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Abstract

Interactive and immersive environments which model the real
world often use images of the environment to capture realistic vi-
sual complexity. Image-based modeling techniques permit the cre-
ation of visually interesting geometric models from photographs.
These models are textured by resampling these images of the scene;
we call this process image-based texturing. The problem with tra-
ditional image-based texturing is the poor quality of the extracted
textures, which are often blurred or stretched.

This paper introduces a novel technique to improve the quality of
image-based texturing processes by introducing a physically-based
metric that can be used to extend current texture synthesis methods.
We propose a sampling-based metric of texture quality based on the
Jacobian matrix of the imaging transform, which captures the inter-
action of the imaging system with the imaged environment. This
metric suggests a physical interpretation of the multi-resolution im-
age representations widely used in texture synthesis. Use of this
metric enables synthesis of high spatial frequency detail into re-
gions of an image-based model’s textures where the imaging pro-
cess captures only low frequency texture data. Given a small set
of input images and a geometric model of the scene, this technique
allows the creation of uniform, high-resolution textures. Our tech-
nique relieves the user of the burden of collection large numbers of
images and increases the quality of user-driven image-based mod-
eling systems. This improved quality is important in order to create
compelling visual experiences in interactive environments.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture;
I.4.1 [Image Processing and Computer Vision]: Digitization and
Image Capture—Imaging geometry I.4.7 [Image Processing and
Computer Vision]: Feature Measurement—Texture

Keywords: sampling, image-based modeling, texture mapping

1 Introduction

Many interactive and immersive environments demand high levels
of visual realism. One way that this has traditionally been accom-
plished for environments which model the real world is by creating
surface textures through resampling actual images the scene. We
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refer to this process as image-based texturing, noting its close re-
lationship to image-based modeling. Image-based modeling and
texturing are compelling methods for creating detailed and accu-
rate models of real world structures. Such models are valuable for
cultural heritage, tourism, urban planning, and entertainment pur-
poses. Both computer- and user-driven geometric reconstruction
projects have made a great deal of recent progress[Debevec et al.
1996; Dick et al. 2000; Dick et al. 2001; Pollefeys et al. 1998]. In
addition to recent improvements in the quality of reconstructed ge-
ometry, shortcomings in geometric accuracy can often be masked
by detailed textures[Heckbert 1986] derived from the imaged envi-
ronment.

In general, however, an image from a single camera position
yields an uneven sampling of the surface of an object (even though
the sampling rate is constant across the image plane), thus creating
unevenly sampled textures. This effect is due to the camera pose
and position with respect to each object in the scene, as well as
the effects of projection and lens distortion, and is demonstrated in
Figure 1.

As the distance between the location of samples in the world gets
larger, the sampling rate gets smaller. The result is that the mini-
mum resolvable feature size becomes larger. The visual effect of
this is progressive blurring in the resampled textures, as shown in
Figure 1, columns (c) and (d). This blurring is obviously undesir-
able in interactive environments that support inspection of the world
from viewpoints other than the original camera positions.

Current approaches attempt to improve the quality of a texture
either by merging several textures or by constructing an alterna-
tive surface appearance model such as a View-dependent Texture
Map[Debevec et al. 1996; Debevec et al. 1998] or a Surface Light
Field[Wood et al. 2000]. These approaches often require many
more images than are required to model the scene geometry. Addi-
tionally, the requirement for a well-distributed and often dense sam-
pling of the desired rendering viewpoints imposes a heavy and of-
ten impossible burden on the image capture process. For example,
accurately representing a tall building requires images of the top
of the building facade. However, as stated previously, using fewer
images leaves the surface texture sampled in a highly non-uniform
manner, resulting in some areas with high detail, but leaving most
areas with much less detail.

Texture synthesis has also been suggested as a means of address-
ing the poor quality of textures resampled from images. To date,
work on texture synthesis has focused on synthesizing entirely new
textures in 2D or on 3D surfaces, and do not take the into account
issues of partial data or projective resampling images of real world
scenes.

In this paper we present a solution to the problem of poor tex-
ture quality due to uneven sampling by using a detail synthesis ap-
proach. We introduce a physical, sampling-based measure of the
quality of a texture. We extend existing texture synthesis algorithms
to generate only missing detail using the metric. This process in-
jects statistically correct high frequency information into areas with
poor detail, preserving any detail present. This paper introduces
two important contributions to image-based texturing:

• a physical, sampling-based metric using the Jacobian matrix
of the imaging transform for evaluating texture quality, and
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Figure 1: Three common sampling situations. (a) is the scene. Column (b) shows data from the front face, which is well sampled. Columns
(c) and (d) show data from poorly sampled faces. The first row shows portions of textures from the front, middle, and far blocks, respectively.
The second row illustrates the sampling patterns on each of these faces. The third row shows the maximum value of the entries in the Jacobian
matrix evaluated across each face. The bottom row shows the results of applying our technique to synthesize detail onto poorly sampled faces
(columns (c) and (d)) using data from the texture on the well sampled face (column (b)). Comparing the top row and the bottom row of
columns (c) and (d), we see the high frequency detail inserted by our algorithm.
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• a method that relates the multi-resolution pyramids used by
many current texture synthesis techniques to the Jacobian-
based metric, allowing synthesis driven by a physically-based,
quantitative measure of texture quality.

The sampling-based metric of texture quality is based on and
captures the interaction of imaging systems with the imaged envi-
ronment (for example, see Figure 1 (a)). The metric uses the Jaco-
bian matrix of the imaging transform which maps the surface of an
object into the image from which a texture will be extracted. The
top row of Figure 1 shows portions of textures extracted from an
image. Note that the quality of the extracted textures varies widely.
The quality variations are due to the way in which the surfaces were
sampled (Figure 1, second row). The Jacobian-based metric enables
us to quantify the sampling behavior across texture space (Figure
1, third row) and leads directly to a physical interpretation of the
multi-resolution image representations widely used in texture syn-
thesis, as described in section 4. We adapt conventional texture syn-
thesis techniques to populate empty high spatial frequency bands
with detail, while preserving any existing low frequency texture
data captured by the imaging process. The resulting synthesized
texture using our technique is shown in Figure 1, columns (c) and
(d), bottom row.

Our technique allows the creation of models with uniform, high-
resolution textures from small input image sets, and significantly,
from sets which are poorly distributed in the space of desired view-
ing positions. Generating textures with these qualities constitutes
a significant improvement in the ability to generate highly de-
tailed, reality-preserving models with reasonable input constraints
for users. Our technique eases the burden of collecting large num-
bers of images and increases the quality of textures derived from
images of the environment. This improved quality is important in
order to create compelling visual experiences in interactive envi-
ronments that model the real world.

The rest of this paper is organized as follows: Section 2 is a
discussion of previous related work. Section 3 describes the use of
the Jacobian as a texture quality metric. Section 4 describes how
we apply the metric to the task of detail synthesis, and Section 5
presents the results of that technique.

2 Related Work

Our research is related to previous research in both texture synthesis
and image-based texturing (IBT). We discuss work in these two
areas below.

2.1 Texture synthesis

Texture synthesis based on Markov Random Fields has been studied
extensively from the standpoint of generating an arbitrarily sized
texture patch from a small example patch. Heeger and Bergen
[Heeger and Bergen 1995] and DeBonet [DeBonet 1997] presented
the basic approach using steerable pyramids. Wei and Levoy [Wei
and Levoy 2000] demonstrated synthesis with Gaussian pyramids
and introduced a Tree-structured Vector Quantization accelerated
search method. These approaches have not been directly applied to
image-based texturing.

Freeman et al.[Freeman et al. 2002] describe a synthesis ap-
proach for sharpening images. Their approach is shown synthesiz-
ing one octave of data, and is restricted to image space. A texture
metric similar to the one presented in this paper would be comple-
mentary to their approach and provide a degradation model suitable
for extending their training based approach to 3D surfaces.

Zalesny and Van Gool[Zalesny and Gool 2001] demonstrate a
method of synthesizing oriented textures for surfaces, but their ap-

proach does not model texture quality, and thus replaces the low
resolution texture, rather than using it to guide the synthesis.

The approach introduced in this paper builds on these algorithms
(primarily Wei and Levoy [Wei and Levoy 2000]) to allow higher
quality image-based texturing on 3D surfaces using real camera in-
formation. Our algorithm sysnthesizes only the detail missing from
the original images, not the entire texture.

2.2 Image-based texturing

It is often useful to discuss image-based texturing research with re-
spect to the scale of the objects of interest: small- to medium- scale
objects (including items suitable for inspection on a turntable such
as toys [Lensch et al. 2000], as well as larger items such as statuary
[Bernardini et al. 2001]); and large-scale objects such as buildings
[Debevec 1996]. Although we are interested in applying the tech-
nique presented in this paper exclusively to the last category, we
briefly review relevant work in the former category as applicable.
Finally, we disuss the various texture quality metrics currenly used
by image-based texturing techniques.

2.2.1 Techniques for small- and medium-scale objects

Several approaches have been proposed recently for extracting tex-
tures from multiple images[Bernardini et al. 2001; Lensch et al.
2000; Neugebauer and Klein 1999; Rocchini et al. 1999]. These
techniques do not perform detail synthesis, but instead merge the
contributions from several images using quality metrics (discussed
below). These methods require complete and dense image coverage
to ensure that for every texture patch there exists at least one image
that captures the desired level of detail. To date these approaches
have primarily been applied to small- and medium-scale objects.

Surface Light Fields[Wood et al. 2000], and Bi-directional Tex-
ture Functions[Liu et al. 2001] (BTFs) can also be used to cre-
ate and render attractive surface appearance, but generally require
many more images than are needed to model the geometry. Sur-
face Light Fields already require vary large, dense data sets, mak-
ing their extension to large scale objects and environments uncer-
tain. And although BTFs have been demonstrated using smaller
numbers of input images, their robustness under this constraint for
large-scale objects has yet to be tested.

2.2.2 Techniques for large-scale objects

For large-scale objects, View-dependent Texture Maps[Debevec
et al. 1996; Debevec et al. 1998] (VDTMs) have been proposed
as a way to improve the appearance of these often complex sur-
faces. But VDTMs inherently require a large number of images,
much like Surface Light Fields and BTFs. VDTMs often require
twice as many images to texture as to model[Debevec 1996]. Also,
like Surface Light Fields and BTFs, VDTMs require that the space
of possible rendering viewpoints be fairly evenly and densely sam-
pled. This can be an unreasonable burden on the modeling process,
as it may be impossible to acquire enough images of the top of a
facade of a tall building or for the sides of many structures in con-
stricted urban settings.

2.2.3 Texture quality metrics

Texture quality metrics are often used by image-based texturing
techniques, which need to select or weight contributions to a tex-
ture from pixels in several images. Image-based texturing methods
such as VDTMs, Surface Light Fields, and BTFs apply a texture
quality metric involving the viewing angle. As noted by Debevec et
al.[Debevec et al. 1996], the viewing angle metric is invariant with
respect to scene depth, and thus will not differentiate between two
images from the same camera angle but different depths. Several
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of the approaches which simply merge images[Lensch et al. 2000;
Rocchini et al. 1999] also use the same metric.

Bernardini et al. [Bernardini et al. 2001] use the viewing angle
divided by depth as a metric. This approach can be used to eval-
uate two texture patches with either viewing angle or depth held
constant, but may not perform correctly where both vary. It is also
difficult to formulate a direct physical interpretation for this metric
in terms of sampling behavior.

Ofek et al.[Ofek et al. 1997] and Neugebauer and
Klein[Neugebauer and Klein 1999] use projected pixel area
to evaluate texture quality. This metric has an obvious physical
interpretation, but it does not contain any information regarding the
anisotropic behavior of the sampling without making assumptions
about the shape of the projected area. We find that this information
is required for texture quality analysis.

3 Texture Quality Metric

In this section we describe the problem of characterizing the sam-
pling behavior of an image sensor during the image formation pro-
cess. We then show how the values of the Jacobian matrix of the
imaging transform can be interpreted as sample distances within
the environment, and how the Jacobian values then serve to mea-
sure texture quality.

3.1 Terminology

We orient our discussion of imaging and image-based texturing by
noting that they can both be considered as sampling problems. A
camera samples a scene to produce a digital image - a computer
file containing digital values for colors on a regular grid. We refer
to pixels in the image as sensor elements or sensels. We refer to
sensel positions using coordinates of image space, a discrete two
dimensional space parameterized in (u,v), with an origin at the top
left of the image. We assume that the image space has horizontal
and vertical extents equal to the horizontal and vertical resolution
of the digital image, i.e. u and v range from 0 to 〈imagewidth〉 and
0 to 〈imageheight〉, respectively.

The spatial frequencies in the scene that can be captured by
the image sensor are determined by projecting the centers of ad-
jacent sensels into the environment, and then determining the dis-
tance between them. We call this distance the sample distance.
More frequently we refer to this quantity in terms of the sampling
rate, 1

sample distance . Basic sampling theory tells us that the high-
est spatial frequency that can be captured, the Nyquist frequency, is
sampling rate

2 . As the sampling rate varies across the scene so does
the Nyquist frequency.

Note that although the sample values recorded by the camera are
uniformly distributed in image space, it is generally not the case
that the the scene locations that were sampled by the camera are
uniformly distributed in the scene, due to the pose and position of
the camera and the effects of perspective. This is illustrated in Fig-
ure 2. Figure 2 (a) shows the view from the camera with sensel
boundaries shown in red. The camera is looking toward a rectangle
in the environment, being viewed in perspective, which is shown
outlined in blue. Figure 2 (b) shows a view of the same rectangle
viewed orthogonally, with the world space units shown in solid blue
lines. The outlines of the sensels as they project onto the rectangle
are shown with dashed red lines. Although arranged regularly in
the image, the sensels clearly do not sample the rectangle regularly,
due to perspective and the position of the camera.

The sampling of the scene by the camera (i.e., the image forma-
tion process) can be represented as the mapping of textures onto
objects, then onto the image sensor. This mapping can be described
by the imaging transform, MImg:

u
v

t
s

Image space World space

Figure 2: At left an image (red) captures a surface (blue) in per-
spective. At right, the same surface is viewed from an orthogonal
direction with the image sensor sampling overlaid in dashed red
lines.

MProj MTex

MImg

sv
u

t

Figure 3: MImg, the imaging transform, is composed of MPro j and
MTex.

MImg = MPro jMTex (1)

As shown in Figure 3, MImg is composed of two transforms:
MPro j , which projects an object into the image plane, and MTex,
which projects the surface texture onto the object.

MPro j can be further decomposed as:

MPro j = MDistMIntMExtMOb j (2)

where MDist is the lens distortion model matrix, MInt is the
transform associated with the intrinsic camera parameters, MExt
is the transform associated with the extrinsic camera parameters
which, together with MInt , maps the world into image space, and
MOb j is the transform that maps the object into world space.

We store the appearance of an object in a texture, which is a dis-
crete, two dimensional representation parameterized in (s, t). Pixels
in the texture are referred to as texels. A texture maps to a surface
by the texture transform, MTex, which defines a sampling of the
surface with a constant sampling rate. It is constant because we
assume that the surface parameterization matches the texture pa-
rameterization except for a scaling factor, so MTex represents only
a uniform scaling (translation and rotation are represented in MOb j
or MExt , as appropriate). Adjusting MTex adjusts the sample rate
for the texture.
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3.2 Physically-based sampling metric

Optimally, image-based textures should be constantly sampled at
a constant, high rate. Current approaches attempt to approximate
this sampling, but do not actually reconstruct textures with constant
sampling behavior and have other undesirable properties, as noted
previously. In order to reconstruct textures with constant sampling
rates, we require a physical, sampling-based texture quality mea-
sure.

3.2.1 Sampling in world units

Consider first, only the transform MPro j . This transform maps some
object surface into the image plane. We assume without loss of
generality that the surface is parameterized in 2D coordinates (s, t),
since this is required for the texture mapping operation in any case.
The object vertices are given in (homogeneous) coordinates of some
world units. So we have:





u
v
1



 = MPro j ∗





s
t
1



 (3)

This transformation is illustrated in Figure 3. As noted previ-
ously, this is a standard way to express the “imaging” of the envi-
ronment in computer graphics. However, we are interested in fram-
ing the problem slightly differently. If MPro j projects an object sur-
face into the image, then we are interested in the inverse problem:
how does M−1

Pro j project the image data onto an object surface? In
keeping with this perspective, from this point forward we deal pri-
marily with the inverse of MPro j .

This projection of image data onto an object surface is isomor-
phic to the sampling of the scene by the camera. The sampling
induced by the transformation can be characterized by the Jacobian
matrix[Kaplan 1984], J(M−1

Pro j):

J(M−1
Pro j) =

[

∂ s
∂u

∂ s
∂v

∂ t
∂u

∂ t
∂v

]

(4)

The values in the Jacobian matrix, as partial derivatives, indicate
the change in sample distances in the directions indicated. Thus, the
elements of this matrix describe the change in sampling behavior in-
duced by the transformation. Note that because it is derived directly
from M−1

Pro j , J(M−1
Pro j) accounts for all of the factors affecting the

sampling rate – projective effects, camera pose and position, lens
distortion, etc. Since the sample distance determines the Nyquist
frequency, quantitative claims may be made regarding the sampling
behavior under M−1

Pro j based on the values of J(M−1
Pro j).

For example, given some M−1
Pro j such that at some point on the

surface:

J(M−1
Pro j) =

[

5 0
0 5

]

(5)

If world coordinates are given in units of centimeters, the Jaco-
bian matrix indicates that a sensel projected onto the object at this
point would cover a region 5 cm high by 5 cm wide. Recall that the
Nyquist frequency, is sampling rate

2 , or in this case 1
5∗2

cycles
cm , in both

the horizontal and vertical directions. Thus the smallest feature1

that can be detected without aliasing is 10cm in height or width.

1Here, in keeping with the sampling nomenclature, a ‘feature’ is a com-
plete cycle of an intensity profile sinusoid.
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Figure 4: A simple example illustrating the use of the elements of J
to judge sample rate. In (a) the texture has more resolution than is
necessary to capture the detail in the image. In (b) the texture has
too little resolution and cannot capture all of the detail present in
the image.

3.2.2 Sampling in texture units

Although the transform MPro j describes the sampling behavior in
the environment with respect to world units, it neglects MTex, the
mapping of the texture representation to the surface. Note that the
world units are assumed to have a constant scaling factor relation-
ship to the resolution of the texture mapped to a surface. Since we
are also interested in the quantitative properties of the textures in re-
lation to the image data, we can extend the above analysis to use the
entire imaging transform MImg, which maps a texel to a sensel. Be-
cause we used an (s, t) parameterization of the object surface above,
the relationship between texture and image has the same form:





u
v
1



 = MImg ∗





s
t
1



 (6)

This relationship allows us to conveniently refer to the rate at
which the sensor samples the scene in units of texels per sensel.
Again, to stay with the conceptual model of projecting the image
data into the texture representation we deal primarily with the in-
verse of the imaging transform, M−1

Img This transformation is char-

acterized by the Jacobian matrix, J(M−1
Img).

Evaluating the Jacobian matrix across the texture gives four mea-
sures per texel. Values on the diagonal indicate the relative sample
distances in the direction of the projected u and v axes. This is il-
lustrated in Figure 4. The off-diagonal values can be thought of as
indicating the rotation of the s and t axes relative to the projected u
and v axes. In Figure 4, these values (not shown) are zero. As Fig-
ure 4 (a) shows, values in the Jacobian matrix > 1 indicate that the
texture space is discretized more densely than the projected image
space, while values < 1 indicate the opposite (as shown in (b)).

The values in the Jacobian matrix have a direct physical interpre-
tation in terms of the frequencies from the image that the texture is
capable of representing at a given resolution. In a sampling sense,
values ≥ 1 indicate regions where the texture parametrization is
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sufficiently dense to represent all of the data captured by the im-
age sensor (Figure 4 (a)); values < 1 indicate that some data in the
image cannot be represented with the given texture parametrization
(Figure 4 (b)).

4 Detail Synthesis

Given a metric for assessing the sampling quality of image-based
textures, we can now return to the problem of extracting uniformly
high quality textures from few images. As noted previously, when
textures are extracted from a few images, one is faced with the sit-
uation shown in Figure 1 - some faces are well sampled, but some
(or even most) are not. Consequently, in this situation, the extracted
textures are of poor quality. We now show how to correct the poor
texture quality through detail synthesis.

4.1 Multi-resolution image pyramids

The technique presented in this paper uses Laplacian pyramids
[Burt and Adelson 1983] as the multi-resolution image pyramid.
Laplacian pyramids are formed using a ‘difference of Gaussians’
operator, and are thus (approximately) bandpass at each level. The
frequency composition of an example pyramid is illustrated in Fig-
ure 5. The bottom level (level 0) contains data from the spatial

frequency band from the Nyquist frequency, fN , to fN
2 . The next

level up (level 1) contains data from the spatial frequency band

from fN
2 to fN

4 . In a pyramid with levels 0 to n (bottom to top),
level m : 0 ≤ m〈n contains data in the spatial frequency band from
fN
2m to fN

2m+1 . Level n contains data in the spatial frequency band from
fN
2n to 0.

One can see that there is a direct relationship between the Jaco-
bian values for a texture and the levels of the Laplacian pyramid.
As stated previously,the Nyquist frequency, fN is sampling rate

2 , and
the Jacobian texture quality metric yields values equal to the sam-
ple distance. Thus, for distributing data to the levels of the pyramid,
fN = 1

2∗Jacobian value .
If we assume that in some portion of the texture, the Jacobian

metric is equal to 1 (i.e., the sampling is perfect), then the data in the
remainder of the texture can easily be assigned to the appropriate
pyramid level. Regions with sampling rates between .5 and .25
cycles per pixel would have data in and above level 0. Regions with
sampling rates between .25 and .125 cycles per pixel would have
data in and above level 1. Regions with sampling rates between
.125 and .0625 cycles per pixel would have data in and above level
2. For example, a region of an image with a Jacobian value of 3.2
has a sampling rate of 1

2∗3.2 = .15625 would have no data in the
Laplacian pyramid lower than level 1.

The primary benefit of using Laplacian pyramids for detail syn-
thesis lies in the method of reconstructing a final texture from a
pyramid. For a Laplacian pyramid, the texture is recovered by re-
peatedly upsampling and merging levels, from the top down. Be-
cause the levels are bandpass, this means that the data from higher
levels ‘show through’ the lower levels. So if there is valid pre-
existing data in, for example, the top 3 levels of a 5 level pyramid,
and synthesized data in the bottom 2 levels, then the pre-existing
low resolution data is preserved in the final texture, no matter what
the results of the synthesis for the high frequency data in levels 0
and 1. The preservation of existing information is important for
image-based textures to be reality preserving, and is why we re-
fer to our method as detail synthesis. We now consider the entire
process in greater detail.

fN - fN/2

fN/2 - fN/4

fN/4 - 02

1

0

Level Freq.

Figure 5: An illustration of a Laplacian pyramid with three levels.

Level 0 contains the frequencies from fN , to fN
2 . Level 1 contains

the frequencies from fN
2 to fN

4 . Level 2 contains the frequencies

from fN
4 to 0. Note that illustration does not show pyramid data in

order to preserve clarity.

4.2 Synthesis Overview

Given two textures from similar surfaces, one with a high sampling
rate (the source texture) and one with a low sampling rate (the target
texture), we wish to synthesize missing higher frequency data into
the target texture, using the source texture as a model.

Current approaches to multi-resolution texture synthesis begin
by creating some pyramid representation (for example, Gaussian,
Laplacian, or steerable) of a source texture that has the desired fre-
quency content. Then a target pyramid is created with a pyramid
height equal to that of the source pyramid. Each level of the target
pyramid is usually seeded with noise. The noise is generated so that
its histogram matches that of the corresponding level in the source
pyramid. Correct texture data is then generated for each level of the
target pyramid (from the top down) based on statistical matching
with the data in the source pyramid, usually considering a neigh-
borhood in the current level and some number of corresponding
‘parent’ neighborhoods in higher levels. For more detail we refer
the reader to the texture synthesis work referenced in section 2.1.

In extending texture synthesis algorithms to image-based tex-
turing we perform the steps briefly illustrated in Figure 6. First a
Laplacian pyramid is constructed for the source texture as shown in
Figure 6 (a). Next the pyramid for the target texture is constructed
by inserting the texture into the pyramid at the level indicated by
the texture’s maximum Jacobian value. Lower levels of the pyra-
mid are seeded with noise. As shown in Figure 6 (b) the bottom
level is seeded with noise, and the target texture – with the max-
imum value of the Jacobian metric equal to 3.0 – is inserted into
level 1. The correlation between the maximum value of the Ja-
cobian metric and levels of a bandpass image pyramid is the key
insight which allows the extension of texture synthesis techniques
to image-based texturing. Finally, texture synthesis is performed in
the target texture image pyramid to generate the high quality result
texture, as demonstrated in Figure 6 (c).

Of course this is a simplified overall description and several ini-
tialization and normalization steps are required. The remainder of
this section discusses the process in greater detail. The complete
detail synthesis process using the Jacobian metric is as follows:

1. Determine the best scaling of the source texture . This pro-
cess uses the Jacobian values to determine the scaling which
produces the optimal source texture resolution.

2. Normalize the target texture with respect to the source tex-
ture scaling. This yields a set of Jacobian values that describe
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Noise

(a)

(c)

(b)

Figure 6: The detail synthesis process. The Laplacian pyramid for
source texture is constructed in (a). The Laplacian pyramid for the
target is constructed in (b). The synthesis and resulting texture are
shown in (c).

the sampling rate of the target relative to the source. That is,
it answers the question, ‘where in the target pyramid does this
data from the target texture appear?’

3. Construct a pyramid representation of the source texture.
The height of the pyramids are determined by the lowest level
in the target pyramid at which data appears, as well as the
number of parent levels (if any) used by the synthesis algo-
rithm.

4. Construct a pyramid representation of the target texture.
This process must correctly insert data from the target texture
into the appropriate level of the target pyramid.

5. Perform texture synthesis. Using the complete source pyra-
mid and the partial target pyramid, synthesize the data still
absent into the target pyramid, then reconstruct the texture.

We now discuss each of these steps in more detail.

4.3 Determining the source texture scaling

The purpose of this step is to refine the mapping MTex, such that
the source texture is of such a resolution that it captures exactly
the frequencies present in the image data. Note that this is in gen-
eral impossible, as the sampling rate will generally not be constant
across the entire surface, thus we use the conservative resolution
determination described below.

We assume that the texture parameterization has a constant scal-
ing relation to the underlying surface parameterization, thus the de-
termination of the optimal source texture representation involves
computing a factor to scale the transform MTex and then applying
the inverse of that factor to scale the texture resolution extents. We
begin by calculating the Jacobian matrix across the texture assum-
ing that MTex is the identity matrix (i.e., take the Jacobian matrix
of M−1

Pro j), using the world space length of the surface’s s and t
directions as the initial texture resolution.

Because the values in the Jacobian matrix can be interpreted di-
rectly as sample distances, we can take the largest of any of the
four values across the surface as the largest distance between any
two samples from the image. This value, k, is used as the conserva-
tive resolution scaling factor. We apply 1

k to the texture size values
to get the new texture resolution. To adjust the matrix scaling we
use:

MTex =





k 0 0
0 k 0
0 0 1



 (7)

Once k is determined, a source texture is extracted from the im-
age. Intuitively, we normalize the source texture such that all of the
elements in the texture have a Jacobian of 1 or ≤ 1. Therefore, the
lowest level of the pyramid is fully populated.

There is a side effect of using the conservative value, k, to bound
the Jacobian values over the surface. The resulting texture is gen-
erally only of sufficient resolution to capture the data from the im-
age at the point where the surface is most poorly sampled, but not
where it is most densely sampled, which implies that data is lost
when extracting the texture data from the image. This behavior is,
however, desirable when one considers that we will ultimately con-
struct a Laplacian pyramid from the source texture. If we selected
the minimum Jacobian value, and thus had a texture resolution high
enough to capture the most densely sampled regions of the object
surface, then there would be portions of (at least) the lowest level
of the pyramid that would not contain any data. This would cause
portions of the statistical model for the source texture to contain
incorrect (or incomplete) data and would cause the synthesis algo-
rithm to perform poorly.

4.4 Normalizing the target texture

The optimal parametrization of the source texture space is calcu-
lated using the scale factor, k, derived directly from the calculated
Jacobian values across the source surface. Now we wish to de-
termine how the target texture sampling rate relates to that of the
source texture. We do this for two related purposes - first to de-
termine how target texture data should be inserted into the target
pyramid, and second to extract a target texture of an appropriate
resolution.

For the target we apply the source scaling factor, k, to the target
texture resolution and use the source MTex. Calculating the values
of the Jacobian matrix across the target texture now yields a quan-
titative comparison of the sampling between the source and target
surfaces. Note that the target texture is defined as the more poorly
sampled texture, so the values of the target Jacobian will generally
be larger than those of the source (i.e., the samples are more spread
out).

7
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For example, if the Jacobian matrix for the target texture is con-
stant across the texture and is:

J(M−1
Pro j) =

[

2 0
0 2

]

(8)

then the sample distance in the target texture’s s and t directions
is twice that of the source. Thus the sample rate for the target is half
that of the source, as is the Nyquist frequency. In other words, the
target is missing the highest octave of frequency data present in the
source.

The above example together with the analysis of multiresolution
pyramids provided in section 4.1 suggests a straightforward way
to relate the target image pyramid to the maximum Jacobian value
over the target texture. Recall that the pyramids are bandpass, and
the Jacobian gives a measure of sampling rate, thus there is a direct
and meaningful physical interpretation of their relationship. Each
level of the pyramid contains an octave of data, thus a texel with the
largest entry in its Jacobian equal to r, can only possibly contribute
to data present at or above the log2(r) level of the pyramid.

Using the maximum of the calculated Jacobian values over the
target surface, the lowest level of the pyramid that can contain all
of the texture data is calculated. Note that this is a conservative
calculation, like the one used to determine the source texture scaling
- i.e. we want the lowest full level of the Laplacian pyramid, even
if it means that some higher frequency data is not represented. The
texture resolution and the target MTex are recalculated based on the
size of this level, and an appropriate texture is extracted from the
image data.

4.5 Creating the Laplacian pyramids

For the synthesis algorithm to compare similar frequency bands,
the height of the source and target pyramids must be equal. The
pyramid height is calculated by taking the lowest level of the target
pyramid with data, as determined above, and adding the number of
parent levels that the synthesis algorithm will consider. Creation of
the source pyramid then follows the standard algorithm for creating
a Laplacian pyramid.

To populate the target pyramid, we begin with an empty pyramid
with the same height as the source pyramid. Population of the tar-
get pyramid with data is performed as follows: The extracted target
texture is inserted directly into the pyramid at the appropriate level.
That level and all higher levels are then processed as per the stan-
dard Laplacian pyramid algorithm. Levels below the lowest valid
level are populated with histogram-equalized noise, matching the
histogram of the corresponding level of the source pyramid. This
process is shown in Figure 6 (b).

4.6 Synthesis

The actual synthesis is based on the algorithm by Wei and
Levoy[Wei and Levoy 2000]. We utilize a multi-pass sliding neigh-
borhood approach that minimizes the sum of the squared Euclidian
distance between the pixel values in the target neighborhood and
pixel values in the neighborhoods of the search space. RGB val-
ues for all pixels in the neighborhood are packed sequentially into
vectors of pixel values. (Pixel neighborhoods are used instead of
patches, but Freeman et al.[Freeman et al. 2002] demonstrate a sim-
ilar approach using patches.) The actual search uses a k-d tree to
accelerate matching of the pixel vectors.

We believe that this application of detail synthesis to image-
based model textures is unique. Wei and Levoy[Wei and Levoy
2000] and Freeman, et al.[Freeman et al. 2002] have demonstrated
the use of synthesis techniques as image editing tools, where the
synthesis was performed in image space. The quality metric and

pyramid creation technique presented in this paper allows the ap-
plication of these methods to textures on the surfaces of imaged
obects for the creation of interactive environments.

5 Preliminary Results

5.1 Image acquisition and modeling

All of the real-world examples were photographed with a Canon
EOS D30 digital camera. Images were acquired in RAW mode (12
bits per pixel) at 2160x1440 resolution, and were de-mosaiced and
converted to gamma-corrected 24-bit as well as linear 48-bit TIFs
using the Canon-provided software with no contrast or saturation
adjustment. The camera intrinsic parameters and distortion term
were calibrated with the Intel Camera Calibration Toolbox for Mat-
lab[Cal n. d.], and the opto-electronic conversion function was con-
firmed to be linear using HDRShop[HDR n. d.] and ISO14524[ISO
n. d.b]. Although the camera model can account for sensor ele-
ments that have non-orthogonal and differently sized x and y di-
mensions, our particular image sensor was verified to have square
sampling aperture and orthogonal sensel rows and columns. Geo-
metrically, the camera is modeled as a standard projective pinhole
camera, and includes radial and tangential distortion parameters.
As shown above, the Jacobian measure can account for image dis-
tortion; however, to accommodate our image-based modeling soft-
ware we undistorted the images prior to modeling.

The real-world scenes were modeled with com-
mercially available image-based modeling software
(RealVIZTMImageModelerTM), and exported to our system
using VRML. The camera extrinsic parameters were automatically
calculated by ImageModelerTMduring the modeling process and
exported with the VRML file.

The linear, 48-bit images were used for the actual detail synthe-
sis. These images were found to give superior quality when com-
pared to the gamma-corrected, 24-bit images.

5.2 Rendered bricks

The brick cubes shown in Figure 1 were rendered at 800-
by-600 using Discreet 3DSMaxTM, then modeled again using
ImageModelerTM. The front face of the front cube (column b) was
used as the source texture; the side of the middle cube (column c)
and the front of the back cube (column d) were the target textures.
After re-scaling MTex the maximum Jacobian value for the side face
was approximately 4.89, with a large range due to the angle of the
surface. The maximum Jacobian value for the back face was ap-
proximately 2.35, and was fairly constant across the surface.

Synthesis results are shown in the bottom row of Figure 1,
columns c and d. The synthesis algorithm used pyramids with 5
and 4 levels, for the middle and back faces, respectively. The algo-
rithm used 2 passes with 7x7 neighborhoods to generate the results
shown. Our technique was able to inject enough high frequency
data in a correct manner to noticeably sharpen the output textures.
Notice also that the algorithm preserves the low frequency informa-
tion (present in the color of the bricks) instead of writing over this
with data from the source texture.

5.3 Building columns

The input images for the results shown in Figure 7 were imaged
with the Canon D30 camera described above. The front-facing side
of the nearest column was used as the source. The corresponding
face of the fourth column was used as the target. After re-scaling
MTex the maximum Jacobian value for the target texture was ap-
proximately 3.1, with only a small range across the surface. The
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(a)

(b)

(c)

Figure 7: Results for columns along the face of a library. The front
facing side of the nearest column was the source (shown in green).
A portion of the target (the third column) is shown in red. (b) is
the original target texture. (c) is the resulting target texture after
synthesis.

synthesis algorithm used a pyramid with 4 levels, and used 4 passes
with 5x5 neighborhoods to generate the results shown.

As the results show, the synthesis correctly inserts higher fre-
quency data into the target texture. The overall brightness of the
target is preserved, even though the source texture is much brighter
than the target. Although the mortar lines between the stones are
not as clear as in the source, we believe that the result is promising,
given the difficulty of this type of surface for current texture syn-
thesis algorithms, and the strong differences in appearance between
the source and the target.

5.4 Pavement

The input images for these results were also imaged with the Canon
D30. The image shown in Figure 8 was used to resample the target
texture, which is shown outlined in red. A portion of the original
resampled texture is shown in b). After re-scaling MTex the max-
imum Jacobian value for the target texture was approximately 7.6,
with a large range across the surface. The synthesis algorithm used
a pyramid with 5 levels, and used 2 passes with 5x5 neighborhoods
to generate the results shown.

As the results show, the synthesis correctly inserts higher fre-
quency data into the target texture. For example, the sharp border
of the cement on the right is correctly synthesized by our algorithm.
Also, unique low frequency characteristics of the target, such as the
general lightness of the cement, are preserved. We would expect
texture synthesis algorithms to perform well on this type of surface,
which is supported by the quality of our results. However, without
our technique significant user intervention would be required to ac-
curately reproduce appearance characteristics unique to this imaged
environment, for example, the high frequency data on the borders.

6 Conclusions and Future Work

This paper has presented two important contributions to aid the cre-
ation of high-quality textured environments from imaged data. This
improved texture quality is important for interactive walkthroughs
where the user’s viewpoint can differ from the original sampled

a)

c)b)

Figure 8: Results for a paved pedestrian walkway. The image in
a) was used to resample the texture for the target pavement section
(outlined in red). A portion of the original texture for this pavement
section is shown in b). The results after synthesis are shown in c).

camera locations. First, it has shown how the Jacobian matrix of
the imaging transform can be used to determine sampling behav-
ior in a scene, and thus provides a simple, physically-based texture
quality metric. Second, it has shown how this texture quality metric
enables our novel technique for synthesizing high frequency detail
into degraded regions of image-based textures using standard tex-
ture synthesis techniques. In contrast to most previous techniques,
this synthesis occurs in texture space – on the surface of some ob-
ject in the environment – rather than in image space. This technique
provides a way to extract uniformly high quality textures of a model
from no more images than are required to model the geometry of
that model.

In the future, we will explore the use of alternate multi-resolution
image representations (e.g. wavelets) to better address the highly
anisotropic nature of the sampling in many scenes. We will also
explore approaches combining several images based on Jacobian
values, and synthesizing only detail missing in the merged result.
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