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ABSTRACT 

 

This thesis presents two adaptive algorithms for shadow generation. Both al-

gorithms utilize commercial graphics hardware to accelerate the rendering 

process. The first algorithm, called Adaptive Shadow Maps, deals with remov-

ing the aliasing artifacts that typically result when using shadow maps for 

hard shadow generation. It achieves this by varying the shadow map resolu-

tion spatially throughout the scene based on the eye position. The second al-

gorithm, called Adaptive Soft Shadows, attempts to generate soft shadows ef-

ficiently by varying the number of samples needed over the different regions 

of the scene. More samples are devoted to soft shadow regions that subtend a 

large portion of the image plane, and fewer samples are devoted to hard 

shadow regions.  

 

We show that Adaptive Shadow Maps enable dramatic improvements in 

shadow quality while maintaining interactive rates and being constrained to a 

user-specified memory limit. In the case of Adaptive Soft Shadows, we exam-

ine the reasons why the approach was not as successful as we had envisioned 

and discuss possible avenues for improvement. The motivation for each algo-

rithm is presented along with the corresponding theoretical foundation, im-

plementation, results, conclusions, and directions for improvement.  
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Chapter 1 

Introduction 
 

We begin with a look at shadows and their importance in realistic images. 

Next, we look at different shadow generation algorithms, classified by the 

type of shadows they produce. Following this, we introduce shadow maps 

and explain their advantages and disadvantages, concluding with a brief look 

at the organization of this thesis. 

A B RIEF HISTORY OF SHADOWS 

The Importance of Shadows 

Shadows provide important information about the spatial relationships 

among objects [Wanger92]. They provide clues about the objects that allow us 

to perceive depth, the distances between objects, the illuminating light 

sources, and their occluders as well as their shapes. Figure 1.1 shows that 

shadows are an important part of making realistic images. The first panel of 

the figure shows that without shadows, it is impossible to make any conclu-

sions about the positions of the red and blue teapots. Even though they are at 

the same location in the image plane, we cannot discern their positions in 

world space. The second panel shows the same scene with shadows from a 
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point light source. Now we can see that the blue teapot is actually nearer to us, 

and is floating in space. Finally, in the third panel, an area light source has 

been used, resulting in realistic-looking soft shadows. Clearly the existence 

and quality of shadows plays a large role in making images look realistic. 
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Because shadows depend on so many different factors, shadow generation has 

been an important and difficult problem that has been addressed in many dif-

ferent ways. [Möller99] and [Woo90] together present a comprehensive review 

of the most popular methods, but the following sections will provide a brief 

historical look at shadow generation techniques. The approach we shall take 

 

 

 

Figure 1.1: The Tale of Two Teapots 

A simple scene with, from top to bottom, no shadows, shadows from a point 
light source (also known as “hard shadows”), and shadows from an area 
source (also known as “soft shadows”). Note the difficulty in assessing dis-
tance without the shadows. 
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will be to divide the various techniques into two categories: hard shadow 

(point light source) techniques and soft shadow (area light source) techniques.  

Hard Versus Soft Shadows 

 “Hard shadows” are those shadows that are generated from a point light 

source. Because a point light source is used, each sample point in the scene is 

characterized as either “lit” (meaning that a ray cast from the sample point to 

the light source is unobstructed), or “unlit” (meaning that a ray cast from the 

sample point to the light source is obstructed). There are no intermediate cases 

since the light is considered an infinitesimally small point (no area), and the 

end result is a “hard” shadow edge, an example of which is shown in Figure 

1.2.  
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“Soft shadows” are shadows that are generated from light sources with finite 

area. In this case, each sample point in the scene sees some fraction of the light 

source. This fraction can vary in a continuous fashion, resulting in “soft” 

shadow edges, as depicted in Figure 1.3. 

 

Figure 1.2: A Scene with Hard Shadows 

The image is generated using a point light source assumption, causing a 
sharp edge. Note that jagged edges appear when only one point sample is used 
per pixel. 
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Hard Shadow Techniques 

One of the first techniques to be used for shadow generation was described by 

Appel [Appel68] and Bouknight and Kelley [Bouknight70]. They presented 

methods for projecting polygon edges from the light’s viewpoint onto poly-

gons that were further away. Each polygon had a list of those polygons that 

 

Figure 1.3: A Scene with Soft Shadows 

This image is generated using an area light source. Note that the shadow 
consists of both an umbra and a penumbra and the intensity gradient at the 
shadow edge is continuous. 
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could potentially shadow it. This list was analyzed to reduce the number of 

polygon pairs by removing pairs that did not interact. The information in the 

list was then used when rendering each scan line.  

 

[Sutherland74] used a two-pass approach. The first pass identified surfaces 

visible from the light and split these polygons into lit and unlit polygons if 

they were partially in shadow boundaries. Now, with all polygons either lit or 

unlit, a second pass displayed the new collection of surfaces using a hidden 

surface algorithm.  

 

Another method introduced by Atherton et al. [Atherton78] used clipping 

techniques to divide polygons along shadow boundaries into lit and shad-

owed pieces. The lit portions were shaded and the shadowed portions were 

then added. This allowed camera movement without having to recompute the 

shadows. 

 

Blinn [Blinn88] introduced the projection of occluders as a simple method for 

creating shadows on planar receivers. Despite its lack of generality, this tech-

nique has been widely used to cast shadows onto large polygons such as 

floors or walls of rooms because only a simple projection is involved. 

 

One method of hard shadow generation that has become extremely popular is 

Crow’s shadow volume technique [Crow77]. For this technique, the volume of 

space delimited by the light source is defined using polygons. However, these 

polygons are not displayed. Rather, they are used to identify whether scene 

polygons are inside or outside the light’s influence. The shadow volume tech-
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nique can be easily implemented using the stencil buffer in today’s graphics 

hardware [Fuchs85] [Heidmann91], which allows a counter to be maintained 

for each pixel in the image plane [Woo99]. The counters are used to decide 

whether each pixel is inside a shadow volume of not, and hence to shade each 

pixel appropriately. The main disadvantages of shadow volumes are that im-

plementations using graphics hardware tend to be fill-rate intensive, and that 

there are a number of boundary cases and other implementation details to 

deal with to achieve correct results. 

 

Another hard shadow generation technique that is widely used today is the 

shadow buffer (also called the “shadow map,” which is the term used in this 

thesis). This technique was introduced by Williams [Williams78] and is based 

on a two-pass approach. The basic idea is to generate a depth-buffered image 

from the light source and to use the information in the depth image to shade 

the eye view. Segal et al. [Segal92] showed how to implement shadow map-

ping using the texture mapping capabilities of high-end graphics hardware, 

which in turn led to the support of shadow mapping in commercial graphics 

hardware today. Because this thesis is very closely related to the shadow map 

technique, we shall return to the shadow map algorithm in the Background on 

Shadow Maps section. 

 

Ray tracing, first conceived by Appel [Appel67] and put into practice by Whit-

ted [Whitted80], is a technique that can be used to generate highly realistic 

images. Ray tracing, as the name implies, follows the path of rays from the eye 

through the scene. This procedure is done for each pixel in the image plane. 

After determining the intersected surface point seen through the pixel, a 
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shadow ray is then cast from that point to the light source to compute the 

lighting for each pixel. For point light sources, the result is a binary determina-

tion (because the ray will either be blocked or not) and thus, the shadows that 

are generated will have hard edges. Ray tracing is versatile and accurate, even 

for area light sources if sufficient point samples are taken, but has high com-

putational costs. However, recent work by Parker et al. [Parker99] and Wald 

et al. [Wald01] has shown that carefully optimized ray tracers can be used to 

achieve interactivity for point light sources even on single processors. 

Soft Shadow Techniques 

Many hard shadow techniques can be applied to soft shadow generation by 

using multiple point samples on an area light source and accumulating them. 

The problem with these approaches is that they tend to be very expensive 

since they do not take advantage of any coherence to reduce the cost of the 

soft shadow generation. In the realm of graphics hardware, Haeberli and Ake-

ley [Haeberli90] introduced the accumulation buffer, which could average 

multiple scene renderings. Thus, several hard shadow images created by any 

shadowing algorithm could be averaged to produce soft shadows. Brotman 

and Badler [Brotman84] combined the contributions of multiple shadow vol-

ume samples with the depth buffer to simulate area lights. Heckbert and Herf 

[Heckbert97] combined images from different samples on an area light source 

to create per-polygon textures. However, their approach is computationally 

inefficient since it can scale quadratically in the worst case with the number of 

self-shadowed polygons in the scene. 
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Nishita and Nakame [Nishita85] showed how to extend shadow volumes to 

area lights by computing samples either at both ends of a linear light source or 

at every vertex of a convex area light. Interpolation was then used to compute 

visibility for the intermediate locations. 

 

Chen and Williams [Chen93] constructed shadow maps from several represen-

tative points on the light source (such as its vertices) and used interpolation to 

calculate the average visibility. The problem with this approach was that it re-

quired a lookup into each of the representative shadow maps, which can be 

costly.  

 

Ray tracing approaches can be extended to take many samples on an area light 

source instead of using a single sample representing a point light source when 

casting shadow rays. The technique of distributed ray tracing, introduced by 

Cook [Cook84] allows this approach, and results in soft shadows.  

 

Hart et al. [Hart99] presented a view-dependent technique that accelerated 

shadow computation by using coherence in blockers, which are the surfaces 

that prevent light from reaching other surfaces. For each pixel in the image 

plane, a set of blockers was computed. Neighboring pixels were then checked 

for the same blocker recursively. The main problem with this approach was 

that unless samples were taken with sufficient frequency, small blockers could 

be missed, resulting in inaccurate shadow computations. 

 

Keating and Max [Keating99] used multi-layered depth images as a basis for 

their shadow computations. They discretized the recorded depths to reduce 
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“light leaking” and used a depth-based percentage-closer filtering [Reeves87] 

operation on the depth images (see Figure 1.4) to produce blurred shadows.  

Agrawala et al. [Agrawala00] presented two image-based techniques for com-

puting soft shadows. The first, layered attenuation maps, warped and com-

bined depth information from a number of samples on the light source into a 

layered depth image [Shade98], which is essentially an image that stores, at 

each pixel, the surfaces that exist at various depths. The resulting attenuations 

were stored in the layered depth image and queried during shading. Al-
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Figure 1.4: Percentage Closer Filtering 

This diagram shows how percentage closer filtering works. Here we are examin-
ing the query process for a particular eye view sample point, which maps into 
the shadow map at the texel with depth 1.2. The eight neighbors of this texel are 
shown, since they are to be used for filtering. The sample point being tested has 
depth equal to 49.8. As shown in part (a), ordinary filtering would simply av-
erage the surrounding depth values and produce a simple binary result. Part 
(b) shows percentage closer filtering, which tests the sample point’s depth value 
individually against each neighboring texel of the shadow map. The fraction of 
successful tests determines the sample point’s final attenuation. 
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though shading could be accomplished at several frames per second on an SGI 

Onyx2 InfiniteReality, the pre-processing required prevented this technique 

from supporting dynamic scenes. The second technique introduced by 

Agrawala et al. was called coherence-based ray tracing. Similar to the work of 

Hart et al. [Hart99], this approach took advantage of the fact that visibility 

changes occur slowly in neighboring regions. The end result was a significant 

reduction in the time taken to generate ray-traced images with soft shadows, 

though the technique is not interactive. 

 

The radiosity technique, introduced by Goral et al. [Goral84], models the in-

teractions between diffuse surfaces by dividing the polygons of the scene into 

patches and computing the radiosity at each patch. Since the approach ac-

counts for visibility as part of its form factor calculation, the computed solu-

tion will contain shadow information. However, due to the large number of 

patches, the visibility calculations are too expensive to allow interactivity, and 

the level of meshing required to produce accurate shadows is often prohibi-

tive. Discontinuity meshing [Lischinski92] can be used to improve the accu-

racy of the meshing process by finding discontinuity events such as umbra 

and penumbra boundaries and then subdividing around those region bounda-

ries. 

 

Soler and Sillion [Soler98] introduced a technique that used convolution to 

perform filtering on blocker images to produce approximate soft shadows. 

The convolution produces superior image quality when compared to averag-

ing hard shadows, but the approach relies on clustering objects that do not 
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shadow themselves. The clustering operation becomes difficult for complex 

scenes that could potentially have a large amount of self-shadowing. 

BACKGROUND ON SHADOW MAPS 

Introduced by Williams in 1978 [Williams78], conventional shadow mapping 

is a common technique used to generate shadows. Since it is an image-space 

technique, it confers advantages in terms of generality, speed, and ease of im-

plementation. A shadow map is a depth image generated from the light 

source view. When rendering, points in the eye view are transformed into the 

light source view. The depths of the transformed points are then compared 

with the depths in the shadow map to determine if the transformed points are 

visible from the light source. A transformed point is considered lit if it is closer 

to the light than the corresponding point in the shadow map. Otherwise, the 

point is considered to be in shadow. This information is then used to shade the 

eye view image. Figure 1.5 illustrates an example of the process we have just 

described.  In this case, we want to shade the red pixel on the image plane 

(which has been exaggerated in size). This pixel corresponds to a point on the 

green box, as shown in the figure with a green circle. The eye view and light 

view boxes illustrate the corresponding locations of this point on the image 

plane and shadow map, respectively. In this case, since the point is visible in 

the light view, the eye view pixel is not darkened. If the point were not visible 

in the light view, the eye view pixel would be appropriately attenuated to 

show that it is in shadow. 
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Advantages and Disadvantages of Shadow Maps 

Shadow maps have a number of useful characteristics. Since they are an im-

age-space technique, they tend not to be affected by the number of polygons 

in the scene. They can be modified to easily deal with different types of primi-

tives. In addition, they are easy to implement and can deliver relatively high 

frame rates because of their simplicity. 

 

Unfortunately, shadow maps do have some significant drawbacks. The two 

principal problems are aliasing (blocky shadow edges that result from insuffi-

cient shadow map resolution) and bias determination (finding a bias factor to 

 

Figure 1.5: How Shadow Maps Work 

This example shows two sample points being transformed and shaded. The red 
point corresponds to a lit region on the green box, while the purple point is in 
shadow. When the points are transformed into the light view for comparison 
with the depths in the shadow map, the red point has the same depth as the sur-
rounding pixels from the green box. Hence, it is deemed “lit”. The purple point, 
however, is found to have a depth greater than the blue box, which means that 
the blue box occludes it. Therefore, the purple point is deemed to be “in shadow” 
and is darkened appropriately during shading. 
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add to the depth comparison to prevent erroneous self-shadowing). This the-

sis does not address the bias determination problem, although a discussion of 

some of the issues can be found in Williams’ original work [Williams78]. 

 

Chapter 2 explains how aliasing arises in shadow maps, followed by a discus-

sion of the subsequent difficulties that arise. The chapter also introduces the 

Adaptive Shadow Map (ASM), which is a solution to the aliasing problem in 

shadow maps. 

 

Another problem with shadow maps is that they are inherently a hard shadow 

technique. It is possible to use an approach of taking many point samples over 

an area light source and combining the results to simulate an area source. 

However, such an approach can be slow. In Chapter 3, we introduce an adap-

tive technique, Adaptive Soft Shadows, which helps to make the soft shadow 

computation more efficient. This approach is not constrained exclusively to 

shadow maps, but we have chosen to use shadow maps as the basis for our 

implementation because of their versatility and because they are supported in 

commercial graphics hardware. 
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Chapter 2 

Adaptive Shadow Maps 
 

In this chapter we shall first explain the aliasing problem in shadow maps 

and describe its repercussions. Next, we introduce the Adaptive Shadow Map 

and explain the theory behind it. Following this is a description of the imple-

mentation we used along with the results we obtained. The chapter concludes 

with some of the future work that could be done to improve the algorithm we 

describe. 

HOW ALIASING ARISES IN SHADOW MAPS  

As mentioned in Chapter 1, one of the major drawbacks of shadow maps is 

aliasing. Aliasing refers to artifacts caused by insufficient sampling. When 

dealing with hard shadows, aliasing is particularly noticeable and produces 

jagged edges because of the binary and therefore discontinuous nature of the 

shadow map. This map, generated from the light’s view, is actually a point-

sampled representation of what can be seen from the light, with each point 

sample being represented by a pixel in the shadow map. As we transform 

each pixel in the eye view into the shadow map for comparison and shading, 

the resulting footprint of the pixel can be larger or smaller than the pixels in 

the shadow map. If the footprint is larger, we could average the values of sev-
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eral shadow map pixels (as in percentage-closer filtering) to ascertain an ap-

propriate value for the eye view pixel. However, if the footprint in the shadow 

map is smaller than the pixels in the shadow map, multiple eye view pixels 

will map to the same shadow map pixel, resulting in the same value for all of 

these pixels. Thus, aliasing arises when the sampling resolution of the shadow map is 

less than the resolution of the eye view. According to the Nyquist theorem [Ny-

quist28], the shadow map resolution must be at least twice that of the eye 

view resolution to prevent aliasing. 

 

Figure 2.1 illustrates how aliasing arises in shadow maps. In the figure, we see 

views from two different locations in a simple scene: Viewpoint A and View-

point B. The grid in each picture shows the projected pixel area of the shadow 

map as seen by the current viewpoint. Since the projected area of the light 

source pixels in Viewpoint A is roughly equal to the area of the shadow map 

pixels in the shadow map, aliasing is minimal in this case. In contrast, View-

point B is quite close to the scene geometry, resulting in large projected areas 

for the shadow map pixels in this view. This means that large areas of the im-

age generated from Viewpoint B are shaded using relatively small amounts of 

information from the shadow map. The result is significant aliasing artifacts, 

depicted here as jagged edges. 
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The Implications of Aliasing in Shadow Maps 

The aliasing problem has many inconvenient repercussions. When using 

shadow maps in an interactive application, light positions and shadow map 

resolutions have to be chosen carefully so that aliasing is minimized in all po-

tential camera views. The common solution is to place lights close to the ob-

jects that will be viewed and to use high-resolution shadow maps. However, 

this does not work in many situations. One such problematic scenario occurs 

when a single light source illuminates a room. In this case, the light might be 

much farther from the objects in the scene than the camera will be, meaning 

that to prevent aliasing, the required shadow map resolution could be very 

high. Since shadow map memory usage is proportional to its total resolution 

(e.g., a 1024 by 1024 pixel shadow map would use 4MB of memory, assuming 

a 32-bit value is used to store the depth at each pixel), the memory required 

can become prohibitive.  

 

Figure 2.1: Aliasing in Shadow Maps 

A simple scene is viewed from two viewpoints. While aliasing is negligible at 
Viewpoint A, it causes large jagged edges at Viewpoint B. 
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PREVIOUS WORK 

Removing aliasing in shadow maps has been a difficult problem to resolve. 

Percentage-closer filtering, described in Chapter 1, is one solution to the alias-

ing problem (see Figure 1.4). With this approach, each lookup into the shadow 

map is filtered using the surrounding region of the shadow map, and the frac-

tion of the samples that is shadowed returned. Percentage-closer filtering in-

corporates more samples into the visibility calculation and allows lookups into 

the shadow map to have results that are not just binary. The visual result is 

softer, antialiased shadow boundaries. Although this approach is very useful 

and easy to implement, it does not address the problem of inadequate shadow 

map resolution as the fundamental cause of aliasing. Therefore, in cases where 

the shadow map resolution is significantly lower than necessary, percentage-

closer filtering only masks aliasing by blurring.  

 

Figure 2.2 illustrates the light buffer [Haines86], which resolves the aliasing 

problem within the context of a non-interactive ray tracer by using a flat 

shadow map with analytical testing of shadows. The problem with this ap-

proach is the lack of interactivity because of its dependence on expensive ray 

casting operations. 
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Most recently, Deep Shadow Maps [Lokovic00] address aliasing by using jit-

tered samples and pre-filtering them. Like percentage-closer filtering, Deep 

Shadow Maps are able to improve shadow quality by using more samples for 

each lookup. Again, Deep Shadow Maps also do not deal with aliasing caused 

by insufficient shadow map resolution. 

 

Figure 2.2: Schematic Representation of the Light Buffer 

A cube-like structure is constructed around the light source. Each face of 
the cube is divided into cells, and each cell contains a list of the surfaces 
potentially visible through the cell. A scan-line algorithm is used to take 
advantage of this information and to thereby accelerate ray tracing. 
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A COMPARISON 

To address the aliasing problem described above, we introduce the Adaptive 

Shadow Map (ASM). The basic idea behind the ASM is to use a hierarchical 

structure to store the shadow map instead of the conventional flat, regular 

structure. As we will see, the new approach gives us many advantages. Before 

going on to describe ASMs in detail, let us first look at an illustration of the 

ASM’s utility. Figure 2.3 presents a comparison between conventional 2048 by 

2048 pixel shadow map and an ASM. In this example, the “bunny” is just one 

object in a large room that is lit by a single light. With both algorithms using 

16 MB of memory, we can see that the ASM has refined the shadow map for 

the camera position, resulting in higher shadow quality. On the other hand, 

 

Figure 2.3: A Comparison 

On the left is an image generated by a 2048 by 2048-pixel conventional 
shadow map using 16 MB of memory. On the right is an image of the same 
scene using an ASM and an equivalent 16 MB of memory. Note the vastly 
improved image quality on the right. 
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the conventional shadow map exhibits aliasing artifacts because of its inade-

quate resolution for the current viewpoint. 

 

In practice, lights are often placed artificially close to objects and camera paths 

are carefully constructed to ensure that aliasing does not arise. This involves 

considerable tweaking with respect to picking the appropriate light position 

and resolution. Our goal with ASMs was to address the aliasing problem in 

shadow maps while minimizing user intervention and maintaining an interac-

tive frame rate.  

DESCRIPTION 

ASMs are based on the observation that a high-quality shadow map need not be of uni-

form high resolution; only regions that contain shadow boundaries need to be sampled 

densely. In those regions, the resolution of the shadow map should be at least 

as high as the corresponding region in the eye view to avoid aliasing artifacts. 

Figure 2.4 illustrates the intuition behind the previous statements. A simple 

scene consisting of a table on a plane is shown. There are four cases that can 

arise. In fully lit and fully occluded regions, there is no detail in the shadow to 

refine. These regions have no high intensity gradients and thus are visually 

unimportant with respect to shadowing. However, since the eye detects edges, 

shadow boundaries are of great interest and could potentially require refine-

ment to improve their shadow quality. But we do not want to refine areas that 

are already of adequate resolution and do not perceptually reveal aliasing arti-

facts. This means that we do not want to refine the distant shadow boundary 

at the back of the table, though we do want to refine the shadow boundary 

that is close to the eye, near the front of the table. 
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An ASM hierarchically subdivides an ordinary shadow map, providing higher 

resolutions in visually important regions. Like a conventional shadow map, an 

ASM takes as input a set of transformed eye view points and allows shadow 

queries on this set, returning true if a particular point is lit and false otherwise. 

In software systems, ASMs can seamlessly replace conventional shadow maps.  

 

An ASM has three main characteristics: 

• It is view-driven, meaning that the hierarchical grid structure is up-

dated based on the user's viewpoint.  

• It is confined to a user-specifiable memory limit. Memory is managed 

efficiently and the ASM avoids the explosive growth in memory usage 

 

Figure 2.4: Deciding Where to Refine 

The four classifications for regions in the image are shown. To improve image 
quality, the algorithm needs only to focus its effort on shadow boundary re-
gions of inadequate resolution. 
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that would be required by a conventional shadow map of the same vis-

ual quality. 

• It is progressive, meaning that once a particular viewpoint is estab-

lished, image quality continues to improve until the user-prescribed 

memory limit is reached. 

PROCESS FLOW 

Figure 2.5 shows the ASM’s process flow. ASMs interface with applications in 

the same way as conventional shadow maps. That is, they take as input the set 

of pixels in the eye view (the Transform Eye Pixels stage) and they allow a 

query for each pixel that returns a binary value indicating whether that pixel 

is lit or in shadow (the Query stage). However, ASMs do perform some addi-

tional processing, which can be divided into two stages that we call the Ana-

lyze and Refine stages. The Analyze stage identifies potential portions of the 

shadow map that need refinement, and evaluates a cost-benefit metric for 

these portions. Next, based on the information generated by the Analyze stage, 

the Refine stage updates the data structure. The most valuable new portions 

are generated, and if the memory limit has been reached, the least valuable 

shadow map portions are removed. 
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DATA STRUCTURE 

Organization 

The data structure we use is a simple quad-tree structure. Each node in an 

ASM tree has a shadow map of a fixed resolution and a partitioning of that 

shadow map into a fixed number of cells. Each of these cells may contain an-

other tree node. Figure 2.6 illustrates ASM data structure for a particular 

viewpoint. In this case, the yellow squares represent regions of the shadow 

map that are close to the eye and which contain discontinuities. Because of 

this, they have been created at a high resolution. In contrast, the more distant 

regions are in blue, indicating that they are of low resolution. The algorithm 

 

Figure 2.5: The ASM Process Flow 

The additional processing performed by the ASM is shown.  
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has deemed that subdividing these regions would not increase the eye view 

image quality sufficiently, given the current memory constraints. 

 

The number of children that a node contains can be varied to tune the per-

formance characteristics of the algorithm. For example, if a small number of 

children is used, the tree depth will be correspondingly higher, but less checks 

have to be made at each level of the tree. Conversely, a large number of chil-

dren can be used, resulting in a lower tree depth, but requiring more checks to 

be made at each level. For computational efficiency, the parameters should be 

tuned based on the needs of the intended application. 
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Two operations may be performed on a cell in the tree. An empty cell may 

have a new node assigned to it when it is determined that the resolution of the 

shadow map region corresponding to the cell is not high enough to provide 

the required image quality. A cell containing a node may also have that node 

 

Figure 2.6: The ASM Tree Structure 

The top diagram shows the ASM shadow map structure. The yellow squares 
represent regions that are close to the eye and that contain shadow discontinui-
ties. The bottom diagram shows the same situation, but represented as a tree. 

 

Root 
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and its descendants deleted. This is done in response to the user-specified re-

strictions on memory usage.  

Creating Nodes 

At any one time there are many cells that require new nodes to be assigned to 

them. In an interactive application, it is not always possible to fulfill all of 

these requirements. Therefore, we use a cost-benefit metric to determine 

which cells to satisfy. It is only beneficial to create a new node (and hence a 

higher resolution shadow map piece) if it causes a perceived improvement in 

shadow quality. We quantify this perceived benefit by counting the number of 

transformed eye pixels within the cell that straddle a depth discontinuity and 

whose shadow map resolution is lower than the eye view resolution. We use 

the mip-mapping capability of commodity graphics hardware to estimate the 

resolution in the eye view and in the shadow map. The Mip-mapping section 

below explains this in detail. 

 

The cost of creating a new node is the amount of time required to generate its 

new shadow map. Using the ratio of eye view pixel size to shadow map pixel 

size, the resolution required for the new shadow map to match the eye view 

resolution is: 

Area Projected Pixel MapShadow 
Area Projected PixelView Eye 

NN currentrequired ====  

where N is the number of pixels in a shadow map cell. To understand the ori-

gin of this equation, consider Figure 2.7, which shows a simple case where an 

area in world space is being projected into both the eye view and shadow 

map. The area being projected is shown in bright green, on the blue box. We 

want to compare the projection of this area in the eye view and shadow map. 
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The projected areas are shown in green. We can see that in this case, the pro-

jected area in the eye is larger than the projected area in the shadow map. This 

means that there is insufficient information to shade the eye view correctly, 

and therefore, that the shadow map quality needs to be improved. 

 

The cost of generating a new shadow map can be approximated by: 

baNt required ++++====cos  

This cost model is based on the fact that hardware read-back performance var-

ies roughly linearly with the size of the buffer being read back, becoming in-

creasingly inefficient as the read-back size gets very small. We perform a cali-

bration test as a preprocess to evaluate a (the per-pixel rendering cost) and b 

(the constant overhead) for a given hardware setup (more information about 

this appears in the Implementation Details section). 

 

Figure 2.7: Understanding Projected Areas 

By equalizing the projected area of the pixels in the eye view and in the 
shadow map, we can eliminate aliasing. 
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The benefit of a new shadow map is the number of resolution-mismatched eye 

pixels that could be resolved. Once the cost-benefit ratio is computed for all 

prospective cells, the cells are sorted according to this ratio. To maintain con-

sistent frame rates, new shadow map nodes are only generated for the most 

profitable cells from this list until a given time limit has passed. 

Removing Nodes 

Since the ASM only uses a fixed amount of memory, a particular node's mem-

ory might need to be reclaimed. In order to do so, we find all nodes that were 

not used in the last frame and remove the least recently used nodes. If there 

are no such nodes, then all nodes are currently visible. In this case, we remove 

an existing node only if a new node that needs to be created has a greater 

benefit than the existing node. We require that all descendants of a node be 

deleted before the node itself is deleted. In this way, we ensure that the tree 

structure builds up gradually and is deleted gradually as well. One disadvan-

tage of using this scheme is that memory resources can be consumed simply 

because of one small region that needs high magnification, which would ne-

cessitate building up a deep tree to achieve the required magnification. In ad-

dition, a tree with such depth would diminish the ASM’s query performance 

since many pointers would have to be followed in order to reach a leaf node. 
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IMPLEMENTATION DETAILS  

Mip-mapping 

To determine when resolution mismatches occur, the algorithm must calculate 

the projected area of a pixel (i.e., the area that the pixel covers in world-space). 

Performing this calculation in software would be too expensive for interactive 

rates, so we approximate this calculation using mip-mapping. 

 

Mip-mapping [Williams83] is traditionally used to avoid aliasing artifacts as-

sociated with texture-mapping (Figure 2.8). Current graphics hardware im-

plements perspectively-correct mip-mapping, which interpolates between tex-

tures of different resolutions based on the projected area of the pixels being 

rendered. The basic idea is that if we assign a uniform texel size in world 

space to each polygon in our scene, we can then use mip-mapping to compute 

the projected size in the eye view or in the shadow map. 
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We use this feature to quickly approximate the projected pixel area. The algo-

rithm places the resolution of each mip-map level in all the texels of that level. 

Texture coordinates are set up so that world-space texel sizes are uniform, and 

every polygon is then drawn with this mip-mapped texture. When the frame 

is read back, each pixel contains its trilinearly interpolated mip-map level, 

which is a reasonable approximation of its projected area. Anisotropic filter-

ing, which helps to account for oblique texels, is used to improve the accuracy 

of the approximation. 

 

As a further optimization, the mip-map level is encoded only in the alpha 

channel, which is an extra channel in the frame buffer that is normally used 

for transparency. The rest of the mip-map is white. This allows the read-back 

 

Figure 2.8: Mip-mapping 

A mip-map stores versions of the original texture at different resolutions. 
Starting with the original texture, each level is minified using a filter to 
create the next, smaller level. When texturing with mip-mapping enabled, 
linear interpolation is used to mix lookups from the most relevant two lev-
els of the mip-map. 
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to be done simultaneously with the polygon identifier (ID) read-backs de-

scribed below, eliminating an extra rendering pass.  

Combining ID and Depth Comparisons 

Conventional shadow maps commonly use a depth comparison to check if 

transformed pixels are lit, with a bias factor. The bias factor is necessary be-

cause of limited depth buffer precision, which causes depth values to be quan-

tized. Quantization can cause adjacent pixels of the same surface to have 

markedly different depth values, resulting in erroneous self-shadowing. Al-

though adding a bias factor helps to address this problem, the approach still 

exhibits artifacts on surfaces oblique to the light and has difficulties in scenes 

with varying geometric scale. Using per-polygon identifiers (IDs) to determine 

visibility instead of depth comparisons was proposed in [Hourcade85]. This 

approach is better in many cases but results in artifacts along mesh bounda-

ries. Therefore, we use a combination of per-polygon IDs and depth compari-

sons to perform the visibility determination for transformed pixels. If the ID 

test fails, the conventional depth comparison allows us to avoid artifacts along 

polygon boundaries. This simple modification is more robust than using just 

per-polygon IDs or depth comparisons, although the bias problem persists.  

Hardware Calibration 

Because ASMs rely heavily on the graphics board to quickly render and read-

back sections of the shadow map, a calibration process should be performed at 

initialization to determine the current hardware’s characteristics. In particular, 

the geometry rendering rate and read-back times for varying viewport sizes 
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should be measured. This information can then be used in the cost-benefit 

equation of the ASM. 

 

One of the key enabling technologies for ASMs has been the performance of 

commercial graphics boards. Rendering performance has improved exponen-

tially (and somewhat predictably) over the past years, but the real surprise has 

been the improvement in read-back performance. Fast read-backs allow algo-

rithms that use the graphics board to generate information and the CPU to 

quickly obtain and examine this information. In the case of commercial hard-

ware, the improvement can be attributed largely to improved drivers. Early in 

2000, a 512 by 512 pixel read-back took more than 900 milliseconds on a 733-

MHz Pentium III with AGP 4X, an NVIDIA GeForce board, and early versions 

of the NVIDIA drivers. Over the next few months, this number decreased with 

each new driver release from 900 ms to 30 ms to 15 ms and even further. With 

these improved driver releases, the key factor that determines read-back per-

formance is CPU speed. On a 733-MHz Pentium III with AGP 4x, an NVIDIA 

GeForce3 board, and NVIDIA’s 21.81 Detonator drivers, it takes only about 6 

ms to read-back the same 512 by 512 pixel region. In general, read-backs are 

an expensive operation because they stall the graphics pipeline and because 

they are relatively slow compared to other operations that can be executed on 

the graphics board. Because of this, we hope to move more of the ASM com-

putations onto the graphics board in the future, as described in the Future 

Work section at the end of this chapter. 
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The other key observation with respect to read-back performance is its linear-

ity. Figure 2.9 shows the time taken for read-backs of various sizes. We can see 

that there is almost no loss in linearity as we reduce the read-back size until 

we reach a very small size of around 32 by 32 pixels. This means that the ap-

proach used in ASMs of rapidly creating many small shadow map pieces is 

indeed viable. 

 

Figure 2.9: Read-back Performance 

Timings for read-backs of various sizes are shown. The fitted line illustrates 
the linear behavior of read-backs as the area being read back increases. 
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Optimizations 

Goals 

We will now describe some optimizations that were made to improve the effi-

ciency of the ASM algorithm. Since the algorithm is dependent on the CPU for 

transforming points and analysis, and on the graphics board for rendering ge-

ometry, we tried to introduce specific techniques that would address each of 

these stages.  

Min-Max Depth Culling 

It is possible to accelerate ASM queries using a depth culling technique similar 

to that described in [Greene93]. The basic idea is to take advantage of the ASM 

data structure by storing the minimum and maximum depths found in each 

cell of the ASM (including its descendants). Now, when a sample point needs 

to be queried, the transformed depth of the point can easily be compared with 

the minimum and maximum depths stored at each cell as the hierarchy is 

traversed. If the sample point’s depth is less than the minimum depth or 

greater than the maximum depth stored in the cell, there is no need to traverse 

further in the hierarchy. In addition, the conversion from shadow map to cell 

coordinates can also be avoided. The end result is a speedup, particularly in 

fully shadowed regions. 

Caching of Most Recently Queried Node 

Because the tree traversal process is expensive (many pointers need to be fol-

lowed, and coordinate conversions performed), we use a cache to store the 

most recently queried ASM leaf node. As we are transforming pixels in the 
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eye view, it is likely that there will be a great deal of coherence with respect to 

which ASM cell the pixels map to. A multiple level cache could be used to fur-

ther improve performance. 

Low-level Optimizations 

Low-level optimizations such as using Pentium family SSE/SSE2 instructions 

could be used to speed up pixel reprojection from the eye view to the shadow 

map. One of the difficulties with implementing these optimizations is that 

they require an inspection of the algorithm from a very data-oriented point of 

view. When initially formulating an algorithm, it is natural to think in terms of 

process flow instead of data flow. However, once algorithmic efficiency is 

achieved in performance-critical applications, exploiting the remaining low-

level optimizations and parallelism can require significant restructuring. In 

the case of ASMs, a good way to proceed with making these optimizations 

would be to transform points four at a time. This would allow the use of SSE 

optimizations, which typically perform one operation simultaneously on four 

floats. Since projections are done in software, there is a great deal of perform-

ance that can be extracted by using known and efficient optimizations for the 

matrix multiplies, divisions, and rounding operations that are involved. In 

addition, the pixel reprojection phase fits well into future processor architec-

tures, which further encourage explicit parallelism. 

Frustum Culling 

Our approach requires frequent renderings and read-backs as cells are refined. 

As the size of the shadow maps associated with the various cells becomes 

smaller and smaller, the scene drawing time becomes increasingly dominant. 
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To alleviate this problem, we use frustum culling for each cell in the topmost 

level of the hierarchy. This allows us to redraw only the geometry that is visi-

ble in a particular cell as we refine the cell. The implemented version of the 

ASMs uses eight by eight cells at the top level for frustum culling. This was a 

simple approach that was easy to implement. If necessary, a more complex 

frustum culling approach could be used. Finally, it is important to note that 

having a very large fraction of the overall scene geometry in one cell would 

hurt the ASM’s performance and make its performance more dependent on 

scene complexity than a conventional shadow map.  

Rendering Optimizations 

Related to frustum culling is the need to draw the scene geometry as fast as 

possible. To do this, the OpenGL rendering commands have to be coded care-

fully. Basic rules such as grouping of similarly textured geometry need to be 

used. One of the most significant speed-ups comes from the use of the vertex 

array range extension, which allows the storage of vertex arrays on the graph-

ics board itself.  Traditionally, display lists were the fastest way to store and 

draw data, but they reside in main memory. This means that precious time is 

spent shipping data across the AGP bus when using display lists. The vertex 

array range extension requires no transfer of data, and the result is vastly 

higher performance. One slightly annoying caveat, however, is that for tex-

tured objects, the objects (and hence the data in the vertex arrays) must be 

grouped by texture. Two solutions exist to this problem. First, one can use a 

separate vertex array for the objects of each texture. The alternative is to use a 

single large vertex array that holds all the relevant data, grouped by texture. 

In this case, the array needs to be padded because the starting point of a vertex 
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array range must be 32 byte aligned. Either option can be used without any 

problem. 

 

Sampling 

Since analysis of all pixels in the image can be expensive, our algorithm per-

forms the cost-benefit analysis only on a fraction of the transformed pixels. 

This choice trades frame rate for slower convergence to an accurate solution. 

In our implementation, we found that analyzing one-eighth of the pixels gives 

good performance without significantly affecting the rate of convergence. The 

choice of what ratio of pixels to use when sampling depends on the target 

frame rate. For example, at a low eye view resolution (e.g., 256 x 256 pixels), 

the frame rate will be very high, and thus the fraction of pixels that is sampled 

can be reduced. The reason for this is that in a given amount of time, many 

frames will be drawn and the user would be less likely to notice any objec-

tionable artifacts. However, at a high eye view resolution with a correspond-

ingly low frame rate, the fraction of pixels sampled has to be relatively higher, 

because the user is more likely to notice the changes with each frame. One 

way to control this trade-off would be to allow the user to indirectly set the 

sampling ratio by interactively choosing the desired frame rate. 

RESULTS 

Description of Test Scenario 

To demonstrate the ASM at work, we used a 31,000-polygon scene and an im-

age resolution of 512 × 512 pixels. Figure 2.10 shows the scene as viewed from 

the light, with the key objects labeled. Figure 2.11 shows the same scene 
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viewed from the eye. The scene features three different objects designed to test 

different aspects of our algorithm. The light source is a point light with a 122-

degree field of view. It is placed on the room ceiling, far from the objects. The 

first object is a 20,000-polygon “bunny model”, which illustrates the algo-

rithm's ability to deal with small triangles and frequent variations in polygon 

ID. The other two objects are a robot and a sculpture with a fine mesh, which 

demonstrate the algorithm's ability to find and refine intricate shadow details 

of varying scale. 
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Figure 2.10: The Test Scene (Light View) 

The test scene as viewed from the light. The key objects in the scene are circled. 
Clockwise from the top left, they are: a bunny, a robot, and a mesh sculpture. 
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Results 

Our timings were performed on a 1 GHz Pentium III with a NVIDIA GeForce2 

Ultra graphics board. During the walkthrough, a conventional 2,048 × 2,048 

pixel shadow map (using 16 MB of storage with 32 bits of depth per pixel) av-

eraged 8.5 frames per second, while our algorithm (also using 16 MB of mem-

ory) averaged 4.9 frames per second. Figure 2.12 and Figure 2.13 illustrate the 

 

Figure 2.11: The Test Scene (Eye View) 

The test scene as viewed from the eye, with the bunny, robot, and mesh 
sculpture in view. 
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dramatic improvement in image quality achieved by the ASM. For close-ups 

of objects, the equivalent conventional shadow map size is very large (65,536 × 

65,536 pixels in Figure 2.12 and up to 524,288 × 524,288 pixels in Figure 2.13). 

Creating such a shadow map in practice for an interactive application would 

be infeasible not only because of the long creation time, but also because of the 

enormous storage requirements. 
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Figure 2.12: Comparison for Robot Sculpture 

The panels show images taken at various distances from the robot. The yel-
low box in the upper panel shows the region that we have moved towards in 
the lower panel. The equivalent conventional shadow map size for the ASM 
in the lower panel is 65,536 x 65,536 pixels. 

 

CONVENTIONAL SHADOW MAP 
(16 MB MEMORY USAGE) 

ADAPTIVE SHADOW MAP 
(16 MB MEMORY USAGE) 
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Figure 2.13: Comparison for Mesh Sculpture 

The panels show images taken at various distances from the 
mesh sculpture. The equivalent conventional shadow map size 

for the ASM is 65,536 ×××× 65,536 pixels in the middle panel and 

524,288 ×××× 524,288 pixels in the bottom panel. Note the vastly 
improved image quality of the Adaptive Shadow Map ap-
proach. 

 

CONVENTIONAL SHADOW MAP 
(16 MB MEMORY USAGE) 

ADAPTIVE SHADOW MAP 
(16 MB MEMORY USAGE) 
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Our results also demonstrate the ASM's ability to accommodate a wide field of 

view. Because of the ASM's view-driven nature, the starting shadow map size 

can be relatively small and its field of view can be relatively large. In our 

walkthrough, the starting resolution of the ASM was 512 × 512 pixels. 

 

Figure 2.14 illustrates the algorithm's memory management. From left to right, 

we show images generated with a 2,048 × 2,048 pixel conventional shadow 

map, an ASM using 8 MB of memory, and an ASM using 16 MB of memory. 

The differences between the two ASM images are small, but both show con-

siderable improvement in image quality when compared to the image on the 

left. To highlight the improvement in image quality from an 8 MB ASM to a 16 

MB ASM, we have magnified two sections of each image. 
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The ASM used approximately 203 ms per frame, while a conventional 2,048 × 

2,048 pixel shadow map used 117 ms for the same total memory usage (16 

MB). The extra time was spent on cost-benefit analysis (30 ms), node creation 

(5 ms), traversals through the hierarchy for queries (35 ms), and an extra ren-

dering and read-back of the scene to gather per-polygon ID information (16 

ms). To summarize this information succinctly, the ASM uses about twice the 

computation time as a conventional shadow map, but is able to deliver vastly 

superior image quality. 

 

 

 

Figure 2.14: The ASM’s Memory Management 

A 16 MB conventional shadow map, an 8 MB ASM, and a 16 MB ASM are 
compared to show the superior image quality that the ASM delivers, even 
while using a small amount of memory. 

 

16 MB Conventional  
Shadow Map 

 
8 MB ASM 

 
16 MB ASM 
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CONCLUSIONS 

Summary 

The ASM is a new technique that uses adaptive subdivision to address alias-

ing in shadow maps caused by insufficient shadow map resolution. ASMs are 

view-driven, progressive, and run in a user-specifiable memory footprint. 

They interface with applications in the same way as conventional shadow 

maps, allowing them to be easily integrated into existing programs that use 

software shadow mapping.  

Potential Applications 

Since ASMs automatically adapt to produce high-quality images and do not 

require experienced user intervention, they should be useful in interactive 

modeling applications and in off-line renderers. In addition, a faster version of 

ASMs, as described below, could potentially be used in applications demand-

ing higher frame rates such as games. 

 

Extensions and Future Work 

The algorithm presented in this thesis can be extended to pre-filter and com-

press refined shadow map cells using techniques described in [Lokovic00]. 

This would allow for better antialiasing characteristics. Alternatively, percent-

age closer filtering [Reeves87] could be used for antialiasing, though the filter-

ing across boundaries of shadow map pieces could be troublesome. In addi-

tion, perceptual masking [Ferwerda97] can be used to refine less in heavily 

masked areas. 
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At the time that the original work on ASMs was done, commercial hardware 

did not yet have support for shadow mapping. However, the latest generation 

of graphics cards (such as NVIDIA’s GeForce3 and ATI’s Radeon) offer hard-

ware-accelerated shadow mapping. We could use this feature to avoid trans-

forming points from the eye view to the light view, which was one of the big 

bottlenecks in the original implementation. The end result would be a signifi-

cantly higher frame rate. Although this new implementation is not yet com-

plete, the framework and infrastructure used in Chapter 3 can be easily ex-

tended to incorporate the ASM algorithm.  
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Chapter 3 

Adaptive Soft Shadows 
 

This chapter introduces a new technique that assists in soft shadow genera-

tion. The technique intelligently varies the number of light source samples 

used to generate shadows. The concept of a resolution map is introduced to 

help estimate the number of samples needed, and the methods for calculating 

the resolution map are explained. The overall implementation of the algo-

rithm is described and future work is discussed in the chapter’s conclusion. 

MOTIVATION 

Over time, many different soft shadow algorithms have been introduced. 

However, even with all of these approaches, generating soft shadows at 

interactive rates for dynamic scenes continues to be an extremely difficult 

problem. Having an interactive tool with such capabilities would allow mod-

elers and lighting designers to evaluate the effects of factors such as light size, 

location, and geometry on the shadows in an environment. This in turn could 

dramatically reduce the amount of time spent on modeling and lighting de-

sign. 
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Goals 

With the aforementioned observations, the primary goal of our Adaptive Soft 

Shadow approach is to achieve the highest possible level of interactivity. By 

interactivity, we refer not only to the frame rate but also to the ability to 

change as many parameters as possible on the fly. For example, we would like 

to be able to move objects, move the light, or to change the size of the light. Al-

though this goal might seem lofty, being able to achieve it is genuinely valu-

able since modelers and lighting designers could then experiment freely dur-

ing the scene creation process. These goals dictate that pre-processing and 

caching be kept to a minimum so that full interactivity can be achieved. 

Observations 

To approximate the variation in visibility over shadow regions, we sample the 

light source adaptively. Approaches for soft shadow generation typically use a 

uniform number of light source samples for each pixel, but this does not nec-

essarily have to be the case. Our Adaptive Soft Shadows approach is based on 

the observation that there are many parts of the scene that require only a few 

samples to capture the necessary soft shadow details and many other parts of 

the scene that might not even have shadow details at all. Figure 3.1 shows a 

scene rendered with 1, 16, 32, 64, 128, and 256 samples per pixel.  



 

 

52

 

Figure 3.1: Different Samples for Different Situations 

We can vary the number of samples used to compute soft shadows based 
on the projected size of penumbrae. 
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Comparing the different renderings, it is evident that just a single sample is 

sufficient in the fully lit (antiumbral) or fully occluded (umbral) parts of the 

scene. In the case of partially occluded (penumbral) regions, the required num-

ber of samples can vary. If we use too few samples in a penumbral region, 

banding will result. This can be seen in the 16-sample case, where many of the 

large penumbrae in the scene exhibit banding. As we increase the number of 

samples used, the banding decreases until it eventually becomes unnoticeable. 

In some cases, we can remove banding by using only a small number of sam-

ples. This concept is illustrated in Figure 3.2. The top image in the figure 

shows the scene from Figure 3.1, but with two particular regions highlighted 

with yellow rectangles. The first region shows the thin shadows cast by the 

chair legs on the right of the scene. In this case, 16 samples are sufficient to 

remove banding. In the second region, however, the shadow cast on the floor 

by the chair nearest the eye has a large penumbra that would require between 

128 and 256 samples to eliminate banding artifacts.  
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The number of samples that is needed to avoid banding artifacts (assuming a 

regular sampling pattern on the light) depends on how many pixels a penum-

bra occupies in the eye view. In particular, to have the highest possible image 

 

Figure 3.2: Saving Samples 

Two magnified sections of a scene are shown, magnified 6.5 times and 4 times, 
respectively. In the first case, there is practically no observable difference be-
tween 16, 128, and 256 samples, meaning that a 16-sample rendering would be 
adequate. In the second case, however, we would need somewhere between 128 
and 256 samples to completely remove banding. Note that the jagged appearance 
of the top row of pictures is due to their high level of magnification. This jagged 
effect is not noticeable at the original unmagnified resolution. 
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quality, we need to have n2 samples for a soft shadow whose gradient covers n 

pixels in the eye view [Mitchell96]. 

The Resolution Map 

To take advantage of the preceding observations, we need to have some way 

of varying the sampling frequency as we move spatially through the scene. 

We do this by introducing an analysis pass prior to the rendering of each 

frame. There are potentially several ways to estimate penumbra extents, but 

we need a method that is computationally efficient and sufficiently accurate to 

eliminate objectionable artifacts in many useful scenarios. We present an ap-

proach that attempts to satisfy these criteria and that is also well suited to be 

used in conjunction with the shadow mapping capabilities of commercial 

graphics hardware. The hardware-based implementation gives us the ability 

to approach interactive frame rates as well as to support dynamic environ-

ments. 

 

In our algorithm, the analysis pass creates what we call a resolution map, which 

is similar to a shadow map except that instead of storing a depth per texel, it 

stores the estimated number of samples needed to shade the geometry seen 

through the texel. Figure 3.3 shows a scene, the resolution map that was gen-

erated for it, and the same scene with the resolution map projected onto it. We 

can see from the figure that the resolution map mandates more effort in re-

gions with large penumbras close to the eye, and very little effort in fully lit or 

fully occluded regions. The resolution map provides three important func-

tions: 
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� Identification of fully lit and fully occluded regions. Identifying fully 

lit and fully occluded regions can potentially provide the largest gains, 

because these are regions where a naïve approach would use a large 

number of samples to calculate visibility when in reality only one is 

needed. However, we have to be prudent in our identification process, 

since we are working from a single shadow map. A single shadow map 

does not correctly tell us about umbral or antiumbral regions, but we 

use heuristics to make reasonable estimates.  

 

� Accounting for the projection of light view pixels into the eye view. 

Calculating the projection of light view pixels in the eye view allows us 

to use less effort in the distance and on surfaces that are oblique to the 

eye. Without identifying where penumbrae exist, this metric will lead 

us to expend too much effort on regions near the eye where in fact 

there are no penumbrae, but where the projection of pixels is large. 

 

� Estimation of penumbra widths in the eye view. After the fully lit and 

fully occluded regions have been identified, the remaining regions con-

tain penumbrae. Heuristics can be used to estimate the penumbra 

widths and to estimate the number of pixels occupied in the eye view 

by each penumbra. We can then use as many samples as are needed to 

remove banding in the penumbra. 
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Figure 3.3: Scene with Resolution Map 

The top two panels show a scene as viewed from the light source and from the 
eye. The bottom panels show the same views, but with the resolution map pro-
jected onto the scene. Brighter regions of the resolution map require more effort. 
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PROCESS FLOW 

Figure 3.4 shows the process flow for Adaptive Soft Shadows. For each frame, 

the eye position is updated and a resolution map is created. Then, using the 

resolution map as a guide, the visibility is computed for each pixel in the 

scene. This visibility is then modulated with a lit rendering of the scene, pro-

ducing a rendering with soft shadows. 

CREATING THE RESOLUTION MAP 

To comply with our stated goal of interactivity, it is important that the resolu-

tion map be created on the fly in only a fraction of a frame time. Ideally, we 

would like it to provide a conservative estimate of the number of samples re-

quired in each of its cells. This would ensure that using our two-pass tech-

nique would not result in noticeably lower image quality than a reference im-

age. 

Update Eye 
Position

Update Eye 
Position

Create Resolution 
Map

Create Resolution 
Map

Calculate 
Visibility

Calculate 
Visibility

Render Shadowed 
Scene

Render Shadowed 
Scene

 

Figure 3.4: Process Flow for Adaptive Soft Shadows 

The main steps that the algorithm takes for each frame are shown. 
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Figure 3.5 depicts the three-step process we use to create the resolution map. 

In the first stage, we estimate the penumbra width from the light’s view. Next, 

we calculate the projection of the penumbrae in the eye view. Finally, in the 

third stage, we quantize the resolution map into a finite number of cells. 

Stage 1: Penumbra Estimation in the Light View 

In the first stage, a depth image is generated from the center of the light source 

and used to estimate the penumbra width at each texel of the resolution map. 

 

Figure 3.5: The Resolution Map Creation Process 

The top row of images shows the light view, the eye view, and a shadowed ver-
sion of the eye view, to provide context. The bottom row of images shows how the 
resolution map is constructed for this particular viewpoint. Brighter regions of 
the resolution map represent areas requiring more effort. After the quantization 
stage, it is clear that the largest number of samples is required for the large pen-
umbral region near the eye. 
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To do this, the algorithm loops over all pixels in the depth image and searches 

for depth discontinuities by comparing the depth of each pixel with its 

neighbors’ depths. When a depth discontinuity is found, the size of the result-

ing penumbra is estimated. In the interest of speed, we assume that the 

blocker and receiver are parallel to the light, though this assumption could be 

relaxed as an improvement. The parallel plane approximation also ensures 

that the penumbra width on either side of the receiver is identical. Figure 3.6 

illustrates the geometry of the situation. 
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Because we are dealing with a depth map that has been generated in the 

light’s screen space, we must first transform the blocker and receiver points 

into world space to perform our analysis. Once we have the world space 

points, we calculate the penumbra size assuming a simplified parallel geomet-

ric configuration. In the parallel case, the penumbra width depends only on 

the blocker and receiver distances and the width of the light. The derivation is 

given below: 

 

BlockerBlocker

ReceiverReceiver

ddReceiverReceiver

ddBlockerBlocker

wwPenumbraPenumbra

wwLightLightAA

BB

 

Figure 3.6: Geometry for Penumbra Estimation 

The geometry used to estimate the penumbra width is shown. Note the parallel 
plane approximation. d is used for distances, and w is used for widths. 
wLight is the width of the light source.  
wPenumbra is the width of the penumbra.  
dBlocker is the perpendicular distance from the light source to the blocker.  
dReceiver is the perpendicular distance from the light source to the receiver. 
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(7) Manipulating  
(5) 

 

Now, since our goal is to draw the shadow extents into the resolution map, we 

must convert the penumbra width into pixels. Figure 3.7 shows the geometry 

of the situation. Using similar triangles, we can find the penumbra width in 

pixels at the near plane: 

Projected

ResmapPenumbra
Resmap d

hResmapWidtdw
w

⋅⋅⋅⋅⋅⋅⋅⋅
====  

In this equation, ResmapWidth is the width of the resolution map, in pixels. 

Once we have the penumbra width in pixels, we can draw a filled square with 

the penumbra width as its width into the resolution map. For each pixel in the 

square, we check to see if the new width value is larger than the previous 

value in the resolution map. If so, we replace the old value with the new, lar-

ger value.  
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Stage Two: Projecting Penumbrae into the Eye View 

In Stage Two of the resolution map creation, we calculate the projection of pe-

numbra widths that are stored in the resolution map into the eye view. Be-

cause penumbra widths (measured in world units) tend to fall off in propor-

tion to the distance from the eye, we use an OpenGL light with attenuation set 

to 1/r in conjunction with a white rendering of the scene (generated from the 

point of view of the light source) to calculate the fall-off. We then multiply 

LightLight

ResolutionResolution

MapMap

ReceiverReceiver

ddResmapResmap

ddReceiverReceiverddProjectedProjected

wwPenumbraPenumbra

wwResmapResmap

 

Figure 3.7: Converting the Penumbra Width to Pixels 

Once the penumbra width is calculated in world coordinates, it must be pro-
jected onto the resolution map. This figure shows the geometry used for this 
projection. d is used for distances, and w is used for widths. 
wPenumbra is the size of the penumbra on the receiver. 
wResmap is the projected size of the penumbra onto the resolution map. 
dResmap is the perpendicular distance of the resolution map from the light source. 
dProjected is the perpendicular distance of the receiver from the light source. 
dReceiver is the distance from the center of the light source to the receiver. 
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each texel of the resolution map from Stage One with the corresponding fall-

off value calculated at each pixel in stage two. At this point, we have success-

fully estimated the projection of all penumbrae in the eye view.  

Stage Three: Quantizing the Resolution Map 

Stage Three quantizes the resolution map into a fixed number of cells. For 

each cell, we find the maximum value over all pixels in the cell and use that 

value for the cell. This quantization step serves two purposes. First, it allows 

us to efficiently use hardware shadow mapping to render our soft shadows. 

Second, it helps to mask error in the resolution map caused by the parallel 

plane assumption in Stage One because the highest value is used for each cell. 

In return, however, the effort needed to render the soft shadows can increase. 

HARDWARE SOFT SHADOW GENERATION 

Calculating Visibility 

Once we have constructed the resolution map, we are ready to render soft 

shadows. Since our approach accounts only for the variation in visibility over 

the scene, we first render a lit version of the scene without shadows. We then 

calculate the visibility fraction for each pixel: 

 

Used SamplesSource  Light Total
SamplesSource  LightVisible  of Number

Visibility ====  

 

In the simple case where a uniform number of samples is used throughout the 

scene, the visibility of each pixel can be simply computed as the count at that 
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pixel divided by the maximum number of samples. However, to take advan-

tage of the resolution map, we must be able to vary the number of samples 

used for various regions of the scene. Because of this, we need to have a way 

of counting, for each region, the number of light source samples that actually 

light the region (the numerator), and the number of light source samples that 

could potentially light that region (the denominator). Dividing the numerator 

count by the denominator count would give an estimate of the light source 

fraction that is visible at each pixel.  

 

We use a progressive scheme for our samples, meaning that the set of n sam-

ples is a superset of the set of n-1 samples. This scheme allows us to use some 

optimizations when rendering the shadows. 

 

As mentioned previously, we use graphics hardware in our implementation to 

achieve interactivity. The subsequent sections, we will explain how we calcu-

late the numerator and denominator to find visibility. Before proceeding, 

however, the following section provides some brief background about hard-

ware shadow mapping. In addition, [Woo99] provides an excellent overview 

of OpenGL and hardware rendering for readers who may not be familiar with 

these areas. 

Hardware Shadow Mapping Background 

A shadow mapping implementation can be classified as either forward or 

backward. In forward shadow mapping, each texel of the shadow map is pro-

jected onto the eye view, a depth comparison is made, and the eye view is 

shaded appropriately. In backward shadow mapping, the pixels in the eye 



 

 

66

view are transformed into the light’s view and then compared with the value 

of the corresponding texel of the shadow map. The original eye view pixel is 

then shaded based on the depth comparison. The original description of 

shadow mapping in [Williams78] was a backward shadow mapping approach. 

Forward shadow mapping was introduced in [Zhang98] and is the technique 

that is used in hardware because it takes advantage of already existing projec-

tive texturing capabilities. This means that we must always think of shadow 

generation in terms of generating and projecting shadow map pieces from the 

light view into the eye view. As we will see, this has consequences in terms of 

efficiency and accuracy. 

 

Since graphics hardware uses forward shadow mapping and the resolution 

map is generated from the light’s point of view, the resolution map is com-

patible with graphics hardware. To simulate an area light source, we create 

point light samples that are distributed over the source and combine their ef-

fects. Using point light samples allows us to decompose the rendering of soft 

shadows into multiple hard shadow renderings. Since commercial graphics 

hardware now supports the shadow mapping technique that was originally 

introduced in [Williams78], we can use it to quickly generate the shadows for 

each point light source. As the fragments in the image are rasterized, we can 

test to see if any particular fragment is lit or in shadow. The stencil buffer can 

be used to cheaply count the number of light samples that light each pixel. 

With this technique and the 8-bit stencil buffer that is typically available on 

most commercial graphics boards today, we are able to track the contributions 

of up to 256 samples. 
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To calculate the numerator of the visibility fraction, the algorithm loops over 

each cell of the resolution map and casts shadows onto the scene from each 

sample point on the light that is needed for that cell. We use the stencil buffer 

to count the number of samples that contribute light to each pixel in the eye 

view. Thus, we could take the following approach, which is illustrated in 

Figure 3.8: 

 

For each cell in the resolution map { 

 For each sample required by the cell { 

� Set up a viewing frustum from the sample’s po-

sition on the light through the cell in the 

resolution map 

� Render the portion of the scene visible 

through the frustum 

� Store the resulting image as a depth texture 

� Set up shadow mapping parameters 

� Project the depth texture onto the scene 

� Increment the stencil buffer value for each 

pixel that is deemed to be lit 

} 

}  
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Figure 3.8: Numerator Calculation 

The basic steps used to calculate the numerator for a particular cell of the resolu-
tion map are shown. In this case, the contributions of four samples are summed for 
the cell. 
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This naïve implementation works but is inefficient for two reasons. First, it 

creates a large number of very small textures, one for each sample of each cell. 

With graphics hardware, it is more efficient to deal with a smaller number of 

large textures because texturing overhead can be amortized. The second prob-

lem with the naïve implementation is that the eye view geometry needs to be 

drawn once for each sample of each cell. In practice, we found that the render-

ing of eye view geometry was one of the slowest parts of the rendering proc-

ess. Taking these observations into account, we restructured the rendering 

loop to be more efficient, as follows: 

 

For sampleNumber = 1 to MaxSamples { 

� Create a depth texture T with all texels initial-

ized to the minimum depth of 0.0 

� For each cell that requires sampleNumber or more 

samples { 

o Set up a viewing frustum from the sample’s 

position on the light through the cell in 

the resolution map 

o Render the portion of the scene visible 

through the frustum 

o Copy the resulting depth image into the sub-

region of the depth texture T that corre-

sponds to the current cell 

} 

� Set up shadow mapping parameters 

� Project the depth texture T onto the scene 

� Increment the stencil buffer value for each pixel 

that is deemed to be lit 

}  
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In this pseudocode, MaxSamples is the maximum number of samples required 

by any cell of the resolution map. Using this version of the algorithm allows 

us to minimize the number of times the eye view geometry is drawn as well as 

to minimize the number of texture copies we have to make. 

 

The preceding paragraphs have explained the general procedures of the nu-

merator calculation. More specific implementation details are explained in the 

following paragraph. 

 

For each sample through a cell of the resolution map, we compute the corre-

sponding region on the near plane. This region is used to define the frustum 

that we use for computing the shadow contribution of that sample. After ren-

dering the scene from the light’s point of view and storing the corresponding 

depth texture, we then project the depth texture onto the geometry in the eye 

view. As each piece of geometry in the eye view is drawn, the shadow map-

ping test colors each incoming fragment as white if its depth is less than the 

corresponding depth in the shadow map, or black if its depth is greater (mean-

ing that it is in shadow). At this point, we increment the stencil buffer if the in-

coming fragment is white, and leave it unchanged if the incoming fragment is 

black. We do this using the alpha test, which culls fragments based on their 

alpha value. To take advantage of this, we use the register combiner mecha-

nism in the GeForce3 to set the alpha component of the incoming fragment 

based on its RGB color. We do this by calculating the dot product between the 

fragment’s color triplet and (1,1,1). The resulting value is then placed in the 

alpha channel. Therefore, if the incoming fragment was white, its alpha com-

ponent will now be 1.0. If the incoming fragment was black, its alpha compo-
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nent will now be 0.0. With the alpha component now set, we can use the alpha 

test to keep just those fragments with alphas of 1.0. The stencil test is then con-

figured to increment by one at each pixel that receives a fragment. Addition-

ally, we want to make sure that we perform counting only on the surfaces 

nearest to the eye, to prevent double-counting in the stencil buffer. We achieve 

this by drawing the scene ahead of time into the depth buffer, and then dis-

abling depth buffer writing. 

Merging of Resolution Map Cells 

For a resolution map with a significant number of cells (e.g., 32 by 32 divi-

sions), it can be more efficient to group the cells and their corresponding sam-

ples instead of rendering them individually. This is because texturing and 

frustum culling overhead is amortized when dealing with larger cells. To ac-

count for this, we use a “mipmap-like” scheme to identify the more efficient 

groupings. The first level of the mipmap is initialized to contain all the cells of 

the resolution map. We then perform a filtering process similar to mipmap 

construction: for each group of four cells at the first level, we check each sam-

ple to see if it would be more efficient to propagate the sample upwards to a 

higher level. To do this, we use calibration data that has been gathered as a 

pre-process (this can be done for each level or even for each cell of each level, 

if desired). We repeat this filtering process for every level. 

 

To calculate the denominator value of the visibility fraction, we could simply 

use the same technique as the numerator calculation uses, except that for each 

resolution map cell, we would initialize each texel of the shadow map depth 

texture to 1.0 (the maximum depth value). This would ensure that all geome-
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try within the cell would be lit, and the stencil buffer updated appropriately. 

Thus, we would have identified all geometry that was potentially lit by the 

resolution map cell.  

 

Though the technique just described is simple, it would be inefficient since the 

scene geometry would have to be drawn repeatedly to perform the projective 

texturing operation. In reality, we can achieve the same effect in a much sim-

pler way using a technique that is inspired by shadow volumes. We start by 

clearing the depth and stencil buffers and rendering the scene from the eye. 

We then disable depth buffer writes. Next, we loop over each cell of the reso-

lution map and, for each of the samples that are needed for that cell, we draw 

a pyramid from the corresponding sample point on the light through the cell. 

This is the same pyramid that was used when calculating the numerator. 

Now, we count the number of frusta that enclose each pixel in the image plane 

by setting the stencil function appropriately for each face of the pyramid as is 

done in the shadow volume technique [Crow77]. After doing this for each cell, 

every pixel in the image plane contains a value equal to the maximum number 

of samples that could light a particular pixel. 

 

As an additional detail, the stencil buffer must be initialized correctly to ac-

count for frusta containing the eye position. We do this by turning the depth 

test off, inverting the stencil test (i.e., incrementing where we were decrement-

ing before, and vice versa), and then drawing all of the frusta that we use in 

the denominator counting process described above. When we draw a frustum 

not containing the eye, the values in the stencil buffer will remain unchanged 

because both a decrement and increment will be performed for each pixel cov-



 

 

73

ered by the frustum. However, for any frustum that contains the eye, only an 

increment operation will occur for those pixels that the frustum covers. 

IMPLEMENTATION ISSUES 

Two important issues that complicate our approach are discussed in this sec-

tion. Both stem from the fact that we vary the number of samples used 

throughout the scene. 

The Frustum-Matching Problem 

One consequence of using hardware shadow mapping in conjunction with a 

resolution map is that error can be introduced by samples interacting with ge-

ometry outside of their intended scope. Figure 3.9 illustrates how this can 

arise. It shows a simple scenario where we have a light, a resolution map, and 

the scene geometry. For simplicity, let us consider a 2D case with two samples 

placed on either end of the light. The resolution map has been divided into 

cells, and we are currently rendering the shadows corresponding to a particu-

lar cell, which has been highlighted on the resolution map plane. First let us 

look at the shadow map frustum used for sample 0. The frustum originates at 

the sample position, and the cell of the resolution map that we are working 

with defines its extent. In this case, we can see that light (and shadows) will be 

calculated for a region to the right of the scene geometry. Similarly, if we con-

sider sample 1, we can see that lighting and shadows will be calculated for a 

region to the left of the scene geometry. This means that if were to actually use 

a scenario like this, our scene geometry would be unlit even though we used 

two samples from the light! 
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It is important to note that Figure 3.9 is an exaggerated worst-case scenario. In 

fact, it points out several factors that determine the amount of mismatching 

that occurs. Figure 3.10 illustrates these factors. The top part of the figure 

shows the effect of moving the resolution map closer to the scene. With the 

original parameters, a large amount of light is “lost” or misplaced and no light 

reaches the scene geometry. In contrast, once the resolution map is moved 

closer to the scene geometry, far less light is misplaced and the scene geome-

Sample 0 Sample 1

Scene 
Geometry

Light

Resolution
Map

 

Figure 3.9: The Frustum Matching Problem 

The frustum matching problem is shown for a case with just two samples. In 
this case, the intention was to light the scene geometry with both samples. 
However, it actually receives light from neither sample because light is mis-
placed due to mismatched frusta. Note that the level of mismatch has been exag-
gerated for illustration. 
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try is actually lit. Therefore, we should aim to place the resolution map as 

close to the scene geometry as possible. The bottom part of Figure 3.10 shows 

the effects of changing the resolution map cell sizes. By increasing the size of 

the divisions, less light is misplaced and again the scene geometry is actually 

lit whereas it was not with the smaller divisions. Therefore, the smaller the di-

visions, the larger the error introduced by the frustum matching problem. Fi-

nally, the use of more samples that are well distributed on the light source can 

also help to decrease the effects of the frustum matching problem. 
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The resolution map creation process we described did not account for the ef-

fects of the frustum matching problem. In particular, cells that transition from 

umbra to penumbra or from penumbra to antiumbra can have large differ-

ences in the number of samples required, and hence introduce significant arti-

facts due to misplaced samples. To address this problem, we introduce a 

“smoothing“ stage that attempts to identify large differences in the resolution 

map cells and adds samples to make the transitions more gradual. Naturally, 

Sample 0 Sample 1

Scene 
Geometry

Light

Resolution
Map

Sample 0 Sample 1

Scene 
Geometry

Light

Resolution
Map

Original Parameters Resolution Map Closer to Scene

 

Sample 0 Sample 1

Scene 
Geometry

Light

Resolution
Map

Original Parameters Larger Resolution Map Cells

Sample 0 Sample 1

Scene 
Geometry

Light

Resolution
Map

 

Figure 3.10: Factors that Affect Frustum Matching 

The top panel shows the effect of moving the resolution map closer to the scene. 
The bottom panel shows the effect of increasing the resolution map cell size. In 
both cases, more light reaches the scene geometry, as originally intended. 
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there is a trade-off between the reduction of artifacts and the loss of perform-

ance caused by using more samples in the resolution map. Thus, we want to 

smooth the resolution map only where it is absolutely necessary. A user-

specifiable threshold can be used to determine where smoothing should be 

used. 

Effective Frustum Culling 

Another consequence of using hardware shadow mapping in conjunction with 

a resolution map is that each piece of the resolution map has to be rendered 

one at a time to generate the shadows in the eye view. Unfortunately, there is 

some overhead that is introduced because of this. Ideally, the total cost of ren-

dering each of the cells would add up to the cost of rendering the scene with-

out the resolution map. However, in reality, the ideal behavior is hard to 

achieve, if not impossible. To get close to the ideal behavior for geometry ren-

dering, an efficient frustum culling scheme needs to be used. This ensures that 

when a cell is being rendered, only the relevant geometry (the geometry that 

is visible in that cell) is rendered. Further complicating the issue in the case of 

Adaptive Soft Shadows is that we do not want any geometry outside a par-

ticular cell to be rendered when the cell is being rendered, as this would cause 

erroneous incrementing of the values in the stencil buffer. To comply with this 

restriction, geometry must be clipped carefully. Unfortunately, the clipping 

process introduces additional polygons that can slow the rendering process 

substantially if the number of added polygons is significant when compared 

to the original number of polygons. 
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The frustum culling scheme that we have implemented for Adaptive Soft 

Shadows is octree based. Initially, a bounding box is defined for all geometry 

in the scene. This bounding box is then regularly subdivided into eight boxes, 

and each piece of geometry is tested to see which of the child octree cells it be-

longs to. This is repeated until a threshold is met, such as a certain number of 

triangles belonging to a leaf octree cell. One problem with this approach is 

that the acceleration structure is created as a pre-process, but we want to sup-

port dynamic scenes. To circumvent this problem, we store dynamic geometry 

in a separate list. Of course, our simple frustum-culling scheme can be re-

placed with another that offers superior performance and support for dy-

namic scenes.  

RESULTS 

To demonstrate our algorithm, we show images taken from various view-

points in several different scenes. These images are shown in Figures 3.11 

through 3.14. We compare our algorithm with a brute-force approach also us-

ing graphics hardware. We chose the brute-force approach because it is the 

only other existing approach that is able to generate accurate soft shadows 

relatively quickly while retaining the ability to change any scene attributes 

such as the size and position of the light source and the scene geometry. In our 

examples, the brute-force approach uses the same number of samples as the 

maximum number requested by our resolution map, to ensure a fair compari-

son. 

 

The first scene is an outdoor scene consisting of 266,000 polygons. This scene 

demonstrates the algorithm’s ability to deal with large models. The next scene 
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is a conference room that is made up of about 80,000 polygons. The third scene 

is a simple room that consists of just 7,000 polygons. The final scene is a room 

that is sparsely populated with teapots. However, in this case, there are beams 

blocking the light source, which cause large penumbrae in the room. Each of 

the figures consists of four rows of images. In the first row, the image on the 

left shows the image generated by the brute force approach and the image on 

the right shows the image generated by our approach. In the second row, we 

color all polygons in the scene white and remove textures, so that masking ef-

fects are removed and artifacts are more pronounced. The image from the 

brute force approach is on the left and the image from our approach is in the 

center. The right image of the row is the resolution map that was used when 

rendering with our approach. The third and fourth rows repeat this informa-

tion for a different viewpoint in the scene. 
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Figure 3.11: Results for Terrain Scene 

The first row shows Viewpoint 1. The image on the left uses the brute-force ap-
proach, and the image on the right shows our approach. The second row shows 
a white version of the scene, with the resolution map on the far right. The third 
and fourth rows show the same information for Viewpoint 2. 
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Figure 3.12: Results for Conference Room Scene 

The first row shows Viewpoint 1. The image on the left uses the brute-force ap-
proach, and the image on the right shows our approach. The second row shows 
a white version of the scene, with the resolution map on the far right. The third 
and fourth rows show the same information for Viewpoint 2. 
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Figure 3.13: Results for Science Center Scene 

The first row shows Viewpoint 1. The image on the left uses the brute-force ap-
proach, and the image on the right shows our approach. The second row shows 
a white version of the scene, with the resolution map on the far right. The third 
and fourth rows show the same information for Viewpoint 2. 
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Figure 3.14: Results for Teapot Scene 

The first row shows Viewpoint 1. The image on the left uses the brute-force ap-
proach, and the image on the right shows our approach. The second row shows 
a white version of the scene, with the resolution map on the far right. The third 
and fourth rows show the same information for Viewpoint 2. 
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The following tables show some relevant performance-related information for 

each viewpoint in each scene: the number of polygons drawn, the estimated 

frame time as predicted by the algorithm, the theoretical effort as predicted by 

the resolution map, and the overall frame time. For each scene, the brute force 

performance is compared to the performance of our approach. The Ratio col-

umn in each table represents the performance of the Adaptive Soft Shadows 

Approach divided by the performance of the brute force approach. Analyzing 

the statistics, we can evaluate the effectiveness of the resolution map and the 

overhead introduced by the hardware implementation, along with identifying 

potential areas of improvement. 
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Table 3.1: Number of Polygons Drawn Per Frame 

 NUMBER OF POLYGONS DRAWN PER FRAME 

SCENE Brute Force  ResMap 
Performance  

Ratio  

Terrain View 1 67,968,649 25,281,441 2.69 

Terrain View 2 68,120,906 86,288,720 0.79 

Conf. Room View 1 23,441,547 10,441,054 2.25 

Conf. Room View 2 22,539,733 34,599,675 0.65 

Science Center View 1  3,445,690 1,577,367 2.18 

Science Center View 2  3,575,763 1,389,280 2.57 

Teapots View 1 21,968,288 20,939,996 1.05 

Teapots View 2 21,122,876 29,984,486 0.70 

 

Table 3.2: Estimated Frame Time 

 ESTIMATED FRAME TIME (IN MILLISECONDS ) 

SCENE Brute Force  ResMap 
Performance  

Ratio  

Terrain View 1 3125 1429 2.19 

Terrain View 2 3125 3602 0.87 

Conf. Room View 1 2126 1080 1.97 

Conf. Room View 2 2126 2873 0.74 

Science Center View 1  1095 683 1.60 

Science Center View 2  1095 770 1.42 

Teapots View 1 2146 1432 1.50 

Teapots View 2 2146 2166 0.99 
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Table 3.3: Theoretical Effort 

 THEORETICAL EFFORT 

SCENE Brute Force  ResMap 
Performance  

Ratio  

Terrain View 1 100% 23% 4.41 

Terrain View 2 100% 55% 1.81 

Conf. Room View 1 100% 56% 1.80 

Conf. Room View 2 100% 81% 1.23 

Science Center View 1  100% 47% 2.13 

Science Center View 2  100% 56% 1.80 

Teapots View 1 100% 91% 1.10 

Teapots View 2 100% 98% 1.02 

 

Table 3.4: Actual Frame Time 

 ACTUAL FRAME TIME (IN MILLISECONDS ) 

SCENE Brute Force  ResMap 
Performance  

Ratio  

Terrain View 1 8035 5760 1.39 

Terrain View 2 17152 16960 1.01 

Conf. Room View 1 7552 3584 2.11 

Conf. Room View 2 7104 9088 0.78 

Science Center View 1  1742 1434 1.21 

Science Center View 2  2432 1843 1.32 

Teapots View 1 6720 6016 1.12 

Teapots View 2 6464 8896 0.73 
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Comparing Adaptive Soft Shadows 
with Brute-Force for Different Models
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Figure 3.15: Graphing the Data 

The figure shows a graph of the data presented in the previous tables. Ratios 
greater than one represent speedups, and ratios less than one indicate that the 
brute force approach was better. 
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Analysis 

The results show that the Adaptive Soft Shadows approach was able to deliver 

performance gains in many of the test scenarios. In each case, the approach 

was able to construct the resolution map on the order of 100 milliseconds, 

which was less than 10% of the overall frame time. This is consistent with the 

original performance goals of the algorithm.  

 

The widely varied results indicate that the algorithm’s performance depends 

greatly on the geometric structure of the test scenes. The largest gains were for 

the first viewpoint of the conference room scene (a 111% improvement) and 

the first viewpoint of the terrain scene (a 39% improvement). In these cases, 

the resolution map was able to effectively identify regions of the scene that 

needed only a few samples, and thereby provide some significant savings. 

However, our algorithm fared worse for the second viewpoint for each of 

these scenes. For these viewpoints, the Adaptive Soft Shadows approach was 

unable to generate resolution maps with sufficient savings to offset its over-

head.  

 

The second observation we can make is that, in most of the cases, even the 

theoretical savings for the algorithm are minimal (around or less than a factor 

of two). This means that the algorithm is not varying the number of samples 

sufficiently throughout the scene. This fact in turn points to the resolution 

map itself as the fundamental cause of poor performance. The problem is that 

to achieve higher performance, we would like to use a large number of divi-

sions in the resolution map. Smaller cells would result and would allow fine 

control of the number of samples used throughout the scene, thereby saving 
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samples. However, using more divisions has two serious drawbacks. First, the 

image quality can suffer because of the frustum matching problem. As the 

cells in the resolution map become smaller, the number of misplaced samples 

grows and this can result in banding. Second, the overhead required by the 

implementation increases with smaller cells. As was mentioned previously, 

we use a calibration process to help estimate the overhead, and to allow the 

algorithm to choose the optimal cell sizes to use in various parts of the scene.  

 

Creating an accurate calibration process proved to be difficult because of the 

complexity of the implementation. Comparing the values in the Estimated 

Frame Time table with the values in the Actual Frame Time table, it is clear 

that the estimation process needs improvement. This fact is somewhat surpris-

ing given that the calibration process aimed to simulate the actual algorithm. 

However, it was difficult to accurately reproduce the algorithm’s performance 

faithfully. The current implementation uses a simplified version of the algo-

rithm for timing, so using a more accurate simulation could improve the tim-

ing estimates. One other problem with the timings is that explicit graphics 

pipeline flushes need to be called for precision (using OpenGL’s glFinish() 

command), and this may result in timings that are different from what the al-

gorithm uses in practice. Without reliable calibration information, the algo-

rithm will create sub-optimal resolution maps. 

 

Finally, we can look at the number of polygons actually drawn by the two ap-

proaches for each viewpoint. Comparing the ratio of polygons drawn to the 

ratio of actual frame times, we can determine whether geometry is a bottle-

neck. The relevant data is reproduced in Table 3.5. In all cases except for Ter-
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rain View 2, both ratios are either greater than one or less than one. This corre-

lation means that the number of polygons drawn is a significant factor in de-

termining the algorithms performance. In fact, the poor performance in Ter-

rain View 2 and Beams View 2 can be attributed at least partly to the large 

amount of geometry that was drawn by our technique.  

 

Table 3.5: Correlating Geometry and Performance 

SCENE Ratio of Polygons 
Drawn  

Ratio of Actual 
Frame Times  

Terrain View 1 2.69 1.39 

Terrain View 2 0.79 1.01 

Conf. Room View 1 2.25 2.11 

Conf. Room View 2 0.65 0.78 

Science Center View 1 2.18 1.21 

Science Center View 2 2.57 1.32 

Teapots View 1 1.05 1.12 

Teapots View 2 0.70 0.73 

 

These results indicate a number of directions that could be explored to im-

prove the fundamental algorithm: 

 

� Improving the cost estimation and calibration models. This would al-

low the algorithm to construct resolution maps that allow higher per-

formance, although visual artifacts could be increased when excessively 

small cells are used. 
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� Incorporating lost samples due to frustum mismatching into the cost 

model. This would help to ensure that the algorithm would not use cell 

sizes that would degrade image quality beyond an acceptable thresh-

old. However, accomplishing this goal would be difficult because it 

would involve being able to estimate the effects of frustum matching 

quickly, during the construction of the resolution map. 

 

� More efficient frustum culling code. Our algorithm relies heavily on 

frustum culling to limit the number of polygons drawn as it works 

through individual cells of the resolution map. Improving the current 

frustum culling scheme could therefore improve performance. The oc-

tree-based culling that we implemented relies on some very important 

threshold parameters, and an automated scheme to find the optimal 

values for these parameters would be useful. 

 

� More efficient rendering code. Since the drawing of geometry is a bot-

tleneck in our application, it would help to use faster mechanisms to 

transfer data to the graphics board and to draw the geometry. The cur-

rent system uses display lists for the majority of its operations because 

of their ease of use, but vertex arrays could also be used in conjunction 

with storing data in video memory to deliver higher performance.  
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DISCUSSION 

Contributions 

Although the Adaptive Soft Shadows project failed to achieve the desired re-

sults, the theory and implementation presented are an interesting study in 

themselves. The idea of decoupling the rendering of soft shadows into two 

phases (the estimation of penumbral extents and rendering of the penumbrae using 

the estimation as a guide) allows a different and novel approach to the soft 

shadow problem. In addition, it is interesting to note that there is a very sub-

stantial amount of overhead involved with using a piece-wise approach to soft 

shadow generation. Without our carefully structured implementation (which 

also uses both shadow maps and shadow volumes in interesting ways), it 

would be impossible to use a resolution map to achieve any speedup at all in 

comparison to the brute force approach.  

Applications and Extensions 

The two-pass approach to soft shadow rendering that we have introduced can 

be useful in a number of applications. The structure of the resolution map is 

ideal for texture masking [Ferwerda97] because the savings from texture 

masking can be easily incorporated into the resolution map construction proc-

ess. In addition, perceptual evaluations such as the relative intensity between 

lights, masking due to relative illumination, and the required accuracy of soft 

shadows can be used to decrease the number of samples used in regions of the 

resolution map. Texture caching can also be used in conjunction with resolu-

tion maps because the required texture storage is significantly reduced in 

comparison with the brute-force approach. Taking advantage of this observa-
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tion could result in an approach similar to that used in Adaptive Shadow 

Maps [Fernando2001]. For a scene with multiple lights, a resolution map can 

be created for each light. The resulting information could then be used to re-

duce the overall rendering effort. Similarly, resolution maps can be used to 

prioritize effort in distributed systems such as WireGL [Humphreys2001]. The 

resolution map idea can also be used for other effects, such as motion blur, 

where the number of samples used for slower or more distant objects could be 

significantly reduced. 

CONCLUSION 

We have presented a new approach to soft shadow rendering that we imple-

mented using commercial graphics hardware. Our approach supports dy-

namic scenes and should scale well as graphics hardware improves. We be-

lieve that this approach opens up some interesting new areas for research such 

as improving the penumbra estimation process and looking at new ap-

proaches that can take advantage of the information provided by the resolu-

tion map to render soft shadows more efficiently. 
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Chapter 4 

Conclusion 
 

This thesis has presented two techniques for shadow generation based on 

adaptive schemes. Both algorithms use commercial graphics hardware as a 

tool to achieve interactive performance. The first algorithm, called Adaptive 

Shadow Maps, adaptively varies the resolution of a shadow map throughout 

the scene to provide hard shadow edges without aliasing artifacts. The second 

algorithm, called Adaptive Soft Shadows, adaptively varies the number of 

samples used for soft shadow generation throughout the scene to efficiently 

produce soft shadows.   

 

We showed that Adaptive Shadow Maps are able to dramatically improve im-

age quality with a process that is view-driven, progressive, and confined to a 

user-specifiable memory footprint, while maintaining interactive rates.  How-

ever, in the case of Adaptive Soft Shadows, we found that on average the al-

gorithm was able to offer less than a 21% improvement in frame time. This 

was because the implementation overhead outweighed the performance gains 

from the scene-specific resolution map. 
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In implementing the two algorithms, we found that using an adaptive ap-

proach in conjunction with graphics hardware can have some significant 

drawbacks.  These drawbacks stem from the fact that graphics hardware is op-

timized to deliver the highest performance in the large-scale or brute force sce-

narios. For example, it is always more efficient to clear the screen in one large 

clear operation rather than to break the clear operation into a corresponding 

number of smaller clear operations. In the case of read-backs, linearity of this 

operation is preserved fairly well (see Figure 2.9).  Adaptive Shadow Maps 

take advantage of this fact and therefore do not suffer greatly by using a 

piecewise approach to shadow map generation. On the other hand, the 

Adaptive Soft Shadows approach relies heavily on clearing small regions of 

the screen as well as on copying small textures, which makes it more difficult 

to achieve the desired level of performance.  

 

In conclusion, the idea of using a resolution map is novel and might find bet-

ter application in conjunction with a rendering system that scales better as the 

algorithm renders small pieces of the scene. In this situation, the benefits of 

the resolution map would not be adulterated by the shortcomings of the ren-

dering system.  
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