

A User Interface for Interactive Cinematic Shadow Design
 Fabio Pellacini Parag Tole Donald P. Greenberg

Program of Computer Graphics, Cornell University

ABSTRACT
Placing shadows is difficult task since shadows depend on the

relative positions of lights and objects in an unintuitive manner.
To simplify the task of the modeler, we present a user interface
for designing shadows in 3d environments. In our interface,
shadows are treated as first-class modeling primitives just like
objects and lights. To transform a shadow, the user can simply
move, rescale or rotate the shadow as if it was a 2d object on the
scene�s surfaces.

When the user transforms a shadow, the system moves lights or
objects in the scene as required and updates the shadows in
realtime during mouse movement. To facilitate interaction, the
user can also specify constraints that the shadows must obey, such
as never casting a shadow on the face of a character. These
constraints are then verified in real-time, limiting mouse
movement when necessary. We also integrate in our interface fake
shadows typically used in computer animation. This allows the
user to draw shadowed and non-shadowed regions directly on
surfaces in the scene.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Computer Graphics and Realism; I.3.6 [Computer Graphics]:
Methodologies and Techniques � Interactive Techniques.

Keywords: Human Computer Interaction, Illumination, User Interface
Design, Lighting Design

1. INTRODUCTION
The patterns of light and shadows on the surfaces of objects are

extremely important visual cues. In cinematic lighting design for
movies, light designers carefully place lights and objects to
specify the visual appearance of the scene and enhance
storytelling [Calahan 2000]. Although so important, the task of
designing shadows is extremely complex even for experienced
users since shadows are affected by lights and objects positions in
a very unintuitive manner.

To simplify the task of light designers, we propose a new user
interface that lets the user manipulate the shadows in the scene in
real-time, while the system automatically adjusts lights and
objects transformations as necessary. In our interface, shadows are
treated as first-class modeling primitives just like objects and light
sources. A shadow can be moved, rotated or scaled as if it was a
2d objects on the scene�s surfaces, and similar to other objects in
the scene. The mouse interface used is same as that used for
object transformations in familiar graphics packages such as
Maya� or 3dsMax�. For example, in order to place a shadow,
the user simply clicks on the shadow, and then drags it to the
desired location.

In order to further simplify the task of placing shadows in a
complex environment, we let the user place constraints on the
shadows using an intuitive painting interface; for instance, the
modeler may want to ensure that there is never a shadow on the

main character�s face. These constraints are verified in realtime
and enforced by limiting mouse movement when necessary. This
allows the user to manipulate the shadows in complex
environments more efficiently.

In addition to real shadows caused by occlusion of light sources,
fake shadows are used in cinematic lighting to enhance the visual
appearance of the scene. We integrate fake shadows in our
interface providing the user with the ability to draw shadowed and
non-shadowed areas directly on the surfaces of the objects. The
system automatically creates 3d cucaloris [Barzel 1997] that are
updated appropriately when the lights are moved.

We have implemented a prototype of our interface using
shadow maps on commodity graphics hardware. Our prototype
supports multiple lights, soft shadows and constraint validation in
real-time. Since the only requirement to implement our interface
is the support of hardware accelerated shadow maps, we can
easily integrate our interface in relighting engines such as the one
presented by Gershbein and Hanrahan [2000] to provide a
complete light design solution for cinematic lighting.

We believe that our shadow manipulation interface, combined
with shadow constraints and fake shadows, provides the user with
a powerful tool for shadow design for cinematic lighting. Our user
interface for shadow manipulation is very intuitive since it takes
advantage of users� familiarity with standard interfaces for object
transformations by treating the shadows as 2d primitives on the
surfaces of the scene.
2. RELATED WORK

Researchers in computer animation have tried to simplify
lighting design interfaces. Poulin and Fournier [1992] presented
an interface where the user interacts with the shadows by
transforming the shadow volumes in a wireframe view. Although
interesting, we believe that this interface is far less intuitive than
manipulating the shadows themselves; also the shadow volume
wireframe clutters the scene display, making it hard for the user to
appreciate the scene�s final look. In a following work, Poulin et al.
[1997] presented a sketching interface to specify constraints on
the shadows, which are then solved to compute the light positions.
Unfortunately, it is almost impossible for the user to specify
solvable constraints for complex scenes, thus limiting the usability
of their system. Our constraints are specified in the same way, but
instead of being solved, they just need to be verified so as to limit
mouse movement when necessary. In the context of global
illumination, Schoneman et al. [1993] presented an optimization
technique based on a sketching metaphor, while Kawai et al.
[1993] automatically set the light parameters based on a
subjective impression of the scene illumination. Although useful,
these systems cannot move the light sources. Also, none of these
previous approaches allow the user to adjust object positions,
which we do with the same interface as lights.
3. USER INTERFACE

This section describes the user interface from the point of view
of the modeler, leaving implementation details for the next
section. In the rest of the paper, we will discuss only spotlights.
Since omni lights and directional lights have fewer degrees of
freedoms, they can be integrated using a subset of the user
interface commands used for the spotlight case.
3.1 User interface paradigm

Our physical user interface is based upon a traditional 2D input
device such as a standard three-button mouse or a tablet. The

Copyright © 2002 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions Dept,
ACM Inc., fax +1 (212-869-0481 or e-mail p rmissions@acm.orge .
© 2002 ACM 1-58113-521-1/02/0007 $5.00

563

interaction mode of the user with the scene is selected using
modifier keys. Although important, the particular interface
paradigm is not the main contribution of this paper; our algorithm
can be integrated in other interface paradigms such as gestural
systems, button widgets or gizmo widgets [Conner et al. 1992].
3.2 Lighting operations
3.2.1 Overview

When direct lighting illuminates a scene, hotspots and shadows
define the patterns of the light on the surfaces of the objects. To
completely specify the light patterns, the user has to be able to
modify the position and size of the hotspot of each spotlight and
the position, size and orientation of each shadow. While the
hotspots depend only on the lights parameters, the shadows
depend on the positions of lights as well as objects in the scene.
When interacting with the shadows, the user chooses to either
modify the light source or the object transformation by selecting
the specific mode. Figure 1a shows the lighting operations
provided in our interface together with the equations the system
uses to update corresponding light and object transformations.
3.2.2 Shadow operations

At any time during the light design process, our system presents
the user with a rendering of the scene from an arbitrarily
selectable camera position. By clicking on a shadow, the user
selects the light-object pair that casts that shadow. Depending on
the interaction mode, the user can move, scale or rotate the
shadow as if it was a 2d object on the surfaces of the scene. The
system figures out the correct transformation for either the light or
the object. In case more than one object is casting the selected
shadow, the system automatically chooses the one closest to the
light; while in the presence of more than one light, the system
selects the closest light as for the hotspot operations� case. While
this automatic selection seems to work well, the users have the
option of overriding the automatic behavior and selecting the
light-object pair.

When changing the light parameters, the user can either move or
rescale shadows. The user moves a shadow by dragging it on the
surfaces of the objects in the scene. During mouse movement, the
system moves the light source by rotating the ray connecting the
picked point and the light around the closest point of the shadow-
casting object to the light. To rescale a shadow, the user drags the
mouse vertically while the system moves the light position along
the line connecting the light position and the object center
proportional to the amount of mouse movement.

To simplify the light design task, it is important that the
operations on shadows affect the appearance of the hotspots as
little as possible. To ensure this, when the light position is being
changed, we also update the direction of the light so that the
position of the hotspot on the picked surface remains the same.
We also would like to keep the size of the hotspot (as projected on
the surfaces) the same. Unfortunately, this is not always possible
on general surfaces; nonetheless we try to correct most of the size
mismatch by resizing the hotspot angle as if the picked surface
was a plane.

The user can also change the position, size and rotation of the
shadow by changing the position and rotation of the object casting
the shadow. The interface to move and scale the shadow is the
same as above. When moving the shadow, the system moves the
object by rotating it around the light position. While resizing the
shadow, the system moves the object along the line connecting the
center of the object to the light position. To rotate the shadow, the
user drags the mouse vertically, similarly to object rotation in
commercial animation packages. The object is rotated around the
line connecting the center of the object and the light position. The
shadow operations on an object specify only four degrees of
freedom. The remaining two are object rotations along two axes

orthogonal to the line joining the light and the object. For a
general object, these rotations affect the shape of the shadow in a
completely unintuitive manner. We believe that adding these non-
intuitive shape transformations as a shadow manipulation
command would not help the users more than simply using
standard object rotations (also provided in our prototype).
3.2.3 Additional shadow operations

In the rescaling operation specified above, the position of the
mouse on the screen does not represent the size of the shadow
being rescaled (see Figure 1a). When finely tweaking the shadow,
it would be helpful if simply dragging the shadow silhouette to a
new position could rescale the shadow by that amount. In general
this is not possible for an arbitrary silhouette and an arbitrary
mouse movement. Nonetheless for small mouse movements, we
can approximately achieve it. Depending on the selected action,
the system moves the light or the object along the line passing
though the light position and the object center. It can be shown,
that the interface will behave as expected provided that the picked
point during mouse drag is roughly in the plane containing the
light position, the object center and the silhouette point picked by
the initial mouse click. While the system tries to find the best
solution for every possible mouse position, the shadow may not
be in the expected position for large mouse movements.

Our interface also supports soft shadows from area lights. The
user can choose the shadow softness with the same mouse
interface as rescaling the shadow. The system will rescale the size
of the area light by the appropriate amount.
3.2.4 Hotspot operations

The user can change the size and the position of the hotspot of
the spotlights in the scene, by clicking on a hotspot and moving or
rescaling it with the same mouse interface used for shadows. In
the presence of multiple lights, the system automatically selects
the light whose hotspot direction is closest to the line connecting
the light position and the picked point. The user can choose to
override the automatic behavior. When moving the hotspot, the
system will compute an appropriate spotlight direction and while
rescaling it, the hotspot angle will be modified.

The manipulation of the hotspot is very similar to the one used
by commercial animation packages, except that the hotspot is
moved on the surface of objects, making it very simple for the
user to �shine a light on a specific location on a surface�.

Shadow and hotspot operations completely specify the light
source�s parameters. A spotlight has six degrees of freedom: 3 for
position, 2 for direction and 1 for hotspot angle. The light and
hotspot operations in our interface map these onto shadow
position and size (3) and hotspot position and size (3).

Since shadows and hotspots operations have the same interface
as object transformations in commercial packages, the learning
curve for new users is very short. In addition, since the hotspot
operations do not affect the shadows, the design is simplified by
making the shadow and hotspot interactions orthogonal.
3.3 Constraints

When light designers are interacting with shadows in complex
scenes, they often want to specify constraints that shadows have
to obey during interaction. In our interface, the user can specify
that an area of a surface should not change its �shadow state� by
drawing the contour of that region on the objects. Drawing a
constraint on a shadow has the effect of enforcing that the marked
area will always remain in shadow by at least one object; while
drawing the constraint on a lit area will make sure that no
shadows will be in that area. While manipulating the shadows in
the scene, the constraints are verified and the positions of objects
and lights are updated only if all of the constraints are valid.
Figure 1b illustrates the interface for constraints.

564

We believe that our interface to set constraints by painting is an
intuitive way of specifying complex constraint behavior. Also,
since we define a constraint as a set of points that cannot change
their �shadow state�, we implicitly let the user specify only
solvable constraints, thus avoiding the confusion of other
interfaces where unsolvable constraints can be specified.
3.4 Shadow Cookies

Shadow cookie [Barzel 1997] is the colloquial term for
cucaloris, the technical term for an opaque card with cutouts used
to block a light. In special effects production environments,
cookies are used to add fake shadows from non-existent objects.

Our interface allows the user to paint shadow cookies with the
same painting metaphor used for constraints, shown in Figure 1c.
The user can �attach� the cookie to the light source or to the world
selecting the appropriate interaction mode. When the cookie is
attached to the light, moving the light will not move the position
of the cookie shadow on the surfaces of the objects. On the other
hand, if the cookie is attached to the world, then moving the light
will move the shadow. Also world-attached shadow cookies are
first-class shadow objects and their shadows can be individually
manipulated using the shadow-object mode.

We also introduce light cookies that are used to subtract any
existing shadows from their region (Figure 1c). They are drawn in
the same way as shadow cookies and can also be attached to the
light or to the world. World-attached light cookies can also be
used to cut parts of the shadows cast by specific objects.
4. IMPLEMENTATION DETAILS

Our lighting interface requires realtime updates of the rendered
scene with shadows. We achieve this by using hardware shadow
maps for computing shadows and hardware lighting for the light
contributions. Our prototype runs at about 20 frames per second
on a Pentium III 500 MHz with a GeForce 3 graphics board for
scenes with 4 light sources using a multipass tecnique. When
computing shadows from area lights, the number of samples is
reduced to 4 during mouse interaction, and the final image is
computed when the interaction stops.

During interaction, the system determines the 3d position of the
point picked by the mouse by querying the depth buffer of the
camera view. Also the system needs to determine which light-
object pair is casting a shadow on the picked point. This is
computed by querying the depth and id buffers of the given light�s
view. Since the two read back operations are required only at
mouse click, there is no slowdown when dragging the mouse.

Constraints are represented as the array of the 3d positions of
the points on the contour of the constraint. This data structure
makes it simple to specify constraints on surfaces of any shape.
We verify a constraint by checking if any of the points in the
constraint has changed its shadow state. To do this, we query the
depth buffer of each light with the position of each point in the
constraint.

We represent cookies as 3d polygons created halfway between
the light position and the picked point. Shadow cookies are drawn
only in the shadow map pass, while light cookies are drawn in the
stencil buffer, which is then used to set the stencil test to fail in
these regions. Representing the cookies as 3d objects makes it
very easy to use the rest of our interface to manipulate the cookies
themselves. It would be much harder to modify the cookie later if
we were to directly paint a matte in the shadow as is normally
done in computer animation [Barzel 1997].
5. CONCLUSIONS AND FUTURE WORK

We presented a user interface for interactive cinematic shadow
design consisting of an intuitive interface for shadow
manipulation and a painting interface for shadow constraints and
fake shadows. Our interface can be easily integrated in relighting

engines such as [Gershbein and Hanraham 2000] to provide a
more complete interactive lighting design solution. We believe
that our interface to manipulate shadows is intuitive to use;
treating shadows as 2d objects on the surfaces of the scene allows
us to leverage the user�s familiarity with object transformations.
We also believe that the ability to draw intuitive constraints
simplifies the design process for accurate shadows in complex
lighting situations.

We would like to extend our interface in several directions.
First, we would like to try to integrate our shadow manipulation
interface in other paradigms such as widgets [Conner 1992] and
sketching that have proven to be very fruitful in surface modeling.
We would also like to extend our shadow interface to support
more complex light parameters such as the one presented in
[Barzel 1997] to provide a better user interface for a more
complete light design solution. For the fake shadow components,
we would like to investigate if the behavior of more complex
cookie representations such as [Petrovic et al. 2000] can also be
made more intuitive to use for the user.

We would also like to test how our system scales with the
complexity of the scene. First, updating the shadows in realtime
may not be possible in some cases; integrating the use of
simplified geometry for shadow computation might make the
system more usable. Furthermore, an extremely complex
environment could have very complicated overlapping shadow
patterns that could make the selection of light-object pair
cumbersome. While our informal tests suggest that our interface
scales well with up to four lights and hundreds of objects, more
formal user studies are needed to verify the scalability when the
complexity is dramatically increased. Also, in the presence of
very complex shadow patterns, it might be useful to specify
constraints relatively to specific light-object pairs. While our
constraint validation system currently supports these constraints,
we would like to extend our constraint painting metaphor to
support these more complex constraint specifications.

Finally, we would like to extend our interface to support
animated scenes. Currently the user can design the shadows for
animated sequences by lighting a few selected frames separately
and using keyframe interpolation for the remaining frames;
fruitful extensions could be the use of shadow movements to
define the animated parameters of the lights directly and the
specification and validation of constraints for the entire animation
sequence.
 ACKNOWLEDGMENTS

We would like to thank Randy Fernando, James Ferwerda, Moreno
Piccolotto and Bruce Walter for their comments. This work was supported
by the NSF Science and Technology Center for Computer Graphics and
Scientific Visualization (ASC-8920219) and performed using equipment
generously donated by Intel Corporation and NVidia Corporation.
 BIBLIOGRAPHY
BARZEL, R. 1997. Lighting controls for computer cinematography.

Journal of Graphics Tools, 1997.
CALAHAN, S., 2000. Storytelling through Lighting, a Computer Graphics

Perspective. In Advanced RenderMan, 2000.
CONNER, D.B., SNIBBE, S.S., HERNDON, K.P., ROBBINS, D.C., ZELEZNIK,

R.C., AND VAN DAMN, A., 1992. Three-Dimensional Widgets. In
Proceedings of SIGGRAPH 1992.

GERSHBEIN, R. AND HANRAHAN P., 2000. A Fast Relighting Engine for
Interative Cinematic Lighting Design. In Proc. of SIGGRAPH 2000.

KAWAI, J.K., PAINTER, J.S. AND COHEN, M.F., 1993. Radioptimiation �
Goal Based Rendering. In Proceedings of SIGGRAPH 1993.

PETROVIC, L., FUJITO, B., WILLIAMS, L. AND FINKELSTEIN, A., 2000.
Shadows for Cel Animation. In Proceedings of SIGGRAPH 2000.

POULIN, P. AND FOURNIER, A., 1992. Lights from Highlights and
Shadows. In Proc. of Symposium of 3D Interactive Graphics, 1992.

POULIN, P., RATIB, K. AND JACQUES, M., 1997. Sketching Shadows and
Highlights to Position Lights. In Proceedings of Computer Graphics
Internation 97, 1997.

SCHOENEMAN, C., DORSEY, J., SMITS, B., ARVO, J. AND GREENBERG, D.P.,
1993. Painting with Light. In Proceedings of SIGGRAPH 1993.

565

Figure 1: a) Lighting interaction modes. b) Constraints. c) Cookies.

L

d

α

H

P

M

C
M

ov
in

g
sh

ad
ow

by

 li
gh

t m
ot

io
n

In
iti

al

st
at

e

Pr
ec

is
e

sc
al

in
g

by
 li

gh
t m

ot
io

n

Sc
al

in
g

sh
ad

ow

by
 li

gh
t m

ot
io

n

S
ha

do
w

so
ftn

es
s

M
ov

in
g

sh
ad

ow

by
 o

bj
ec

t m
ot

io
n

P
re

ci
se

 s
ca

lin
g

by
 o

bj
ec

t m
ot

io
n

S
ca

lin
g

sh
ad

ow

by
 o

bj
ec

t m
ot

io
n

M
ov

in
g

ho
ts

po
t

Sc
al

in
g

ho
ts

po
t

R
ot

at
in

g
sh

ad
ow

by

 o
bj

ec
t m

ot
io

n

Le
ge

nd

Update equations

L'=P-|L-P|(P-M')
d'=(H-L')/|H-L'|

Update equations

L'=C+(L-C)/|L-C|x
[1+v(S'-S)]

d'=(H-L')/|H-L'|
α'=arctan[tan(α)x

|L-H|/|L�-H|]

Update equations

P'=P+(M'-L)/|M-L|x
|P-L|

C'=C+P-P

Update equations

C'=C+(L-C)/|L-C|x
[1+k(S'-S)]

Update equations

H'=M'

Update equations

A'=A+k(S'-S)

Update equations

r1=line(M',D)
r2=line(M,P)
L'=intersect(r1,r2)
d',α' as for scaling

Update equations

axis=line(L,C)
θ'=θ+k(S'-S)

Update equations

LM'=(M'-L)/|M'-L|
LO=(O-L)/|O-L|
u=LOxLM'
v=(C-P)xLM'
C'=L+(C-L)(u·v)/|v|2

Update equations

α'=α+k(S'-S)

L: light position
d: light direction
H: hotspot position
α: hotspot size
A:light area
C: object center
θ: object rotation

M: world space position of the surface
point under the mouse pointer

S: mouse Y screen coordinate
k: scale/rotation speed
P: light rotation pivot; first point on

a surface on the segment L-M
Accented quantities are updated.

Lit volume
Shadow volume
Penumbra
Objects

d'

M'=H'

α'

L'

d'

M'

L'
α'

M'

d'

L'
α'

S'

d'

A'

S'

P'
C'

M'

P'C'

M'

S'

P'C'

S'

Lighting operationsa)

S
ha

do
w

C

on
st

ra
in

t

Li
gh

t
C

on
st

ra
in

t

Constraintsb)

Initial state
Drawing constraint

Moving shadow
Valid constraint

Moving shadow
Invalid constraint

Initial state
Drawing constraint

Moving shadow
Valid constraint

Moving shadow
Invalid constraint

Sh
ad

ow
 C

oo
ki

e
in

 li
gh

t s
pa

ce

Sh
ad

ow
 C

oo
ki

e
in

 w
or

ld
 s

pa
ce

Cookiesc)

Initial state Drawing cookie Moving shadow Initial state Drawing cookie Moving shadow

Li
gh

t C
oo

ki
e

in
 li

gh
t s

pa
ce

Li
gh

t C
oo

ki
e

in
 w

or
ld

 s
pa

ce

Initial state Drawing cookie Moving shadow Initial state Drawing cookie Moving shadow

566

