
Program of Computer Graphics Technical Report: PCG-02-3, January 2002

Combining Edges and Points for Interactive Anti-Aliased Rendering

Kavita Bala Bruce Walter Donald Greenberg ∗

Program of Computer Graphics
Cornell University

January, 2002

Abstract

This paper presents a new rendering and display paradigm that uses
both discontinuities (edges) and sparsely sampled shading (points)
to interactively generate anti-aliased images of complex scenes.
Geometric and shadow discontinuities in the image are found at in-
teractive rates using a novel data structure, the Normal–Position In-
terval tree, and algorithms based on interval arithmetic. After pro-
jecting discontinuities onto the image plane, shading information
is interpolated from nearby point samples while never interpolating
across a discontinuity edge. We introduce a new compact represen-
tation of the discontinuities and point samples called the edge-and-
point image. An efficient interpolation algorithm uses this image
to generate anti-aliased output images at interactive rates without
using supersampling.

Our rendering technique is extensible, permitting the use of ar-
bitrary shaders to collect radiance samples. Our software imple-
mentation supports interactive navigation and object manipulation
in scenes that include complex lighting effects (such as global illu-
mination) and geometrically complex objects. We show that high-
quality anti-aliased images of these scenes can be rendered at sev-
eral frames per second on typical desktop machines.

1 Introduction

Scalable rendering algorithms are needed for the high-quality in-
teractive rendering of increasingly complex scenes. Polygon-
based rendering scales poorly with scene and lighting complex-
ity [15, 18, 19]. This paper introduces a scalable, interactive ren-
dering technique that uses both radiance discontinuities and sparse
samples to generate high-quality, anti-aliased images.

Sparse sampling of radiance is essential for interactive render-
ing when including shading effect such as accurate shadows, non-
diffuse shading, and global illumination. In the absence of radiance
discontinuities, such as object silhouettes and shadow boundaries,
radiance can be efficiently approximated by interpolating among
sparsely distributed samples in the image plane. However, dis-
continuities are perceptually important and expensive to find via
sampling alone. The new rendering approach described in this pa-
per directly finds important discontinuities (edges) such as those
caused by geometric and shadow boundaries. These edges are pro-
jected onto the image, and interpolation is never performed between
two samples that lie on opposite sides of a discontinuity edge. The
explicit representation of discontinuities permits fast anti-aliasing
without supersampling.

Currently the user can navigate and manipulate objects in com-
plex scenes while obtaining high-quality rendering feedback at in-
teractive rates (4–6 frames per second on a single desktop machine).
Our system collects samples for only about 2 to 6% of the image
pixels for any given frame, but samples are reused from frame to
frame.

∗Email: {kb, bjw, dpg}@graphics.cornell.edu.

Figure 1: Example room with 150,000 polygons. The top image
is an example output image from our system. The middle image
shows the discontinuity edges found by our system. The bottom
row compares a magnified single-sample-per-pixel image on the
left and our anti-aliased output on the right.

Edge detection. The two most important shading discontinuities
in images are: geometric discontinuities caused by changes in the
visible surface, and shadow discontinuities caused by changes in
the illumination of a visible surface. The silhouettes of objects cor-
respond to the important geometric discontinuities. Hard shadow
edges from point light sources, and soft shadow edges from area
light sources are the important shadow discontinuities (See Fig-
ure 2).



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

umbral event

light source

blocker

receiver

penumbral event

eye

silhouette

Figure 2: Sources of silhouette and shadow edges.

This paper introduces a hierarchical data structure called the
Normal–Position Interval Tree and associated algorithms for effi-
ciently finding these discontinuities in complex scenes. These dis-
continuity edges are directly projected onto the image plane and
used to constrain interpolation of radiance samples.

Explicitly finding image discontinuities offers significant perfor-
mance advantages. Systems that simply interpolate point samples
must use adaptive point sampling around discontinuities to locate
them. Therefore, these systems expend a large fraction of their
computational effort sampling densely near discontinuities [8].

Reconstruction. We also introduce a novel display representation
called the edge-and-point image that compactly stores both dis-
continuity edges and point samples. Edges are recorded using a
discretized representation including subpixel information for anti-
aliasing. This representation permits fast, simple, table-driven in-
terpolation and anti-aliasing. In addition, the reconstruction algo-
rithm is simple enough that it could be implemented in future hard-
ware.

Our system is flexible and can work with many different types of
shaders. We show results for various shaders that support hard and
soft shadows and global illumination effects.

The remainder of this paper is organized as follows: Section 2
presents an overview of the rendering system. Section 3 discusses
related work. Section 4 presents the data structures and algorithms
for finding silhouette and shadow edges. Section 5 describes how
the final anti-aliased image is produced by sampling and recon-
structing radiance. Section 6 presents results and Section 7 con-
cludes and describes future work.

2 System Overview

An overview of our system is shown in Figure 3. The system con-
sists of our edge-and-point renderer and an external shader process
that asynchronously computes point samples. As the user changes
the viewpoint or moves objects in the scene, these updates are
passed to the edge-and-point renderer.

The edge finder finds silhouettes and shadow edges for each
visible object in the scene. The silhouette edges of objects are
view-dependent and are recomputed each frame. Shadow edges,
which are view-independent, are computed once and reused except
when the light, blocker or receiver associated with the shadow edge
moves. Shadow edges are computed in two steps: first, shadow
events are found by finding the silhouette of the blocker from the
light’s point of view for point lights or by finding umbral and
penumbral events for area lights. These shadow events are then
traced on receivers to find the associated shadow edges. The hierar-
chical construction of our trees permits the efficient computation of
these edges even for complex objects. The computed 3D silhouette
and shadow edges are then passed to the edge rasterizer.

Shader

Point Samples

Edge Finding

edges points

camera
object updates

Edge-and-Point Image

request samples

Output Image

Visible Objects

(Light,Blocker,Receivers)

Point Reprojection

Interpolation

Anti-Aliasing

Edge Rasterization

Occlusion Culling

Figure 3: System Overview.

The point reprojection module [26] reprojects the cache of recent
point samples onto the image plane. The rasterizer rasterizes the
3D edges while also recording sub-pixel positioning information.
In addition, depth information from the point samples is used to
perform conservative occlusion culling on the edges. The result is
the edge-and-point image which stores at most one edge and one
point sample per pixel.

An interpolation method fills gaps in the point data while re-
specting the recorded discontinuity edges. Feedback from the in-
terpolation is used to decide where new point samples are needed
and these requests are passed to the external shader. Finally, a sim-
ple filter is used to anti-alias the pixels containing edges to produce
the output image.

The shader asynchronously computes samples that are added to
the point cache. The shader also communicates information about
which objects are visible in a frame and which lights and blockers
cause shadows on each visible receiver. Our system is flexible, de-
coupling the shader process from the discontinuity-driven sampling

2



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

and reconstruction process. Thus, an arbitrary shader of choice can
be used to compute samples and visibility information.

3 Related Work

Complexity. Recent efforts in 3D scanning have created massive
data sets [12, 17]. Approaches such as Surfels and Qsplat [15, 18]
suggest an alternative point-based representation for the interactive
display of these massively large data sets. Because they use pre-
computed sampling these techniques are mainly useful for the dis-
play of static scenes. The randomized z-buffer [27] does not suf-
fer from these limitations. However, these approaches do not track
discontinuities or support illumination effects such as shadows and
global illumination.

Level-of-detail algorithms, such as view-dependent progressive
meshing [10], address the problem of scalable viewing for the
perceptually-important silhouettes of complex objects. Silhouette
clipping [19] is a recent approach for the interactive viewing of
complex stand-alone objects; it differs from point-based approaches
in handling objects with distinct silhouettes that would not be ef-
fectively represented by point-based approaches. The silhouette
clipping approach introduces hierarchical techniques to rapidly find
silhouettes of these complex objects for interactive viewing. A fur-
ther extension of the system uses hardware to anti-alias silhouette
edges [20]. However, these systems require large preprocessing
times and again assume that the object being viewed is static. They
also do not handle complex shading effects such as shadows and
global illumination.

Our Normal–Position Interval Tree has similarities to the cone
hierarchy used for silhouette clipping with some important differ-
ences: our tree includes the spatial extent of the geometry as well as
the normals, making it possible to compute umbral and penumbral
events. The construction time of our trees for similarly sized scenes
is on the order of seconds rather than the hours reported in [19]. Sil-
houette, umbral and penumbral tests are simplified by using interval
arithmetic.

The spatialized normal cone hierarchy [11] expands the silhou-
ette clipping data structure for applications such as local minimum
distance computation, and shadow event computation. Our tree
structure is similar to the spatialized normal cone hierarchy, though
it differs in its use of intervals to represent the range of normals and
positions associated with an object.
Sparse sampling and reconstruction. Several researchers have
tried to exploit adaptive sampling to sparsely sample regions with
smoothly varying radiance. Guo proposed a progressive technique
that samples the image plane and tries to detect the existence of
discontinuities [8]. Once a discontinuity is hypothesized, this sys-
tem samples along the discontinuity and interpolates radiance using
these samples. This system is most effective in generating high-
resolution still images.

The radiance interpolant system [2] samples radiance in 4D ray
space and uses conservative error analysis techniques to identify
where more samples are required. This system subdivides ray space
around discontinuities and interpolates radiance where it varies
smoothly. Both Guo’s approach and the radiance interpolant sys-
tem use sampling to detect where discontinuities arise and therefore
spend significant computational resources sampling around discon-
tinuities to locate them.

Pighin et al. [16] present a progressive previewing technique that
uses hardware to detect visibility and hard shadow edges in static
scenes. A constrained Delaunay triangulation of sparse samples
is used to reconstruct images. Their system assumes static scenes
lit by point lights. Tapestry [21] sparsely samples the scene and
meshes the scene, also using a Delaunay triangulation. This mesh
is not in image space and therefore, can be used as the viewpoint

changes. However, this system does not try to detect discontinu-
ities, thus producing results that could have significant blurring near
such edges.

The RenderCache [26] reuses and reprojects pixels from frame
to frame to achieve interactive performance. However, since dis-
continuity events are not available to constrain the reprojection, the
resulting images are blurred near edges. We have adapted the Ren-
derCache for the point-based part of our algorithm.
Discontinuity meshing. The literature on finding discontinuities in
a scene is extensive; a summary of visibility and shadow detection
research can be found in [4]. Several approaches have tried to find
all visibility events in scenes [3, 5, 9, 13, 24, 25].

Discontinuity meshing [9, 13] determines where radiosity varies
discontinuously and tesselates scene geometry based on these dis-
continuities. Discontinuity meshing techniques avoid the cost of
finding discontinuities using adaptive sampling. However, because
they remesh geometry around the discontinuities, they usually cre-
ate excessively large meshes to account for all discontinuities in
typical scenes. The enumeration of all discontinuities is also typi-
cally too slow for interactive use in complex scenes because these
algorithms exhaustively find all shadow events for all potentially
interacting polygons.

Our approach is to achieve interactive performance by focusing
on the shadow discontinuities that are typically the most impor-
tant perceptually: those corresponding to hard shadows and umbral
and penumbral vertex–edge events. We describe how to find these
events efficiently in high-complexity scenes using Normal–Position
Interval Trees.
Approximate soft shadows. Soler and Sillion [23] make simpli-
fying assumptions about the blocker, receiver configuration to ap-
proximate soft shadows. However, their approach does not capture
important effects such as the “hardening on contact”[28] that arises
when a blocker and receiver are in contact.

4 Finding Edges

The first step in rendering an image is to rapidly find silhouettes
and shadow edges for all visible objects. Each frame, the edge-
and-point renderer uses the camera position and a list of visible
objects to find the silhouette and shadow edges for the visible ob-
jects. Silhouette edges are view-dependent and are recomputed for
each frame. Shadow edges are view-independent and are reused
from frame to frame when possible. This section describes the data
structures and algorithms for finding discontinuities efficiently.

4.1 Background

Silhouettes. A point on a surface is on an object’s silhouette if the
normal at that point is perpendicular to the view vector. In a polyg-
onal scene, an edge is on an object’s silhouette if one of the edge’s
adjacent faces is forward-facing while the other face is backward-
facing, as shown on the left in Figure 2. Thus, the test for the exis-
tence of a silhouette is the following:

sign(Nf0 · Vf0) �= sign(Nf1 · Vf1) (1)

Here, f0 and f1 are the two polygons adjacent to the edge e, Nf is
the normal of polygon f , and the view vector Vf is a vector from
a vertex of the face f to the current viewpoint E.
Shadows. A shadow on a receiving object (the receiver) occurs
when a light is occluded by an intervening object (the occluder
or blocker). A blocker creates shadow events, which when inter-
sected with the receivers cause shadow discontinuities. In polyg-
onal environments with area lights, two types of shadow events
cause shadow discontinuities [6, 7, 9, 13]: vertex–edge events, and
edge–edge–edge events. Point lights are a degenerate case of area

3



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

lights and only produce vertex–edge events. Vertex–edge events
are planes (actually, wedges) defined by a vertex of the light and an
edge of the blocker, or vice-versa. We follow Lischinski et al. [13]
in using the term “VE event” to refer to a vertex–edge event whose
vertex lies on the light; an “EV event” is correspondingly defined
by an edge of the light and a vertex of the blocker. Edge–edge–
edge (EEE) events have an edge on the light, and two edges from
two different blockers. In this paper, we restrict ourselves to finding
VE and EV events, which are more common than EEE events and
result in visually more important discontinuities.

Umbral and penumbral events are shown in Figure 2 on the right.
An umbral or penumbral event occurs when the plane through the
vertex v and edge e is tangential to the light and the blocker, and
the light and blocker lie on the same side or opposite side of the
plane. For point lights, the umbral and penumbral events coincide.
Collectively, the wedges of the shadow events bound shadow vol-
umes: regions of space in which the visibility of the light (blocked,
partially blocked, or unblocked) is the same. Shadow edges occur
where the edge of a shadow volume intersects a receiver object.

Note that for objects composed of polygons, each vertex and
edge of the light and blocker is associated with a set of normals;
this set includes all normals that can be found by linearly interpo-
lating between normals of the adjacent faces. A plane is considered
tangential if its normal is one of those associated with the contact
vertex or edge.

4.2 Normal–Position Interval Trees

Visibility and shadow edge detection are accelerated using a hierar-
chical data structure that we call the Normal–Position Interval Tree
(NPIT). There are two such data structures associated with each ob-
ject. The edge tree is a hierarchical representation of all the edges of
the object, and is used to accelerate silhouette detection and shadow
event computation. The face tree is a hierarchical representation of
all the faces of the object, and is used to accelerate the computation
of shadow edges.

Each node of the tree uses intervals to conservatively record the
range of normals and positions of the elements (edges or faces) rep-
resented by that node. The range of normals is represented by three
intervals: one for each of the three Cartesian components of the nor-
mal. The subscript i is used to denote an interval, so the normals are
represented by a triple of intervals (Nx

i , Ny
i , Nz

i ), which we call an
interval vector. The interval vector ([x0, x1], [y0, y1], [z0, z1]) rep-
resents all vectors (x, y, z) such that x ∈ [x0, x1], y ∈ [y0, y1],
and z ∈ [z0, z1]. Similarly, the range of positions associated with
the tree node is represented by an interval vector. The normal and
position interval vectors are used during hierarchical traversals of
the tree.

The edge and face trees are each constructed as follows: at each
node of the tree, the tree is divided on one of the three axes (x, y, z)
so that the combined size of its children is minimized. The spatial
extent of a tree node’s children need not be disjoint; an edge (or
face) is always put in only one of the two children. Tree nodes are
not subdivided below a threshold number of elements; performance
is not sensitive to this setting. This construction has low preprocess-
ing overhead (on the order of seconds) and seems to be as effective
as a more specialized hierarchical construction [19] taking much
longer (hours) to construct.

Note that the face tree is essentially a bounding volume hierarchy
that is used to accelerate the intersection of shadow events with
object faces. However, the intervals for normals are used to further
accelerate this process by culling back-facing triangles.

Figure 4: Umbral and Penumbral edges: umbral edges in red,
penumbral edges in blue.

4.3 Silhouette Detection

For each frame, the edge tree associated with each visible object is
recursively traversed to find all silhouette edges of the object with
respect to the current viewpoint E. Starting at the root, each node of
the tree is tested for potential silhouette edges. If the edges covered
by a node of the tree are all forward-facing or backward-facing, the
recursive walk is terminated. When a leaf node is reached, all its
edges are tested using Equation 1 to determine if they are on the
object silhouette.

For internal (non-leaf) nodes, the normal and position interval
vectors are used to determine the possible presence of silhouettes
in the subtree as follows. The view vector is conservatively rep-
resented by the interval vector Vi = Pi − E, where Pi is the
position interval vector representing all the edges in that node of
the tree. The dot product of the normal interval vector Ni and the
view interval vector is computed using interval arithmetic [14, 22],
resulting in an interval [q0, q1]:

[q0, q1] = Ni ·i Vi

= Nx
i ∗i V x

i +i Ny
i ∗i V y

i +i Nz
i ∗i V z

i

where ∗i and +i are the usual interval arithmetic operators. If an
edge contained in the subtree is on the silhouette, corresponding to
a surface normal and view vector whose dot product is zero, then
the resulting interval [q0, q1] must include zero. In this case, the
subtree is recursively explored.

4.4 Shadow Event Detection

Shadow discontinuities are more complex than silhouette disconti-
nuities and are computed in two steps:

• The shadow events produced by lights and blockers are found.

• The shadow events are intersected with receivers to find
shadow edges.

The blocker’s edge tree is used for the shadow event computation
and the receiver’s face tree is used for the intersection of the events
with the receiver to find shadow edges.

The hard shadows caused by the occlusion of a point light source
by a blocker create perceptually important D0 radiance disconti-
nuities. They can be found relatively simply by computing the
blocker’s silhouette from the point of view of the light. These
shadow events are then used to compute the shadow edges that ap-
pear on receiver objects, as described in Section 4.5.

4



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

blocker

receiver

light v'

e

θ''

θ'

v

ve

v''

Figure 5: Finding an umbral EV event.

Soft shadows arise from the occlusion of an area light source and
generate D1 discontinuities. It is particularly important to identify
soft shadow edges near the point where a blocker contacts a re-
ceiver. At that point, soft shadows exhibit a perceptually important
“hardening” effect in which the radiance gradient increases. Iden-
tifying penumbral and umbral shadow boundaries allows this effect
to be rendered correctly, as shown in Figure 4.

For area lights, our algorithm finds the penumbral and umbral
VE and EV events using a recursive traversal of the blocker’s edge
tree. At each node, the light vector is conservatively characterized
by the interval vector Pi −i Li, where Pi is the position interval
vector for the blocker, Li is the position interval vector for the light,
and −i is the interval vector subtraction operator. Using a position
interval vector for the light is important because area lights cover a
range of positions and thus introduce variability in the light vector.
When internal nodes are reached during the traversal, the algorithm
checks whether the surface normal vector might be perpendicular
to the light vector within that node. This is conservatively deter-
mined by testing whether the dot product, computed using interval
arithmetic, contains zero.

4.4.1 VE events

At the leaves of the tree, a more precise test is performed to iden-
tify shadow events. Recall that each VE event defines a plane. To
identify VE events involving a particular edge e of the blocker and
a vertex v of the light, the silhouette test of Equation 1 is first per-
formed to ensure that the normal of the plane is one of the normals
of the edge. The vertices of the light adjacent to v are tested to
determine whether they all lie on the same side of the plane; if so,
an event has been found. To determine whether the event is umbral
or penumbral, the orientation of the blocker surface is compared to
the position of these adjacent light vertices.

4.4.2 EV events

EV events can be found efficiently by piggybacking onto the dis-
covery of VE events, thus avoiding a separate tree traversal. Once a
VE event connecting vertex v and edge e is found, the shadow vol-
ume boundary is traversed in both directions (along e) looking for
adjacent EV events. This traversal is simplified using the follow-
ing observation: for locally convex surfaces, EV events contribute
to the penumbral shadow volume boundary, but not to the umbral
shadow volume boundary. Conversely, for locally concave surfaces
(from the viewpoint of the vertex v), EV events contribute to the
umbral boundary but not to the penumbral boundary.

Figure 5 illustrates the algorithm used to find EV events in the
case of a concave umbral event. Here, the shadow volume boundary
is being traversed towards the vertex ve along the blocker surface.
The first step is to determine whether the surface is locally convex
or concave. This is done by finding the angle θ′′ between the v–e
plane and the plane defined by the three vertices: v, ve, and the
blocker vertex v′′ adjacent to ve that minimizes this angle. If the
angle is less than π, the blocker surface is locally concave from the
viewpoint of v.

Given this geometry, there are two possibilities for the next event
along the shadow volume boundary: it is either the EV event shaded
in purple, defined by the vertices v, v′ and ve, or else it is the VE
plane defined by v, v′′, and ve. Which is correct is determined by
computing the angle θ′ between the v–e plane and the possible EV
plane; if this angle is larger than θ′′, the EV event is part of the
shadow volume boundary.

Penumbral EV events are found similarly, except that they are
only found for convex surfaces, and the angles involved are greater
than π. Our algorithm extends an earlier efficient algorithm for
finding penumbral events [30] to support meshes, concave sur-
faces, and umbral events. The algorithm efficiently finds all shadow
events that participate in the shadow volume boundary, while
largely avoiding the generation of unnecessary edges that would
slow down the later rendering stages.

4.5 Finding Shadow Edges

Given the VE and EV events, shadow edges are computed by inter-
secting the event wedges with the receiver geometry. This process
is accelerated by using the receiver’s face tree. Each shadow event
is walked down the tree to find intersections of the event with the
geometry represented by that node of the tree. At internal nodes
of the face tree, three tests are used to avoid unnecessary traver-
sals. The first test is to see whether the event intersects the node
at all, which requires that the positions represented by the position
interval vector lie on both sides of the event. Given that Nve is the
normal of the event plane, the following interval is computed:

[q0, q1] = (Pi − v) ·i Nve

If any of the faces represented by the node lie on both sides of
the plane, the resulting interval [q0, q1] must include zero. If so, the
algorithm recurses to the children of the tree node.

The second test uses the normal interval vector stored with the
node to check whether all the faces associated with that node are
backward-facing with respect to the light. If so, then a shadow need
not be cast on them and the search space is pruned. The third test
uses planes that are perpendicular to the event plane and contain the
rays bounding the event wedge to eliminate nodes whose faces all
lie fully on the wrong side of these planes.

At the leaf node of the face tree, all the polygons stored in the
leaf are tested against the candidate shadow event; if an intersection
is found, a shadow edge is generated.

4.6 Discussion

Our approach is reminiscent of discontinuity meshing [13] but has
important advantages: since we do not mesh discontinuities—we
use them only to constrain interpolation—there is no resulting ex-
plosion of small mesh elements. In addition, our hierarchical data
structures and algorithms permit the efficient computation of all
shadow events even for blockers of high polygon count; this is es-
sential for the rendering of complex scenes at interactive rates.

5



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

n

d

position interval vector

parallel planes

average normal

Figure 6: Planes approximating edges.

4.7 Features and Implementation Issues

There are a few additional features and implementation details that
are important to interactive detection of silhouettes and shadow
edges.
Finding light-blocker-receiver triples. To determine the shadow
edges for a receiver, the lights and blockers that cast shadows on
that receiver must be identified. Exhaustive computation of shadow
events for all potential light-blocker pairs would be too slow. In-
stead, the shading process asynchronously communicates the light-
blocker-receiver triples that it discovers during sampling to the edge
finder. When a particular receiver r is visible in a frame, the shadow
edges cast onto r by all the lights and blockers that are known to
have r as a receiver are found. These shadow edges are stored with
r and reused for other frames as long as the light, blocker and re-
ceiver do not change.

For a given light-blocker pair, all VE and EV events associated
with the pair are computed. These shadow events are then inter-
sected with every receiver associated with that pair to find the re-
ceiver’s shadow edges. However, some shadow edges may be oc-
cluded by receivers nearer to the light, and thus need not be in-
cluded in the edge-and-point image. A shadow edge is removed
from the output if the entire extent of its generating shadow event
casts shadow edges on a different receiver that is closer to the
blocker. This optimization removes many unnecessary edges.

Moving objects. If a light or blocker are moved, the shadow
events associated with that light-blocker pair are recomputed and
the shadows for receivers associated with that pair are also recom-
puted. When a receiver moves, its shadows are affected, but shad-
ows on other receivers that share a light-blocker pair with that re-
ceiver might also be affected because they are no longer occluded
by the moved object. To be conservative, all these shadows are re-
computed. For example, if the torus next to the teapot in Figure 1
is moved, the shadows cast by the teapot on both the torus and the
floor are recomputed. Thus, shadow events that cast shadows of the
teapot on the torus will correctly appear on the floor when the torus
moves out of the way.

To maintain interactive performance, when the user moves an
object, queries into the NPIT data structure are transformed appro-
priately to avoid rebuilding these data structures. For silhouettes,
the viewpoint is transformed into the object’s coordinate system
and the silhouette edges found. For shadows, the light is trans-
formed into the blocker’s coordinate system. The resulting shadow
events are transformed to the receiver’s coordinate system (if nec-
essary) to find shadow edges. These silhouette and shadow edges
are transformed back into world space for display.
Edge approximation. When an object projects to a small part of
the image, finding all its silhouette edges and rasterizing them may
be too expensive. If, during the computation of silhouette edges, it
is discovered that an entire edge tree node projects to a small screen
area, the system computes an approximation of the silhouette edges
occurring within that node.

To make this approximation closely match the true silhouette,
the system creates a rotated coordinate system for each tree node
(see Figure 6); the z axis in this coordinate system is the average

normal of all contained edges. In the figure, the two parallel planes
perpendicular to the average normal capture the range of positions
occupied by the edges in that node of the tree. The advantage of the
new coordinate system is that the separation d between these two
planes is usually much smaller than the dimensions of the original
node. When a possible silhouette is detected within the node, the
two planes are being viewed nearly edge-on. If they are separated
by less than one pixel when projected onto the image plane, the
recursive traversal is terminated and the planes themselves are used
to generate the silhouette edge.
Sharp edges. When adjacent faces of an object have a large varia-
tion in their normal—for example, the faces of a cube—our system
considers that their shared edge is intended to be sharp and to dis-
play a shading discontinuity. When the NPIT is computed, sharp
edges are flagged and included in the edge-and-point image if they
are forward-facing. Shadow edge computation is not affected by
this consideration.
Chains. It is useful for the rasterizer to receive edges stitched to-
gether into connected chains of many edges, in order to support
incremental rasterization and accurate subpixel information where
a sequence of edges cross a pixel. We use simple hash tables to
construct chains of silhouette and shadow edges. Care is taken to
compute the shadow edges on receivers in a consistent manner that
avoids floating point inconsistencies.

5 Rasterization and Interpolation

Once a set of 3D discontinuity edges are identified, the next tasks
are to project them onto the image plane, efficiently combine them
with the point samples, and rapidly generate images using an edge-
respecting interpolation scheme.

We have chosen to adapt the RenderCache algorithm [26], very
briefly summarized here, for our point sample processing. Point
samples are produced by an independent shading system that need
only be capable of computing the color and first intersection for a
viewing ray. The RenderCache caches recent samples as colored
points in 3D using a fixed-size cache. For each frame, the cached
points are reprojected using the current camera parameters, filtered
to reduce occlusion errors, and interpolated to fill in small gaps
between reprojected samples. The RenderCache also prioritizes fu-
ture sampling to concentrate effort in image regions with sparse or
stale data. To keep the framerate interactive, it restricts the max-
imum effective sample density to one sample point per pixel and
uses relatively small 3 × 3 pixel filter kernels.

We use the reprojection and sampling components of the Render-
Cache essentially unchanged, but we have adapted its image filters,
specifically the depth (occlusion) cull and interpolation operations,
to respect discontinuity edges. To maintain an interactive framerate
though, these operations must be fast. We have also added a new
anti-aliasing algorithm, implemented as a filter, after the interpola-
tion step.

5.1 Edge Rasterization

After the discontinuity edges have been identified, the system
projects them onto the image plane and converts them to a con-
venient form for use in interpolation. The simplest approach would
be to rasterize the edges onto a bitmap, but we want to preserve
some subpixel information for anti-aliasing purposes. As the edges
are rasterized, the discretized subpixel locations where they cross
pixel boundaries are recorded as shown in Figure 7. Within a pixel,
an edge is approximated as a straight line that starts and ends on the
pixel boundary.

This approach has the advantages of being simple, compact, and
easy to compute with. The disadvantages are that only one edge
can be recorded per pixel and pixels with sharp edge corners are

6



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

Figure 7: A magnified view of a pixel (left) shows that its boundary
is discretized into 32 regions and its interior into 16 regions. An
edge (yellow) divides these regions into those inside (red) and out-
side (blue) the edge. Some interior regions (cross-hatched) are also
classified as ambiguous with respect to this edge. On the right, is
an edge rasterization example for a 6 × 6 pixel region. Shown is a
silhouette edge for a foreground object (green) and a shadow edge
on a background object (brown). Where they compete for the same
pixel, the z-buffer ensures that the foreground edge wins (black).
Depth information from the points allows the hidden portion of the
background edge to be culled.

not accurately recorded. This is acceptable because we are target-
ing interactive applications where speed is more important than the
accurate resolution of more difficult, and hopefully rare, cases. Our
results also validate this approximation.

Pixel boundaries are discretized into 32 locations, allowing the
encoding of each pixel’s edge using 10 bits (5 each for start and
end). This is enough subpixel precision for good anti-aliasing and
small enough that table lookups can be used for many edge-related
operations. Pixels with no edge have both their start and end points
set to zero.

During edge rasterization a z-buffer ensures that when multiple
edges compete for a pixel, the frontmost edge wins. The z-buffer
from the point reprojection step is reused to cull most of the oc-
cluded edges. But first, a small 3 × 3 filter is used to fill in small
gaps in the point’s z-buffer. Points and edges will not exactly coin-
cide even when they map to the same pixel, so we use a fairly con-
servative z-offset when drawing edges to ensure they are not falsely
occluded. This z-offset is dependent on the image resolution, cam-
era parameters, and, for shadow edges, the surface normal.

5.2 Reachability Map

Once the edges have been rasterized, we can compute reachability.
A sample is considered reachable if there exists a fairly direct path
to it from the point or region of interest that does not cross any
edge segments. It is more efficient to first compute reachability in a
separate pass for use by the later depth cull and interpolation steps.

An edge divides a pixel into two regions: inside and outside of
the edge,1 as shown in Figure 7. For anti-aliasing, we potentially
need to interpolate two different values for each pixel, however we
have chosen to reconstruct only one value per pixel and correct for
the missing values in a later filter.

During reprojection, we record which of 16 subpixel regions that
sample mapped to. However, if an edge crosses through a subpixel
region then this is not enough information to reliably determine on
which side of the edge the sample belongs. For each pixel, we use a
lookup table to get a 16 bit mask recording which subpixel regions
are ambiguous and then invalidate ambiguous samples.

For each pixel, we need to decide whether to reconstruct its in-
side or outside value. If a sample point mapped to this pixel, then
we use whichever region the sample point fell into. Otherwise we
choose an arbitrary interior region and use its inside/outside classi-
fication. Using these definitions reachability becomes symmetric.

1For pixels with no edge, we arbitrarily classify the entire pixel as inside.

If pixel a is reachable from pixel b then b is also reachable from a.
Thus we need only compute and store the reachability of half of a
pixel’s neighbors, since we can look up the others using symmetry.
For a 3×3 filter, we need only store four bits for the reachability of
four of its neighbors, plus one bit saying whether we reconstructed
the value for its inside or outside region.

A pixel’s boundary is divided into 32 regions. Another table
lookup is used to get a 32 bit mask encoding which portions of
its boundary are reachable from its inside and/or outside region.
By comparing boundary masks for the shared boundaries between
neighboring pixels, we can rapidly determine which parts (inside
and/or/neither outside) of the neighbors are reachable. We first
propagate the reachability to a pixel’s immediate neighbors and
then from them to its diagonal neighbors. Once we know which
regions of all the neighboring pixels are reachable, a lookup table
allows a quick determination of whether any sample points they
contain are reachable.

5.3 Image Filtering

The depth cull works by comparing each valid sample’s z value to
the average z value for all valid samples in its neighborhood. This
step is necessary to reduce occlusion errors due to gaps in the re-
projected points. It also has the unwanted side effect of eliminat-
ing valid samples that lie just outside of depth discontinuities (i.e.,
silhouette edges). However, because our edges include silhouette
edges, this artifact can be avoided by averaging the only z values of
samples that are reachable.

Similarly the interpolation must be constrained to use only reach-
able samples. This is straightforward; the interpolation already
needs to check if each neighbor contains a valid sample. An addi-
tional lookup for reachability is sufficient to make the interpolation
respect any recorded discontinuity edges. This reconstructs a color
for every pixel which has a valid reachable sample in its neighbor-
hood. Any other pixels retain their color from the previous frame
and are given maximum priority for having a new sample computed
when the sparse locations for new samples are selected.

Although our system normally uses 3×3 interpolation kernels, it
is straightforward to extend our method for larger kernels. We have
experimented with a 5 × 5 kernel which permits lower sampling
densities, but incurs a higher filtering cost.

For pixels that contain an edge, we would like to anti-alias them
by using a weighted combination of its inside and outside colors
that reflects the relative areas of its inside and outside regions. Be-
cause only one color per pixel is interpolated, the missing color
is approximated by looking up the color of a neighboring pixel.
An edge-indexed table lookup is used to choose the neighbor most
likely to contain a good approximation and the relative weights to
use. We have found this filter to be cheap and effective.

6 Implementation and Results

In this section we present results of our edge-and-point based ren-
dering system. Our system runs as a single thread on a dual Pen-
tium IV 1.7 GHz machine. The edge-and-point renderer runs on
one processor while the other processor is typically used to shade
samples. When using expensive shaders, for example to include
global illumination effects, the system can be configured to dis-
tribute the shader computation across multiple machines. We use
a Java-based distributed ray tracing engine for the computation of
shading, though any other renderer that could produce point sam-
ples would work as well.

7



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

6.1 Interactive Performance

6.1.1 Finding edges

We have run our edge-finding algorithm in scenes containing up to
150,000 polygons. The preprocessing time required for the con-
struction of our NPIT data structures ranges from about a second to
at most a minute for these scenes.

For the scenes shown in this paper our silhouette computation
time ranged from 10 to 60 milliseconds for each frame. When the
scene is loaded, initial shadow computation takes 0.25 to 2 seconds.
As the user moves around or manipulates objects in later frames,
the shadow computation time ranges from 10 to 100 milliseconds
depending on how many new light-blocker-receiver tripes are found
by the shader.

We compared our results to a system that did not use the hierar-
chical NPIT for silhouette and shadow computation: our silhouette
algorithm is 8 to 30 times faster, while our shadow algorithm is 5 to
50 times faster. Scenes with objects of greater geometric complex-
ity and lighting with soft shadows have the largest speedups.

6.1.2 Rasterization and Interpolation

Our experiments have confirmed that the cost for the point reprojec-
tion and the image filters including reachability, interpolation and
anti-aliasing is essentially linear in the number of pixels. For a
512×512 image, these take a total of 120 milliseconds per frame
and are usually the most expensive part of our system. These parts
of our system have been written in C++ and optimized for Pentium
IV processors and the SSE instruction set. The rest of the system is
less speed critical and is written in Java.

In some scenes with many edges, edge rasterization becomes the
bottleneck because we are using a simple rasterization algorithm
written in Java. Adapting one of the many more efficient algo-
rithms to produce the required subpixel information and porting it
to C++ should eliminate this bottleneck. Currently our system pro-
duces frames at 4 to 6 frames per second for a variety of scenes at
512×512 resolution.

Our framerate is essentially independent of the speed of the
shader being used, although the quality of the images degrades
somewhat as the number of newly shaded samples per frame de-
creases (e.g., from using more expensive shaders such as soft shad-
ows or global illumination). For the examples shown, our sampling
ratio is typically between 16 and 50 times smaller than the number
of pixels in our output images. Thus only 2 to 6% of the points sam-
ples are being updated each frame. This helps us achieve interactive
performance even when using expensive shaders.

6.2 Test Scenes

6.2.1 Non-convex with Occlusion Culling

The chain data set in Figure 8 shows how effective the edge-and-
point rendering algorithm is for rendering scenes with non-convex
glossy objects. The scene is lit by two lights and has about 75,000
polygons. The edge image on the right shows the effectiveness of
our occlusion culling algorithm. The edge algorithm finds a few
extraneous edges due to some noise in the geometry of the torus;
however, our interpolation algorithm is robust and handles these
edges without introducing any visible artifacts.

6.2.2 Soft shadows

The room image shown in Figure 9 shows the ability of our system
to handle scenes with non-convex objects casting soft shadows on
each other. Some of the objects are in contact with each other as
can be seen by the meeting of the penumbral and umbral shadow
edges at these contact points.

6.2.3 Anti-aliasing

The Mackintosh room shown in Figures 10 and 11 demonstrates the
ability of our algorithm to find and anti-alias fine shadow details.
On the right in Figure 10, magnified images of the tea-stand are
shown. On the top is the result produced by a regular ray tracer; on
the bottom is the result produced by our system.

The Alto library model shown in Figure 12 is a visually complex
environment with 26,000 triangles and 6 light sources. It contains
a high density of edges, especially in the ceiling slats, and in many
places exceeds our limit of one representable edge per pixel. Nev-
ertheless, our algorithm does quite well. On the right we show three
magnified results for a section of the ceiling. From top to bottom
these are: a conventional 1-sample-per-pixel image, a 4-sample-
per-pixel supersampled image, and our output image. Although
our algorithm is limited to a maximum of one sample per pixel, it
achieves quality comparable to and sometimes better than the super-
sampled image. Moreover, because we use sparse sampling in both
image space and time (only 2.5% of the points samples are updated
per frame), our method produces much better interactive perfor-
mance (and superior image quality) than the conventional method
collecting only one sample per pixel.

6.2.4 Optimizing for Stills

Although we have concentrated on interactive applications, with a
few modifications, our system could also be used for the rapid pro-
duction of high-quality still images. In this case, there is no need
to recompute existing point samples or check them for occlusion
errors. And since framerate is not important, it would be desirable
to use larger interpolation filters. As an initial exploration, we com-
puted an image of Mackintosh room in Figure 11 using a larger
5×5 interpolation kernel. On the right we show two magnified ver-
sions both computed using the same point data. The upper image
is blurry because it does not use discontinuity edges; the lower im-
age generated using our method is much sharper. This scene also
demonstrates our ability to work with different shaders as it in-
cludes dynamically computed global illumination using a variant
of the irradiance caching scheme [29].

7 Conclusions

This paper introduces a scalable, interactive rendering technique
that combines radiance discontinuities (edges) and sparse samples
(points) to generate high-quality, anti-aliased images. Discontinuity
edges are found interactively and are projected on the image plane.
Point samples that are separated by these projected discontinuity
edges are never interpolated together. We have demonstrated that
our system renders high-quality anti-aliased images at interactive
rates of several frames per second in scenes including geometrically
complex objects and lighting effects such as shadows and global
illumination. The user can also dynamically move objects within
the environment.

This paper describes our novel interval-arithmetic based algo-
rithms that use the Normal–Position Interval Tree to find silhouette
and shadow edges at interactive rates in complex scenes. These data
structures and algorithms are very effective in finding these edges
and are 5 to 50 times faster than a brute-force algorithm.

We also present a new compact representation of discontinuities
and point samples called the edge-and-point image; this image is
used by efficient interpolation algorithms to reconstruct radiance.
The detection of discontinuities permits the generation of anti-
aliased output images without supersampling at interactive rates of
4 to 6 fps on a modern desktop computer. Our system collects sam-
ples for only about 2 to 6% of the image pixels for any given frame.

8



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

Figure 8: Chains scene inspired by Stuart Warmink.

Figure 9: This room demonstrates soft shadows with contact hardening.

Although the speed of this new rendering technique is already
acceptable, it is currently often limited by the speed of edge ras-
terization and sample interpolation. Thus, we envision implement-
ing the rasterization of the edge-and-point image in future hard-
ware, which should be quite feasible and also result in significant
speedups. Because our system is compatible with the use of a va-
riety of different shaders to collect point samples, this rasterization
functionality would also be broadly applicable and is thus a promis-
ing new direction for graphics hardware support.

Future Work. Our system identifies two important types of discon-
tinuities in an image as being perceptually important; other discon-
tinuities such as reflections are also perceptually important and the
hierarchical data structures and algorithms described in this paper
could be extended to find them. To improve our support for interac-
tive performance, we could add a cost-benefit model that identifies
the most important discontinuities in an image given framerate con-
straints. For example, in scenes with large numbers of lights, per-
ceptual metrics to find discontinuities for only the important lights
would be useful. It would also be useful for the shader to use a
more sophisticated technique to determine which samples must be
invalidated when objects move [1]. We also expect that the shadow
edge finding algorithms from our paper could be applied to shading
in non-photorealistic rendering.

References
[1] Kavita Bala, Julie Dorsey, and Seth Teller. Interactive ray-traced scene editing

using ray segment trees. In Tenth Eurographics Workshop on Rendering, pages
39–52, June 1999.

[2] Kavita Bala, Julie Dorsey, and Seth Teller. Radiance interpolants for accelerated
bounded-error ray tracing. ACM Transactions on Graphics, 18(3):213–256, July
1999.

[3] George Drettakis and Eugene Fiume. A fast shadow algorithm for area light
sources using backprojection. In Andrew Glassner, editor, Proceedings of SIG-
GRAPH ’94 (Orlando, Florida, July 24-29, 1994), Computer Graphics Proceed-
ings, Annual Conference Series, pages 223–230. ACM SIGGRAPH, ACM Press,
July 1994.

[4] Fredo Durand. 3D Visibility: Analytical Study and Applications. PhD thesis,
Grenoble University, July 1999.

[5] Fredo Durand, George Drettakis, and Claude Puech. The visibility skeleton: A
powerful and efficient multi-purpose global visibility tool. In SIGGRAPH 97
Conference Proceedings, August 1997.

[6] Ziv Gigus, John Canny, and Raimund Seidel. Efficiently computing and rep-
resenting aspect graphics of polyhedral objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(6):542–551, 1991.

[7] Ziv Gigus and Jitendra Malik. Computing the aspect graph for line drawings of
polyhedral objects. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 12(2), February 1990.

[8] Baining Guo. Progressive radiance evaluation using directional coherence maps.
In Computer Graphics (SIGGRAPH 1998 Proceedings), pages 255–266, August
1998.

9



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

Figure 10: The left image shows a tea-stand with fine geometry and complex shadows. The middle image shows the edges found by our
system. The images on the right compare a standard 1-sample-per-pixel sampling (top) against our results (bottom). Because the surface
surrounding the fireplace is black, it reflects no illumination from the lights. Our system automatically detects this and does not compute
shadow edges on this surface.

Figure 11: Mackintosh Room with 5×5 interpolation filter. The images on the right show interpolation without discontinuities (top) and our
algorithm with edges (bottom).

[9] Paul Heckbert. Discontinuity meshing for radiosity. Third Eurographics Work-
shop on Rendering, pages 203–226, May 1992.

[10] Hughes Hoppe. View-dependent refinement of progressive meshes. In Computer
Graphics (SIGGRAPH ’97 Proceedings), pages 189–198, 1997.

[11] David Johnson and Elaine Cohen. Spatialized normal cone hierarchies. In ACM
Symposium on Interactive 3D Graphics, pages 129–134, March 2001.

[12] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg,
Jonathan Shade, and Duane Fulk. The digital michelangelo project: 3d scanning
of large statues. In Computer Graphics (SIGGRAPH ’00 Proceedings), August
2000.

[13] Daniel Lischinski, Filippo Tampieri, and Donald P. Greenberg. Discontinuity
Meshing for Accurate Radiosity. IEEE Computer Graphics and Applications,
12(6):25–39, November 1992.

[14] Ramon E. Moore. Methods and Applications of Interval Analysis. Studies in
Applied Mathematics (SIAM), Philadelphia, 1979.

[15] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus Gross. Sur-
fels: Surface elements as rendering primitives. In Computer Graphics (SIG-
GRAPH ’00 Proceedings), August 2000.

[16] F. Pighin, Dani Lischinski, and David Salesin. Progressive previewing of ray-
traced images using image-plane discontinuity meshing. In Rendering Tech-
niques 1997, pages 115–126, June 1997.

[17] Holly Rushmeier, Fausto Bernardini, Joshua Mittleman, and Gabriel Taubin. Ac-
quiring input for rendering at appropriate level of detail: Digitizing a pieta. In
Ninth Eurographics Workshop on Rendering, pages 81–92, June 1998.

[18] Szymon Rusinkiewicz and Marc Levoy. Qsplat: A multiresolution point render-
ing system for large meshes. In Computer Graphics (SIGGRAPH ’00 Proceed-
ings), August 2000.

[19] P. V. Sander, S. J. Gortler, H. Hoppe, and J. Snyder. Silhouette clipping. In
Computer Graphics (SIGGRAPH ’00 Proceedings), August 2000.

[20] P. V. Sander, S. J. Gortler, H. Hoppe, and J. Snyder. Discontinuity edge overdraw.
In ACM Symposium on Interactive 3D Graphics, March 2001.

[21] Maryann Simmons and Carlo H. Squin. Tapestry: A dynamic mesh-based dis-
play representation for interactive rendering. In Eleventh Eurographics Work-
shop on Rendering, pages 329–340, 2000.

[22] John M. Snyder. Interval analysis for computer graphics. Computer Graphics
(ACM SIGGRAPH ’92 Proceedings), 26(4):121–130, July 1992.

[23] Cyril Soler and Francois X. Sillion. Fast calculation of soft shadow textures
using convolution. In Computer Graphics (SIGGRAPH ’98 Proceedings), pages
321–332, August 1998.

10



Program of Computer Graphics Technical Report: PCG-02-3, January 2002

Figure 12: The left image shows our results for the Alto library model. On the right, from top to bottom, magnified images of a standard
1-sample-per-pixel image, a 4× supersampled image, and our edge anti-aliased results are shown. The books on the shelves appear blurry
because they are modeled using low-resolution textures.

[24] Michael M. Stark, Elaine Cohen, Tom Lyche, and Richard F. Riesenfeld. Com-
puting exact shadow irradiance using splines. In SIGGRAPH 99 Conference
Proceedings, August 1999.

[25] James Stewart and Tasso Karkanis. Computing the approximate visibility map,
with applications to form factors and discontinuity meshing. In Ninth Eurograph-
ics Workshop on Rendering, pages 57–68, June 1998.

[26] Bruce Walter, George Drettakis, and Steven Parker. Interactive rendering using
the render cache. In Tenth Eurographics Workshop on Rendering, June 1999.

[27] Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf der Heide,
and Wolfgang Straer. The randomized z-buffer algorithm: Interactive rendering
of highly complex scenes. In Computer Graphics (SIGGRAPH ’00 Proceedings),
pages 361–370, 2001.

[28] Len Wanger, Jim Ferwerda, and Donald Greenberg. Perceiving spatial relation-
ships in computer-generated images. IEEE Computer Graphics and Applica-
tions, 12(3):44–58, 1992.

[29] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A Ray Tracing
Solution for Diffuse Interreflection. Computer Graphics (ACM SIGGRAPH ’88
Proceedings), 22(4):85–92, August 1988.

[30] Kwan-Hee Yoo, Dae Seoung Kim, Sung Yong Shin, and Kyung-Yong Chwa.
Linear-time algorithms for finding the shadow volumes from a convex area light
source. Algorithmica, 20(3):227–241, 1998.

11


