kernel c(x) for comparison. The first derivatives of the two

kernels are plotted in (b); both have continuous first derivatives, and both generate

the [−0.5 0 0.5] mask. The second derivatives are plotted in (c); the Catmull-

Rom kernel has discontinuous second derivatives, unlike q(x), which generates the

[1 − 2 1] second derivative mask.
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thesis. It insures that there is some reconstruction of the sampled data which is

consistent with the masks utilized for measuring derivatives. Equation B.3, and its

analog for the second derivative, prove that the two masks we have chosen provide

exact measures for the first and second derivatives of the data value as a continuous

function of position, for the case where the data value was reconstructed with this

quintic interpolation kernel.

B.3 Generalizing one dimensional masks

The two masks discussed thus far ([−0.5 0 0.5] for first derivative and [1 − 2 1]

for second derivative) are only useful for measuring the derivatives of one dimen-

sional data. These are now generalized to create masks for measuring first and

second partial derivatives of sampled data in three dimensions.

Any reconstruction kernel h(x) in one dimension can be trivially extended to

a separable kernel h3(x, y, z) in three dimensions:

h3(x, y, z) = h(x)h(y)h(z) (B.10)

The function representing the sampled data in a volume is a three dimensional

lattice of delta functions, scaled by the data values vi,j,k, where i, j, k all range over

the integers:

g3(x, y, z) =
∑
i,j,k

vi,j,kδ(x− i, y − j, z − k)

The reconstructed function g3 ? h3 is a lattice of kernels scaled by the data values:

(g3 ? h3)(x, y, z) =
∑
i,j,k

vi,j,kh3(x− i, y − j, z − k)

=
∑
i,j,k

vi,j,kh(x− i)h(y − j)h(z − k)
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The partial derivatives of the reconstructed function are simple to express:

∂(g3 ? h3)

∂x
(x0, y0, z0) =

∑
i,j,k

vi,j,kh
′(x0 − i)h(y0 − j)h(z0 − k)

∂(g3 ? h3)

∂y
(x0, y0, z0) =

∑
i,j,k

vi,j,kh(x0 − i)h′(y0 − j)h(z0 − k)

∂(g3 ? h3)

∂z
(x0, y0, z0) =

∑
i,j,k

vi,j,kh(x0 − i)h(y0 − j)h′(z0 − k)

As in the one dimensional case, these expressions can be rewritten when the loca-

tion at which the derivative is taken is a point (i0, j0, k0) on the integer lattice:

∂(g3 ? h3)

∂x
(i0, j0, k0) =

∑
i,j,k

vi0−i,j0−j,k0−kh
′(i)h(j)h(k) (B.11)

∂(g3 ? h3)

∂y
(i0, j0, k0) =

∑
i,j,k

vi0−i,j0−j,k0−kh(i)h′(j)h(k)

∂(g3 ? h3)

∂z
(i0, j0, k0) =

∑
i,j,k

vi0−i,j0−j,k0−kh(i)h(j)h′(k)

In this form, the expressions for the partial derivatives of the reconstructed function

are a close analog to Equation B.4, the formulation of one dimensional derivative

masks.

Whereas the one dimensional mask was a vector of evaluations of h′(x), we now

have a three dimensional lattice of evaluations of a partial derivative of h3. These

are the masks for derivative measurement in three dimensions. For example, the

mask for calculating the first partial derivative along the x axis, ∂
∂x

, is the lattice

of values h′(i)h(j)h(k), where i, j, k all range over the integers. The mask for

the second mixed partial derivative along the z and y axes, ∂2

∂y∂z
, is the lattice

of values h(i)h′(j)h′(k). As before, we assume the kernel h has finite support,

thus there are only a finite number of non-zero values in the masks. Figure B.2

depicts the masks for ∂
∂x

and ∂2

∂y∂z
. Even though these masks have an obvious three

dimensional structure, the mathematics of their application is still that of a dot
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Figure B.2: Two examples of masks for volume derivative measurement

product: the mask is centered at the sample point of interest, and the products

between corresponding data and mask values are summed to produce the final

measurement. Having decided on the quintic kernel q(x) for all mask generation,

Equations B.11 can be used to generate 3×3×3 masks for all the partial derivatives

needed for any of the directional derivative measures.



Appendix C

Evaluating the performance of the

derivative measures

Recall that the masks derived in Appendix B are not themselves the first and

second directional derivative measures needed for histogram volume calculation.

The directional derivative measures rely on the masks to provide partial derivative

measurement, and the partial derivatives are composed into the final directional

derivative measure according to the formulas in Section 4.3. We restate the for-

mulas for the directional derivatives here, writing out the partial derivatives where

necessary. There is only one measure for the first directional derivative, the gradi-

ent magnitude:

D∇̂ff = ‖∇f‖ =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

+

(
∂f

∂z

)2

(C.1)

For the second directional derivative, we have three measures, the first involving

the gradient of the gradient magnitude:

D2
∇̂ff =

1

‖∇f‖∇(‖∇f‖) · ∇f (C.2)
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The next measure is based on the Hessian:

D2
∇̂ff =

1

‖∇f‖2
(∇f)T Hf ∇f (C.3)

=
1

‖∇f‖2


∂f
∂x

∂f
∂y

∂f
∂z




∂2f

∂x2
∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂x∂y

∂2f

∂y2
∂2f
∂y∂z

∂2f
∂x∂z

∂2f
∂y∂z

∂2f

∂z2


[

∂f
∂x

∂f
∂y

∂f
∂z

]
(C.4)

The third and last measure, an approximation, is the Laplacian:

D2
∇̂ff ≈ ∇

2f =
∂2f

∂x2 +
∂2f

∂y2 +
∂2f

∂z2 (C.5)

It is relatively easy to perform an analytical Fourier analysis of an individual

mask in order to find its frequency response, which is useful information for deter-

mining how the mask will respond to ideal boundaries of various thicknesses[BLM96].

But what is more relevant to the problem of histogram volume calculation is de-

termining the frequency response of the directional derivative measure as a whole.

Unfortunately, due to the complexity of the directional derivative formulas in Equa-

tions C.2, C.3, and C.5, the task is outside the scope of this thesis.

Instead, we evaluate the derivative measures by using them to analyze synthetic

volumes containing a range of boundary thicknesses. Specifically, we create a

synthetic volume for every boundary thickness between 0.33 and 8.0, at increments

of 0.33. The synthetic volumes contain only planar boundaries, so we should keep

in mind that the Laplacian second derivative measure will be uncharacteristically

accurate, since it gives a correct directional derivative measure only for planar

boundaries1. All the synthetic volumes were 1283 in size. One subtle feature of

the volumes was that the boundary planes were purposely not axis aligned. This

1To be completely thorough, we would need to create synthetic volumes con-
taining boundaries at a wide variety of orientations and with a wide range of surface
curvatures.
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created more variation in the spatial relationship between the boundary and the

sampling grid, which led to a better distribution of voxels along the curves in the

scatterplots. Also, to maximize the number of voxels which accumulate along the

curves in the scatterplots, multiple boundaries were created in each volume. By

varying the spacing between boundaries in proportion to the boundary thickness,

we maintain an approximately constant accumulation of hits along the scatterplot

curves. To provide a sense of what these synthetic volumes look like in three

(a) (b)

Figure C.1: Renderings of two of the synthetic volumes used for derivative measure

performance evaluation. The volume shown in (a) has a boundary thickness of

3.00, the one in (b) has boundary thickness 6.00. Both were rendered by giving

the boundary high opacity and the material interiors a very low opacity.

dimensions, Figure C.1 gives renderings of two of them, one containing boundaries

with thickness 3.00, and the other with boundaries of thickness 6.00.

Three histogram volumes are then calculated for each synthetic volume. While

the gradient magnitude is always used for the first directional derivative measure,

each of the three different second directional derivative measures are used once.
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All histogram volumes were calculated at a resolution of 1283. These histogram

volumes are then projected to create scatterplots which we can visually compare in

order to gain a qualitative understanding of how the derivative measures perform

for a variety of boundary thicknesses. Recall from Section 4.3 that one important

issue in histogram volume calculation is the range of derivative values that should

be included on the first and second derivative axes of the histogram volume. In

the analysis of these synthetic volumes, for each boundary thickness, the full range

of the first and second derivative values which occur within the ideal boundary

was calculated, and the range of derivative values to be included in the histogram

volume was set to 120% of this. This provides the basis for qualitative evaluation of

the derivative measures: by comparing the ideal versus actual sizes of the curves

in the scatterplots, we get a sense of how the derivative measures respond to

boundaries of a given thickness.

Figures C.3, C.4, and C.5 show the results of this analysis. Each line of the

table corresponds to one boundary thickness (2σ), which is written in the first col-

umn. In the next column are slices of the datasets analyzed. After the slice, from

left to right, each row contains the f ′(x) versus f(x) scatterplot, followed by the

three f ′′(x) versus f(x) scatterplots, using the different second derivative measures:

gradient of gradient magnitude (from Equation C.2), Hessian (Equation C.3), and

Laplacian (Equation C.5). The tops of the scatterplot columns are labeled to indi-

cate which derivative has been measured and how. The scatterplots are turned on

their sides (rotated 90 degrees clockwise from their usual presentation) to facilitate

comparison of the peak amplitude in the curves across different thicknesses. Also,

a thin dashed line indicates where the peak of the scatterplot curve would be in

an ideal measurement. To serve as a basis for comparison, Figure C.2 shows the
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two ideal scatterplots in the new orientation.

f ′(x)

f(x)

(a)

f ′′(x)

f(x)

(b)

Figure C.2: Rotated ideal scatterplot curves. (a) shows the curve for first direc-

tional derivative versus data value; (b) the curve for second directional derivative

versus data value. As in the scatterplots in Figures C.3 through C.5, there are

dotted lines to indicate the location of the peaks of the ideal curves.

The first thing to notice about the scatterplots in Figures C.3, C.4, and C.5

is that for small thicknesses (around 1.00), none of the derivative measures’ re-

sponses were very high. Besides being distorted in shape compared to the ideal,

the scatterplot curves are compressed towards the f(x) axis. This is an important

consideration when analyzing volumes with sharp transitions between material re-

gions. Because the histogram volume will contain a somewhat distorted measure

of the boundaries, the g(v), h(v), and p(v) calculations will also be distorted,

and there will be a mismatch between the user-specified boundary function b(x)

and the actual opacity assigned to the boundaries in the volume by the opacity

function created from our algorithm. As was done with the turbine blade dataset

(Section 6.1), it may be beneficial to slightly blur the volume as a pre-process, if

the resulting slight loss of detail is tolerable.

The row for thickness 2.66 at the bottom of Figure C.3 shows the typical

relationship between the three second derivative measures. The measure based on
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2σ slice f ′ : ‖∇f‖ f ′′ : ∇‖∇f‖ f ′′ : Hf f ′′ : ∇2f

0.33

0.66

1.00

1.33

1.66

2.00

2.33

2.66

Figure C.3: Derivative measure comparisons for thicknesses 0.33 to 2.66
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2σ slice f ′ : ‖∇f‖ f ′′ : ∇‖∇f‖ f ′′ : Hf f ′′ : ∇2f

3.00

3.33

3.66

4.00

4.33

4.66

5.00

5.33

Figure C.4: Derivative measure comparisons for thicknesses 3.00 to 5.33
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2σ slice f ′ : ‖∇f‖ f ′′ : ∇‖∇f‖ f ′′ : Hf f ′′ : ∇2f

5.66

6.00

6.33

6.66

7.00

7.33

7.66

8.00

Figure C.5: Derivative measure comparisons for thicknesses 5.66 to 8.00
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∇‖∇f‖ gives the smallest amplitude response to the boundary, while the measures

based on Hf and ∇2f are closer to the ideal, and are about equal. The more

noticeable difference between the three measures is the amount of spread in the

range of derivative values at a single data value. The curve from the ∇‖∇f‖

measure is very coherent, but the Hf curve is more dispersed, and the ∇2f curve

is even more so.

The dispersion of the scatterplot curves is a result of quantization noise, the

error introduced by representing a signal’s values with fixed point instead of floating

point precision. All the synthetic volumes generated for this analysis contained

only 8-bit quantities. As a result, the error in the signal value (as stored in the

synthetic dataset) is on average one half of 1/256, or 1/512. This amount is small

relative to the changes in data value within sharp boundaries, but it is a greater

percentage of the change in data value within more blurred boundaries. Thus,

as the boundaries become more blurred, the quantization noise will become more

and more prominent in a derivative measurement. Also, since second derivative

measures are by nature more sensitive to noise than first derivative measures, the

effect of quantization is always more evident in the f ′′(x) scatterplots than in the

one for f ′(x).

The collection of scatterplots as a whole hints at a fundamental relationship

between the bit depth of the data, the boundary thickness, and the derivative

measures’ robustness against quantization noise, as governed by the mathematical

properties of the derivative measures. A thorough exploration of this relationship

would be vital to the design of higher quality derivative measures, but for the

time being we choose amongst the ones already implemented. As can be seen

in Figures C.4 and C.5, the second derivative measures can be ordered by their



139

sensitivity to quantization noise: ∇‖∇f‖, Hf , and then ∇2f . By the time the

thickness has reached 6.00 or higher, the ∇2f curve has become so dispersed as to

be unrecognizable, while even at thickness 8.00 the∇‖∇f‖ curve is still reasonably

coherent. Despite this, the ∇‖∇f‖ measure is less accurate than the other two

measures, since its curve is always further from the ideal size than the others.

Given the trade-offs between the three measures in terms of quantization noise,

accuracy, and computational cost, we have generally adopted the Hessian-based

second derivative measure as the standard.
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