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Abstract

Image-based modeling techniques permit the creation of visually
interesting geometric models from photographs. But traditional
image-based texturing (IBT) techniques often result in extracted
textures of poor, uneven quality. This paper introduces a novel tech-
nique to improve the quality of image-based textures. We compute
a simple and efficient texture quality metric based on the Jacobian
of the imaging transform. We identify the correlation between the
values of the Jacobian metric and the levels of an image pyramid,
allowing us to formulate a novel texture synthesis approach which
operates over textures from 3D surfaces in a scene. Our technique
allows the creation of uniform, high-resolution textures, relieving
the user of the burden of collecting large numbers of images while
increasing the visual quality of image-based models. This improved
quality is important to create compelling visual experiences in in-
teractive environments.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Texture; I.4.7 [Image Processing and Com-
puter Vision]: Feature Measurement—Texture

Keywords: Image-based modeling, texture mapping.

1 Introduction

Many interactive and immersive environments use image-based
texturing (IBT) to achieve high levels of visual realism, by creat-
ing textures from images of the real world. These methods create
compelling, detailed and accurate models of real world structures,
which are valuable for cultural heritage, tourism, urban planning,
and entertainment applications. In general, using a single image to
texture a surface results in blurry or stretched resampled textures,
due to uneven sampling of the surface of an object. This effect is
due to the camera pose and position with respect to each object in
the scene, as well as the effects of projection and lens distortion.
To achieve reasonable texture quality a uniform sampling of every
surface in the scene is required – that is, a dense, well-distributed
sampling of all possible viewpoints. For example, accurately tex-
turing a tall building requires difficult to obtain images of the top of
the building facade. The blurring and loss of detail that results from
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Figure 1: Detail synthesis for the synthetic brick scene at the top.
The first two rows show resampled texture regions and the corre-
sponding camera sampling patterns. The next row shows our Ja-
cobian metric across each surface. Using this metric to drive syn-
thesis, we achieve the results shown in the bottom row. Comparing
the top row and the bottom row for faces B and C, we see the high
frequency detail inserted by our algorithm. Low frequency infor-
mation, such as the color of the individual bricks, is also preserved.

using fewer images is obviously undesirable in interactive environ-
ments that support inspection of the world from viewpoints other
than the original camera positions.

In this paper we present a solution to the problem of poor image-
based texture quality, using a detail synthesis approach. This pa-
per introduces two important contributions to image-based textur-
ing. First, we identify the relationship between a simple, efficient,
physically-based texture quality metric (using the Jacobian of the
imaging transform), and the levels of an image pyramid. Second,
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we show how this relationship provides the additional information
necessary to use texture synthesis to improve the quality of de-
graded and perspective distorted textures on 3D object surfaces.
Our process, which we refer to as detail synthesis, creates high fre-
quency texture data into areas with poor detail, while preserving
any data present. It allows the creation of models with uniform,
high-resolution textures from small, poorly distributed input image
sets. This improved quality is important in order to create com-
pelling visual experiences in interactive environments that model
the real world.

The rest of this paper is organized as follows: Section 2 dis-
cusses related work, Section 3 describes the Jacobian-based texture
quality metric, Section 4 describes how the metric is used for detail
synthesis, Section 5 presents results, and we conclude in Section 6.

2 Related Work

Our research is related to previous research in both texture synthesis
and image-based texturing (IBT).
Texture synthesis. Texture synthesis based on Markov Random
Fields has been studied extensively from the standpoint of gen-
erating an arbitrarily sized texture patch from a small example
patch. Heeger and Bergen [1995] and DeBonet [1997] presented
the basic approach using steerable pyramids. Efros and Leung
[1999] demonstrated synthesis with Gaussian pyramids, and Wei
and Levoy [2000] introduced tree-structured vector quantization to
accelerate the process. These approaches have not been directly
applied to image-based texturing.

Freeman et al.[2002] describe a synthesis approach for sharpen-
ing images. Their approach is shown synthesizing one octave of
data in image space. We expect that our texture metric could be
useful for extending their training based approach to 3D surfaces.

Zalesny and Van Gool[2000] demonstrate a method of synthe-
sizing oriented textures for surfaces by estimating the oriented ap-
pearance of the surface for each new view.

The approach introduced in this paper builds on these algorithms
(primarily Efros and Leung [1999]) to allow higher quality image-
based texturing from 3D surfaces using real camera information.
Our algorithm synthesizes only the detail missing from the original
images, not the entire texture.
Image-based texturing. Several approaches have been proposed
recently for extracting textures from multiple images[Bernardini
et al. 2001; Lensch et al. 2000; Neugebauer and Klein 1999; Roc-
chini et al. 1999]. These techniques do not perform detail synthesis,
but instead blend the contributions from several images using qual-
ity metrics (discussed below). These methods require complete and
dense image coverage to ensure that for every texture patch there
exists at least one image that captures the desired level of detail.

Another class of image-based texturing approaches, such as
surface light fields[Wood et al. 2000], bi-directional texture
functions[Liu et al. 2001] (BTFs), and view-dependent texture
maps[Debevec et al. 1996] (VDTMs) construct higher dimensional
representations of the surface appearance to capture view depen-
dence. These techniques generally require large sets of input im-
ages with a dense sampling of all possible viewpoints.
Texture quality metrics. Texture quality metrics are often used
by image-based texturing techniques, to evaluate the quality of the
sampling for a texel. Many methods [Debevec et al. 1996; Lensch
et al. 2000; Rocchini et al. 1999] use a metric involving the viewing
angle. As noted by Debevec et al.[1996], the viewing angle metric
is invariant with respect to scene depth, and thus will not differen-
tiate between two images from the same camera angle but different
depths. Bernardini et al. [2001] use the viewing angle divided by
depth as a metric. This approach can be used to evaluate two tex-
ture patches with either viewing angle or depth held constant, but
may not perform correctly where both vary. Ofek et al.[1997] and

Neugebauer and Klein[1999] use projected pixel area to evaluate
texture quality. Their metric is closely related to the Jacobian metric
used in this paper, but our metric additionally preserves directional
information.

3 Texture Quality Metric

In this section we describe the problem of evaluating the quality of
reconstruction for the data at a given texel on a surface. We show
how the values of the Jacobian matrix of the imaging transform
provide a physical measure of texture quality.

3.1 The imaging transform

The image formation process is represented as the mapping of tex-
tures onto objects, then onto the image sensor. This mapping can
be described by the imaging transform, MImg, which maps tex-
ture space to image space (ℜ2

(s,t) → ℜ2
(u,v)). MImg is composed

of MPro j , which projects an object into the image plane, and MTex,
which projects the surface texture onto the object. Thus MImg =
MPro jMTex. MPro j is composed as MPro j = MDist MIntMExtMOb j ,
where MDist is the lens distortion model matrix, MInt is the trans-
form associated with the intrinsic camera parameters, MExt is the
transform associated with the extrinsic camera parameters which,
together with MInt , maps the world into image space, and MOb j is
the transform that maps the object into world space.

A texture maps to a surface by the texture transform, MTex,
which defines a sampling of the surface with a constant sampling
rate. It is constant because we assume that the surface parameter-
ization matches the texture parameterization except for a scaling
factor, so MTex represents only a uniform scaling (translation and
rotation are represented in MOb j or MExt , as appropriate). Adjust-
ing MTex adjusts the sample rate for the texture.

3.2 The sampling metric

Although the sample values recorded by the camera are uniformly
distributed in image space, it is generally not the case that the scene
locations that were sampled by the camera are uniformly distributed
in the scene, due to the pose and position of the camera and the ef-
fects of perspective. In order to measure this variation, and to recon-
struct textures with constant sampling rates, we require a physical,
sampling-based texture quality measure.

The sampling induced by the imaging transform can be charac-
terized by the Jacobian matrix[Kaplan 1984], J(M−1

Img):

J(M−1
Img) =

[

∂ s
∂u

∂ s
∂v

∂ t
∂u

∂ t
∂v

]

(1)

Recall that MImg maps (s, t) to (u,v). The values in the Jaco-
bian matrix, as partial derivatives, indicate the change in sample
distances in the directions indicated. Thus, the elements of this
matrix describe the change in sampling behavior induced by the
transformation. Note that because it is derived directly from M−1

Img,

J(M−1
Img) accounts for all of the factors affecting the sampling rate,

i.e. projective effects, camera pose and position, and lens distor-
tion. Since the sample distance determines the Nyquist frequency,
quantitative claims may be made regarding the frequencies present
under M−1

Img, based on the values of J(M−1
Img).

Evaluating the Jacobian matrix across the texture gives four mea-
sures per texel. Values on the diagonal indicate the relative sample
distances in the direction of the projected u and v axes. The off-
diagonal values can be thought of as indicating the rotation of the s
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and t axes relative to the projected u and v axes. Values in the Jaco-
bian matrix ≥ 1 indicate that the texture space is discretized more
densely than the projected image space, while values < 1 indicate
the opposite.

Our metric is the maximum value of the Jacobian matrix per
texel. This is a conservative measure of the texture quality at a
point because it is the largest distance in world units between any
two adjacent samples. Our metric is defined as:

max[J(M−1
Img)] = max(

∂ s
∂u

,
∂ s
∂v

,
∂ t
∂u

,
∂ t
∂v

) (2)

4 Detail Synthesis

Given a metric for assessing the sampling quality of image-based
textures, we now return to the problem of extracting uniformly high
quality textures from few images. When textures are extracted from
a few images, one is faced with the situation shown in Figure 1
- some faces are well sampled, but some (or even most) are not,
resulting in extracted textures of poor quality. We now show how
to correct the poor texture quality through detail synthesis.

4.1 Multi-resolution image pyramids

The technique presented in this paper uses Laplacian pyramids
[Burt and Adelson 1983] as the multi-resolution image pyramid.
Laplacian pyramids are formed using a ‘difference of Gaussians’
operator, and are approximately bandpass at each level. Each level
contains one octave of frequency data, with the highest level con-
taining the residual data.

There is a direct relationship between the Jacobian values for a
texture and the levels of the bandpass Laplacian pyramid. If the
texture resolution is scaled so that the minimum value of the Ja-
cobian metric over the surface is equal to 1 (i.e., the sampling is
perfect), then the texture data can easily be assigned to the appro-
priate pyramid level. A texel with a metric (i.e., the largest entry in
its Jacobian) equal to r, can only possibly contribute to data present
at or above the log2(r) level of the pyramid.

Another benefit of using Laplacian pyramids for detail synthesis
lies in the method of reconstructing a final texture from a pyra-
mid. Because the texture is recovered by repeatedly upsampling
and merging bandpass levels, from the top down, data from higher
levels ‘show through’ the lower levels. The preservation of exist-
ing information is important for image-based textures to be reality
preserving, and is why we refer to our method as detail synthesis.

4.2 Synthesis Overview

Given two textures from similar surfaces, one with a high sampling
rate (the source texture) and one with a low sampling rate (the target
texture), we wish to synthesize missing higher frequency data into
the target texture, using the source texture as a model.

Current approaches to multi-resolution texture synthesis begin
by creating some pyramid representation (for example, Gaussian,
Laplacian, or steerable) of a source texture that has the desired fre-
quency content. Then a target pyramid is created with a pyramid
height equal to that of the source pyramid. Each level of the target
pyramid is usually seeded with noise. Correct texture data is then
generated for each level of the target pyramid (from the top down)
based on statistical matching with the data in the source pyramid,
usually considering a neighborhood in the current level and some
number of corresponding ‘parent’ neighborhoods in higher levels.
For more detail we refer the reader to the texture synthesis work
referenced in Section 2.

In extending texture synthesis algorithms to image-based textur-
ing we utilize the data structures illustrated in Figure 2 (taken from

(c) Target texture

(a)  Laplacian pyramid

(d) Jacobian metric over target

(b) Validity pyramid

0
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Figure 2: The detail synthesis data structures. The Laplacian pyra-
mid in (a) corresponds to the texture in (c). The validity pyramid
in (b), with valid texels indicated in white, is calculated from the
target Jacobian in (d).

Figure 1, face B). A Laplacian pyramid (Figure 2 (a)) is constructed
for the target texture (Figure 2 (c)). A pyramid containing validity
information is created (Figure 2 (b)) using information in the Jaco-
bian metric evaluated over the target surface. Our detail synthesis
algorithm operates only in regions of the target Laplacian pyramid
marked as invalid. Note that the Laplacian pyramid for the source
is not shown in this figure.

The complete detail synthesis process using the Jacobian metric
is as follows: determine the best scaling of the source texture, nor-
malize the target texture with respect to the source texture scaling,
construct a pyramid representation of the source texture, construct
a pyramid representation of the target texture, and last, perform tex-
ture synthesis in regions of the target containing invalid data. We
now discuss each of these steps in more detail.
Determining the source texture scaling. The purpose of this step
is to refine the mapping MTex, such that the source texture is of such
a resolution that it captures exactly the frequencies present in the
image data. Note that this is in general impossible, as the sampling
rate will not be constant across the entire surface. Thus we use the
conservative resolution determination described below.

We assume that the texture parameterization has a constant scal-
ing relation to the underlying surface parameterization, thus the
determination of the optimal source texture involves computing a
factor to scale the texture resolution. We begin by calculating the
Jacobian matrix across the source texture assuming that MTex is the
identity matrix, using the world space length of the surface’s s and
t directions as the initial texture resolution.

We can interpret the metric (i.e., the largest of any of the four
Jacobian values) at any texel on the surface, as the largest distance
between any two samples from the image. This value, k, is used
as the conservative resolution scaling factor. We apply 1/k to the
texture size values to get the new texture resolution, and scale MTex
by k, then extract a source texture from the image. Intuitively, we
normalize the source texture such that all of the elements in the
texture have a Jacobian of 1 or ≤ 1, so that the lowest level of the
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pyramid is fully populated.
There is a side effect of using the conservative value, k, to bound

the Jacobian values over the surface. The resulting texture is gener-
ally only of sufficient resolution to capture the data from the image
at the point where the surface is most poorly sampled, but not where
it is most densely sampled. Thus, data could be lost when extract-
ing the source texture from the image. This behavior is, however,
desirable when one considers that we will use the source pyramid
for synthesis; therefore, all levels of the pyramid must be full for
proper synthesis to take place.
Normalizing the target texture. In order to to determine how the
target texture quality relates to that of the source texture, we rescale
the target MTex by the same factor calculated for the source. This
is necessary in order to determine the data in the target pyramid, as
well as to guarantee that the final result has the desired resolution.

After applying the scaling factor to the target texture, calcu-
lating the values of the Jacobian matrix across the target texture
now yields a quantitative comparison of the sampling between the
source and target surfaces. Due to the rescaling, the values of the
Jacobian metric for the target will generally be greater than 1, and
the corresponding Laplacian pyramid will have missing data in its
lower levels. It is this missing data that we will create through detail
synthesis.
Creating the Laplacian pyramids. For the synthesis algorithm
to compare similar frequency bands, the height of the source and
target pyramids must be equal. The pyramid height is calculated by
taking the lowest completely valid level of the target pyramid, as
determined below, and adding the number of parent levels that the
synthesis algorithm will consider. Creation of the pyramids then
follows the standard algorithm for creating a Laplacian pyramid.

Using the analysis of Laplacian pyramids provided in Section
4.1, the validity of data at each level in the pyramid is easily de-
termined. Recall that a texel with the largest entry in its Jacobian
equal to r, can only possibly contribute to data present at or above
the log2(r) level of the pyramid. We store this validity information
in another pyramid structure to guarantee that data is only synthe-
sized in invalid regions of the Laplacian pyramid.
Synthesis. The actual synthesis is based on the algorithm by Efros
and Leung [1999]. Pixel neighborhoods are used instead of patches,
but Freeman et al.[2002] demonstrate a similar approach using
patches. The actual search uses a k-d tree to accelerate matching
of the pixel vectors.

We believe that this application of detail synthesis to image-
based model textures is unique. Wei and Levoy[2000] and Free-
man, et al.[2002] have demonstrated the use of synthesis techniques
as image editing tools, where the synthesis was performed in image
space. The quality metric and pyramid creation technique presented
in this paper allows the application of these methods to textures on
the surfaces of imaged objects for the creation of interactive envi-
ronments.

5 Preliminary Results

Detailed description of our image acquisition and model creation
process can be found in [Ismert et al. 2003]. Briefly, all real world
images were acquired at 16 bits/channel (linear) with a Canon D30
digital camera. Models were created using commercial image-
based modeling software.
Rendered bricks. Our only synthetic scene, the brick cubes shown
in Figure 1, was modeled and rendered using Discreet 3DSMaxTM.
The front face of the front cube (column b) was used as the source
texture; the side of the middle cube (column c) and the front of
the back cube (column d) were the target textures. After re-scaling
MTex the maximum Jacobian value for the side face was approxi-
mately 4.89, with a large range due to the angle of the surface. The
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Figure 3: Results for columns along the face of a library. Face A
was the source; textures for faces B and C were synthesized.

maximum Jacobian value for the back face was approximately 2.35,
and was fairly constant across the surface.

Synthesis results are shown in the bottom row of Figure 1, for
faces B and C. The synthesis algorithm used pyramids with 5 and
4 levels, for the middle and back faces, respectively. The algo-
rithm used 2 passes with 7x7 neighborhoods to generate the results
shown. Our technique was able to inject enough correct high fre-
quency data to noticeably sharpen the output textures. Notice also
that the algorithm preserves the low frequency information (present
in the color of the bricks) instead of writing over this with data from
the source texture.
Building columns. The input images for the results shown in Fig-
ure 3 were imaged with the Canon D30 camera described above.
The front-facing side of the nearest column was used as the source.
The corresponding face of the fourth column was used as the tar-
get. After re-scaling MTex the maximum Jacobian value for the tar-
get texture was approximately 3.1, with only a small range across
the surface. The synthesis algorithm used a pyramid with 4 levels,
and used 4 passes with 5x5 neighborhoods to generate the results
shown.

As the results show, the synthesis correctly inserts higher fre-
quency data into the target texture. The overall brightness of the
target is preserved, even though the source texture is much brighter
than the target. Although the mortar lines between the stones are
not as clear as in the source, the results are promising, given the
difficulty of this type of surface for current texture synthesis algo-
rithms, and the strong differences in appearance between the source
and the target.
Pavement. The input images for these results were also imaged
with the Canon D30. The image shown in Figure 4 was used to re-
sample the target texture, which is shown outlined in red. A portion
of the original resampled texture is shown in b). After re-scaling
MTex the maximum Jacobian value for the target texture was ap-
proximately 7.6, with a large range across the surface. The synthe-
sis algorithm used a pyramid with 5 levels, and used 2 passes with
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(a)

(c)(b)

Figure 4: Results for a paved pedestrian walkway. The image in
a) was used to resample the texture for the target pavement section
(outlined in red). A portion of the original texture for this pavement
section is shown in b). The results after synthesis are shown in c)

5x5 neighborhoods to generate the results shown.
As the results show, the synthesis correctly inserts higher fre-

quency data into the target texture. For example, the sharp border
of the cement on the right is correctly synthesized by our algorithm.
Also, unique low frequency characteristics of the target, such as the
general lightness of the cement, are preserved. We would expect
texture synthesis algorithms to perform well on this type of surface,
which is supported by the quality of our results. However, without
our technique significant user intervention would be required to ac-
curately reproduce appearance characteristics unique to this imaged
environment, for example, the high frequency data on the borders.

6 Conclusions and Future Work

This paper has presented two important contributions to aid the
creation of high-quality textured environments from imaged data.
First, it has shown how the Jacobian matrix of the imaging trans-
form can be used to determine sampling behavior in a scene, and
thus provides a simple, physically-based texture quality metric.
Second, it has shown how this texture quality metric enables our
novel technique for synthesizing high frequency detail into de-
graded regions of image-based textures using standard texture syn-
thesis techniques. In contrast to most previous techniques, this syn-
thesis occurs in texture space – on the surface of some object in the
environment – rather than in image space. This technique provides
a way to extract uniformly high quality textures of a model from
few images. This improved texture quality is important for inter-
active walkthroughs where the user’s viewpoint can differ from the
original sampled camera locations.

In the future, we will explore the use of alternate multi-resolution
image representations (e.g., wavelets) to better address the highly

anisotropic nature of the sampling in many scenes. We will also
explore approaches combining several images based on Jacobian
values, and synthesizing only detail missing in the merged result.
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