
BD-Tree: Output-Sensitive Collision Detection for Reduced Deformable Models

Doug L. James
Carnegie Mellon University

Dinesh K. Pai
Rutgers University

Figure 1: BD-Tree simulation of 3601 plastic chairs crashing to the groundwith (far right) contacts approximated by small red spheres.
Although the chairs flex and vibrate, collision processing was only twice as expensive as the rigid case.

Abstract

We introduce the Bounded Deformation Tree, or BD-Tree, which
can perform collision detection with reduced deformable models at
costs comparable to collision detection with rigid objects. Reduced
deformable models represent complex deformations as linear super-
positions of arbitrary displacement fields, and are used in a variety
of applications of interactive computer graphics. The BD-Tree is a
bounding sphere hierarchy for output-sensitive collision detection
with such models. Its bounding spheres can be updated after de-
formation in any order, and at a cost independent of the geometric
complexity of the model; in fact the cost can be as low as one mul-
tiplication and addition per tested sphere, and at most linear in the
number of reduced deformation coordinates. We show that the BD-
Tree is also extremely simple to implement, and performs well in
practice for a variety of real-time and complex off-line deformable
simulation examples.

CR Categories: I.3.5 [Computational Geometry and Object Mod-
eling]: Physically based modeling

Keywords: output-sensitive, deformable, collision, sphere trees

1 Introduction
Interactive animation of large deformable models has become vi-
able recently. A key reason is the realization that deformation can
be separated from geometry, and described parsimoniously inre-
duced deformation coordinates. These can be computed efficiently
with time complexitysublinearin the number of polygons. Another
significant benefit of this separation is that modern GPUs are well
suited for performing the unavoidable task of actually deforming
the geometry prior to rendering; the host CPU only has to compute
the reduced deformation coordinates and need not even have access
to the full deformed geometry.

There are many examples of this approach. Freeform [Faloutsos
et al. 1997] or multiresolution [Debunne et al. 2001] models use
a small set of dynamic coordinates to deform complex geometry.
Compressed animation sequences [Alexa and Müller 2000], can
represent a shape animation as a small set of geometric principal
component bases and a set of reduced animation coordinates; the

latter can even be streamed in real time. Many skinning techniques,
such as shape interpolation and Pose Space Deformation [Lewis
et al. 2000], are also instances of this approach; the complex ge-
ometry is represented by a small set of keyshapes and the reduced
deformation coordinates are functions of pose variables. Physically
based deformation techniques such as DyRT [James and Pai 2002]
represent the geometry as a static shape and a small set of mode
shapes; the reduced deformation coordinates are the modal exci-
tations. Many more examples exist, but in broad terms, the use
of principal components, spectral decompositions, and multireso-
lution methods can lead to representations of this type.

Unfortunately, efficient sublinear methods have not emerged for
collision detection (CD) with deformable objects; most deformable
CD algorithms still involve computing the deformed position of
each polygon to update a bounding volume hierarchy, with time
complexity at least linear in the size of the models. This is unfor-
tunate, because CD with a rigid bounding volume hierarchy can be
done efficiently, in an output-sensitive way, with sublinear costs for
typical situations without a large number of contacts (see Related
Work). Exploiting temporal coherence can improve performance,
but without assumptions about the deformation process the per-step
costs of these approaches are inherently linear.

A sublinear algorithm would imply that we perform CD with a
deformable model without explicitly computing its vertex positions.
This may seem like an algorithmic conundrum. Fortunately, we
show here that this is indeed possible for reduced deformation mod-
els based on the linear superposition of precomputed displacement
fields, using a bounding sphere hierarchy that we call aBounded
Deformation Tree, or BD-Tree. Note that linear superpositions
of displacement fields do not preclude modeling nonlinear defor-
mation phenomena, as indicated above. The BD-Tree provides a
foundation for a well balanced system for interactive deformable
models, in which deformation computation and collision detection
both have sublinear cost per step.

Our Contributions: We introduce the BD-Tree, which can per-
form output-sensitive collision detection for reduced deformable
models at similar costs to standard algorithms for rigid bodies. The
incremental cost, per tree node traversed, can be as low asonemul-
tiplication andoneaddition in the best case; in the worst case, it re-
quires only 8M additional floating point operations per node, where
M is the number of reduced deformation coordinates. This is typ-
ically a very small number, and independent of the size of the ge-
ometric model. Further, tree updates do not require access to de-
formed geometry, facilitating distributed processing with graphics
hardware. Experimental results show that the algorithm works well
in practice. The algorithm is also extremely easy to implement, and
requires only small changes to existing sphere tree software.

1.1 Related Work
Many important methods have been developed for collision detec-
tion with rigid models. We refer the reader to these recent sur-
veys: [Lin and Gottschalk 1998; Jimenez et al. 2001]. Sphere
trees are a canonical example of a bounding volume hierarchy used
for collision detection and proximity queries (e.g., [Quinlan 1994;
Hubbard 1995; Brown et al. 2001; Guibas et al. 2002; Bradshaw
and O’Sullivan 2004]). Collision detection with bounding vol-
ume hierarchies is output-sensitive and provides graceful degrada-
tion [Hubbard 1995; Dingliana and O’Sullivan 2000]. Hierarchy
construction can be based on either spatial proximity between fea-
tures within theundeformedmodel or on mesh topology, as well as
inter-surface proximity (as in [Bridson et al. 2002] for cloth, and
in [Warren and Weimer 2001] for subdivision hierarchies).

Many of these methods could be directly applied to deformable
objects. The major cost for hierarchical collision detection algo-
rithms is updating the hierarchy after every deformation, e.g., at
each time step, before queries are performed. As a result, much at-
tention has been drawn to hierarchies with easy to compute bounds
(e.g., [van den Bergen 1997; Ganovelli et al. 2000]). Alterna-
tively, intelligent methods for updating the bounding hierarchies
and exploiting temporal coherence have been explored [Guibas
et al. 2002; Brown et al. 2001; Larsson and Akenine-Möller 2001].
Larsson et al. [2003] propose a collision detection algorithm spe-
cialized for morphing that has features similar to ours (and is a
special case). Because we use a more general deformation model
(Eq. 1) our method can be applied in a more general setting (see sec-
ond paragraph of Sec. 1), and we derive significantly less expensive
bounds (Secs. 3.2 and 3.5).

Recently, hardware-accelerated collision detection methods have
received increased attention; see [Manocha et al. 2002] for a recent
overview. These general purpose methods are very useful, but tend
to produce coarser approximations, since they are limited by the
size of frame buffer memory, and not floating point precision. Note
that the entire model has to be rendered for collision detection in
these methods, and not just visible portions; a notable advantage
of our approach is that it only requires touching a potentially small
output-sensitive subset of model polygons.

2 Reduced Deformation Model
BD-Trees exploit spatially coherent motion that can be described
as a combination of (hopefully smooth) displacement fields. Math-
ematically, we assume a general shape model based on the linear
superposition of displacement basis functions that are known at
the time of BD-Tree construction. The BD-Tree then tracks aver-
age motions associated with these displacement fields, and locally
bounds their displacement deviations. As we will see, the fewer
and more spatially coherent the displacement fields are, the better
BD-Trees tend to perform.

Suppose we haveN undeformed point locations,p =
(p1, . . . ,pN)T . Without loss of generality, we will assume that the
deformed point locations,p′, are approximated by a linear super-
position ofM displacement fields, given by the columns ofU. The
amplitude of each displacement field is given by corresponding re-
duced coordinatesq, so that (see Figure 2)

p′ = p+Uq or p′i = pi +
M

∑
j=1

Ui j q j . (1)

Note that the reduced coordinatesq are determined by some other
possibly nonlinear black box process; therefore, although the shape
model is linear (1), the deformation process can be arbitrary. The
columns ofU represent displacement fields, or scaling functions,
that could arise from, e.g., an interpolation process, multiresolution
modeling, or modal analysis.

(a) (b) (c) (d)

Figure 2: Example deformation: (a) Reference shapep (b) Dis-
placement fieldU∗1 (c) FieldU∗2 (d) Deformed shapep′.

3 Bounded Deformation Trees
This section describes the construction, derivation, post-
deformation updating, and use of BD-Trees. Without loss of
generality, we consider sphere trees constructed on polygonal
models henceforth, and briefly discuss how these could be extended
to bounding boxes. Throughout, we will describe the bounding
sphere with radius,R, and center point,c (see Figure 5).

3.1 BD-Tree Construction: A Wrapped Hierarchy
BD-Tree construction involves first constructing a sphere tree on the
undeformed model, after which it can be updated following defor-
mation using the approach of§3.2. In the terminology of [Guibas
et al. 2002], this undeformed BD-Tree is awrapped hierarchy,
wherein spheres enclose (or wrap) associated geometry, and not
a layered hierarchyin which spheres merely enclose their child
spheres (see Figure 3). Layered hierarchies are important in pre-
vious work on updating using hierarchical linear-time sphere refit-
ting, e.g., see [Brown et al. 2001]. Unfortunately, layered bounds
can fit more loosely than wrapped ones [Guibas et al. 2002]. By
updating a wrapped hierarchy, BD-Trees can obtain tighter bounds
than the deformable layered case (see Figure 4).

Figure 3:The wrapped hierarchy(left) has smaller spheres than the
layered hierarchy (right). The base geometry is shown in green,
with five vertices. Notice that in a wrapped hierarchy the bounding
sphere of a node at one level need not contain the spheres of its de-
scendents and so can be significantly smaller. However, since each
sphere contains all the points in the base geometry, it is sufficient
for collision detection.

BD-Tree construction has two stages:

1. Build a hierarchy of the underlying geometry using any ef-
fective technique, e.g., [Quinlan 1994; Hubbard 1995; Brad-
shaw and O’Sullivan 2004]. In our examples, we use an ap-
proach similar to [Quinlan 1994] for binary sphere tree con-
struction, with a single leaf sphere bounding each triangle.
Note that even though this method and most others also com-
pute bounding spheres for each node in the hierarchy at the
same time, this is not necessary at this stage.

2. Build bounding spheres for tree nodes. A simple method,
used in our examples, is to start with the loose fitting bound-
ing sphere produced during hierarchy construction, with cen-
ter pointc. It contains a set of polygons with associated ver-
tex points{pi}i∈Λ whereΛ is a list of vertex indices. We
then reduce the radius of each sphere as much as possible to
tightly wrap the underlying polygons, leaving the centerc un-
changed. Specifically, the undeformed sphere’s radius,R, is

R≡ max
i∈Λ

‖pi − c‖2. (2)

Level 0 Level 2 Level 4 Level 6

Figure 4: Comparison of undeformed layered hierarchy (top) ver-
sus the wrapped BD-Tree (bottom).Throughout the paper, dark red
denotes at least 3 times greater sphere volume (or≥1.44× radius)
than the undeformed wrapped BD-Tree sphere, and dark blue im-
plies a negligible size increase.

Alternatively, one could just construct the smallest enclosing
sphere for the underlying geometry of each node using, for
instance, the efficient randomized algorithm of Welzl [1991].

3.2 Fast BD-Tree Updates
Given points{pi}i∈Λ associated with a node in a hierarchy, how
can we compute new bounding spheres as the object deforms? We
propose to compute each sphere’s updated center,c′, and an updated
conservative radius,R′, as functions of the reduced coordinates,q.
The update process is illustrated in Figure 5. A key point is that
this update can be performed independently for each sphere, and
also efficiently for many reduced models.

c c

c '

R '' R 'R

Figure 5:BD-Tree bounding sphere during deformationillustrating
the change in the centerc → c′ evaluated as a weighted average of
the points,pi → p′i , and the conservatively enlarged radiusR→ R′

that bounds the effect of each component of the reduced coordinate
q using the triangle inequality. The inexpensive boundR′′ of §3.5
is also shown.

3.2.1 Sphere Center Update (c → c′)

Following deformation, the undeformed sphere centerc is displaced
by a weighted average of the contained points’ displacementsu,
with weights{βi}i∈Λ. Specifically,c′, is given by

c′ = c+ ∑
i∈Λ

βiui = c+ ∑
i∈Λ

βi

(

M

∑
j=1

Ui j q j

)

(3)

= c+
M

∑
j=1

(

∑
i∈Λ

βiUi j

)

q j (4)

≡ c+
M

∑
j=1

Ū jq j = c+ Ūq ≡ c′ (5)

whereŪ j ∈ R
3 is a β -weighted average of thejth displacement

field, U∗ j , where∑i∈Λ βi = 1 andβi ∈ [0,1]∀i ∈ Λ. In our exam-
ples, we track the mean displacement usingβi =1/|Λ|. Note that
the center,c′, has linear dependence on the deformation parame-
ters,q, and that computing the center involves only 6M flops forM
displacement fields.

3.2.2 Sphere Radius Update (R→ R′)

Following deformation, the bounding sphere radius is conserva-
tively enlarged using the triangle inequality as follows:

max
i∈Λ

‖p′i − c′‖2 = max
i∈Λ

‖(pi − c)+
M

∑
j=1

(Ui j − Ū j)q j‖2 (6)

≤ max
i∈Λ

‖pi − c‖2 +
M

∑
j=1

(

max
i∈Λ

‖Ui j − Ū j‖2

)

|q j |

≡ R+
M

∑
j=1

∆Rj |q j | = R+∆RTqABS≡ R′ (7)

where∆Rj is the radius increment due to thejth displacement field.
Note that the radius,R′, has linear dependence on the absolute value
of the deformation parameters,qABS, and that computing the radius
involves only 2M flops forM displacement fields.

3.3 Tightness of Conservative Bounding Spheres
A key question regarding BD-Trees is how well the conservative
bound fits the deformed model. Certainly, the undeformed BD-
Tree’s wrapped hierarchy is much better than the usual layered hi-
erarchy used with deformable models. Fortunately, it can be shown
theoretically and in practice, that the conservative radius increase
∆RTqABSstill provides useful bounds. For example, Figure 6 shows
that the deformed BD-Tree needn’t be any worse than the hierarchi-
cally updated layered hierarchy even for large deformations.

To build intuition about why the conservative bound is effec-
tive, notice that for uniform translation of a sphere’s points by each
mode,Ui j = t j , the bounding radius is conveniently invariant (since
Ui j = Ū j∀i, j and so∆R= 0). This suggests that the BD-Tree will
have tighter spheres when the displacement fields are locally con-
stant (even if the displacements are large), and spheres may remain
tighter near the leaves of the tree.

More specifically, for Lipschitz continuous displacement fields,
we show in Appendix A that‖∆R‖2 is bounded by a constant times
the sphere’s undeformed radiusR; furthermore, the proportionality
constant in question is monotonically decreasing for child spheres.
Consequently, smaller spheres (alt. finer levels) should tend to have
proportionately smaller radius increases, and thus the deformed
BD-Tree will remain an effective bounding hierarchy. This trend is
clearly observed in numerical experiments, e.g., the‖∆R‖2 values
for the plastic chair (normalized per-level averages) exhibit quick
decay: 1.000, 0.684, 0.575, 0.399, 0.252, 0.167, 0.110, 0.080,
0.057, 0.041, 0.030, 0.022, 0.017, 0.016, 0.015, 0.013, 0.007,
0.004, 0.003.

3.4 Summary of BD-Tree Method
To summarize, with the BD-Trees, collision detection and proxim-
ity queries with deformable objects are performed as in standard
sphere tree methods for rigid objects, with traversals proceeding
from coarse to fine sphere nodes. The only differences are:

Precomputation: Build a sphere tree on the undeformed
model, and tighten spheres to wrap underlying geometry. At each
node in the hierarchy, in addition to the undeformed sphere center
c and wrapped radiusR, compute and store the matricesŪ and∆R
(4M additional numbers per node).

Geometry (undeformed) Geometry (deformed)

BD-Tree (undeformed) BD-Tree (deformed)

Layered (undeformed) Layered (deformed)

Figure 6: BD-Tree for large deformations:The BD-Tree and
layered hierarchies are illustrated for the bridge model using 64
spheres on tree level 6. (Left) The undeformed bridge shows rel-
atively larger spheres in the layered hierarchy versus the BD-Tree,
with mean radius ratio of 1.31, and maximum of 1.77; (Right) A
large deformation of the the nonlinear FEM model shows a layered
hierarchy with similar tightness while the BD-Tree has a conser-
vative fit. However, note that the colors indicate the conservative
BD-Tree is still comparable in tightness to the layered hierarchy
(cf. colors in Figure 4); in fact, both the mean and maximum ra-
dius ratios of the layered model (mean=1.31, max=1.79) arelarger
than for the BD-Tree (mean=1.25, max=1.56). Nevertheless, the
BD-Tree has the largest (most conservative) sphere. Similar trends
occur on other levels.

Run time updates: The first time a node is visited during tree
traversal per time-step, update the centerc′ = c+ Ūq and the radius
R′ = R+ ∆RTqABS. Use the updated sphere(c′,R′) for all subse-
quent collision checks at that time-step.

Traversal: A key point is that the bounding spheres can be up-
dated in any order, and the update costs are independent of the num-
ber of points in the bounding sphere. In particular, the bounding
sphere for a coarse node can be updated before its descendents are,
and this can be done in a lazy manner, just prior to testing sphere
overlap. Therefore, the asymptotic complexity of collision detec-
tion for reduced deformable objects is similar to the rigid case. The
cost of each sphere-sphere overlap test is increased by the amor-
tized update cost of 8M flops per deformed sphere.

BD-Trees are not optimized for time-critical collision response
in the sense of [Hubbard 1995] since the hierarchy is not layered.
Nevertheless, we can reduce collision processing costs by using
bounded-depth traversals. During precomputation, we designate
BD-Tree spheres on some suitably fine levelL as contact proxies.
Coarser tree nodes are then enlarged slightly to wrap their descen-
dent contact spheres. Although the contact spheres also grow con-

servatively, for smooth displacement fields they stay wrapped with-
out special precautions, since child spheres tend to enlarge more
slowly than their parent spheres (as discussed in§3.3).

3.5 BD-Tree Extensions
Exploiting Temporal Coherence: Although the aforemen-
tioned 8M flop (center and radius) update is fast enough for our ex-
amples, we can find effective boundsmuchfaster for small changes
in q, sayq′′ = q+ δq, after obtaining(c′,R′) as above. We leave
the center of the bounding volume atc′, and use a simpleO(1)
per-sphere approximation to find the enlarged radiusR′′ as follows:

max
i∈Λ

‖p′′i − c′‖2 = max
i∈Λ

‖(pi +∑
j

Ui j q
′′
j)− (c+∑

j
Ū jq j)‖2 (8)

= max
i∈Λ

‖(pi − c)+∑
j
(Ui j − Ū j)q j +∑

j
Ui j δq j‖2 (9)

≤ R′ +max
i∈Λ

‖∑
j
Ui j δq j‖2 ≤ R′ +(max

i∈Λ
‖Ui:‖2)‖δq‖2 (10)

= R′ +δR‖δq‖2 ≡ R′′ (11)

where in (10) we used the submultiplicative property of the matrix
norm,‖Ui:q‖2 ≤ ‖Ui:‖2‖q‖2. By precomputingδR= maxi ‖Ui:‖2,
where Ui: ∈ R

3×M , for each bounding volume, and evaluating
‖δq‖2 once at runtime,the amortized radius correction cost for
each traversed sphere is a single flop!Clearly, this is the lowest
cost possible for any update that depends on the input.

Updating Bounding Boxes: The same principles of bounded
deformation can also be used to augment bounding box hierar-
chies [Gottschalk et al. 1996; van den Bergen 1997; Larsson and
Akenine-Möller 2001]. Similar to sphere BD-Trees, the tree is con-
structed on the undeformed model (using any suitable technique),
and each bounding box retains the same center (or origin)c and
associated set of points specified by the index listΛ; the bounds
are then tightened (if possible) to closely wrap underlying poly-
gons. Post-deformation updating is similar to the sphere case. The
update formula for the deformed center,c′, is unchanged from (5)
used earlier, so that each bound tracks some average point motion
as before. For axis-aligned bounding boxes, the conservative radius
bounds update of (7) is simply replaced by aper-axis boundby re-
placing the 3-vector Euclidean norm,‖ ·‖2 by the absolute value of
the x (or y or z) component,| · |x ≡ |(·)x| throughout (6–7). Since
three axis updates are required, box updates require 12M flops total,
as opposed to 8M flops for spheres. It is possible to derive updates
for oriented bounding boxes [Gottschalk et al. 1996] by considering
per-axis bounds in rotated coordinates, e.g.,| · |x → | · |x̃. Although
the conservative BD-Tree bound update and fixed orientation may
offset the benefit of oriented bounds, they could be useful in (close
proximity) situations where the object is only mildly deformed.

4 Results
Despite the approximate bounds used by the BD-Tree, it performs
well in practice. We illustrate this behavior using three examples
shown here and in our accompanying video; geometric statistics
are given in Table 1. All code is implemented in Java, and timed on
a 3.0 GHz Intel Xeon with Sun’s 1.4.2 Windows client JVM.

Model #Vertices #Faces M #Spheres #Levels
Chair 9421 17914 10 35827 19
Bridge 135304 240316 10 480631 26
Fish 12531 24776 3 49551 18

Curtain 6184 12020 12 24039 17

Table 1:Geometric statisticsfor our models.

To study performance on large deformations in
a controlled setting, we use an instrumented ex-
ample of a ball thrown at a compressed geometry
animation [Alexa and M̈uller 2000] of a cloth cur-
tain blowing in the wind. The animation has 110
frames (30 FPS; see accompanying video). We
compare BD-Tree performance to hierarchically
updated layered sphere trees (see Table 2).
Although more sphere overlap tests (#Tests) result from conserva-
tive BD-Tree spheres (<R′/R>=1.51), thetotal collision detection
cost(Total Time) is orders of magnitude smaller than the layered hi-
erarchical update approach. Also note that the exact speedup will
depend on mesh complexity, and higher (lower) polygon counts will
tend to produce greater (smaller) speedups.

Method #Tests Total Time <Frame Time>
BD-Tree 3890 2.4 ms 0.022 ms
Layered 2150 5400 ms 49 ms

Table 2:Performance statisticsfor curtain-ball example.

Our deformable multibody dynamics examples involve numer-
ous falling plastic chairs, and fish falling on a bridge superstruc-
ture. These examples exhibit qualitatively similar performance be-
haviors. Each bridge and chair BD-Tree sphere (M = 10) can be
updated in approximately 0.75 microseconds. All deformations are
computed using NVIDIA Quadro FX 3000 vertex shader hardware
(similar to [James and Pai 2002]), and collision detection and re-
sponse is performed on the CPU.

In the bridge example, we per-
form offline computation of col-
lisions between about 12000 lin-
ear modal fish models, and a com-
pressed animation of a nonlinear
FEM simulation of a large swaying
bridge. To avoid the bottleneck of
deforming/rendering 300 million
fish triangles, we performview frustum culling using the root
sphere of each BD-Tree; off-screen collisions are still resolved in
an output-sensitive manner. Root spheres are also used to update a
uniform subdivision at each time-step to address any broad phase
collision bottleneck [Lin and Gottschalk 1998]. To reduce fish
collision processing costs, we use bounded-depth (level 7) traver-
sals (see§3.4) to exploit BD-Tree output-sensitivity (see Figure 7).
Forces are computed using a simple Kelvin-Voigt penalty law. For
improved visual quality, the bridge’s (skinny) leaf-sphere triangles
are reconstructed for contact geometry; this triangle-phase collision
response (and rendering) dominate simulation costs.

Figure 7:Output-sensitive deformable collision processing:(Left)
simulation of 12 chairs crashing to the ground; (Right) updated
spheres illustrating the extent of sphere tree traversal. Only a small
fraction of BD-Tree spheres are updated at any time step. The tree
traversal depth can be bounded to lower collision processing costs
(shown for maximum depth of 8).

Our final example involves 3601 deformable plastic chairs crash-
ing to the ground (see Figure 1), and serves to illustrate perfor-
mance of the algorithm for multiple contacts. Each chair is ap-
proximated as a linear modal vibration model (with strain limit-
ing), and collisions are resolved at tree level 10. The simulation has

5000 frames (30 FPS), with 5 time-steps used per-frame (25000
time-steps) to resolve high-energy collisions. The mean collision
processing cost per time-step is 2.1 seconds, whereas the mean
hardware rendering cost (with view frustum culling) is 2.0 sec-
onds per frame, for a total cost of 14.7 hours for simulation and 2.8
hours for rendering. During the animation 1.6 billion sphere colli-
sion events were processed, or approximately 30000 collisions per
second of computation. We compared this result to a simulation
with rigid chairs (q = 0), and observed comparable performance:
mean time-step cost was 1.1 seconds, for total simulation cost of
7.5 hours (or 10.9 hours if BD sphere updates were redundantly
performed), 1.1 billion collision events, for a mean collision pro-
cessing rate of 41000 collisions per second of computation. The
deformable contact phenomena are clearly more intensive, having
approximately half a billion more collisions. Nevertheless,the total
processing cost of the massive deformable plastic chair simulation
is only twice that of the rigid case.Finally, we did not compare
our method to the layered hierarchy; however, the chair’s hierarchi-
cal layered update takes 55 ms, and suggests thatabout 2 months
would be required for updates alone–far exceeding the 14.7 hours
required for the entire BD-Tree simulation.

5 Summary and Discussion
We have introduced Bounded Deformation Trees (BD-Trees), and
shown that this precomputed collision hierarchy makes it possible
to efficiently bound deformations of reduced deformable models.
BD-Trees provide effective output-sensitive collision detection that
can be much faster than hierarchical updating.

There are several limitations of the approach. First, the simple
conservative radius bound means that the radiusalwaysincreases
under deformation (cf. [Larsson and Akenine-Möller 2003]), even
when the geometry actually shrinks in size, e.g., if an object shrinks
to a point, the radius can double. Another point is that the approach
is primarily useful forreduceddeformable models (M � N), and
deformations well-approximated by the reducedUq displacement
model. Using BD-Trees with unreduced models, e.g.,U = I , will
lead to far too conservative bounds. Some (dense) displacement
models can have high-rank (highM) (e.g., [James and Pai 1999] has
M = O(N) in general) and this can lead to computational and mem-
ory overhead. For large enoughM, there are diminishing returns
and updating a layered hierarchy becomes relatively less costly.
Finally, the BD-Tree’s output-sensitive speedups only help when
the query’s “output” is small; in the worst case, all or most of the
spheres may be queried, e.g., during ray-tracing, and therefore tra-
ditional brute-force post-deformation updating methods would have
similar effectiveness.

We believe that BD-Trees are a fruitful starting point for future
work on deformable collision detection. BD-Trees are but one ex-
ample of intelligent independently-updateable deformation bounds
for output-sensitive collision processing. In addition to augment-
ing other types of bounds, e.g., bounding boxes, bound types could
be mixed, and various top-down/bottom-up updating strategies ex-
plored. Tree construction methods could be optimized for deformed
BD-Tree tightness. Optimized collision codes often exploit tempo-
ral coherence in narrow-phase queries, e.g., using generalized front
tracking on bounding volume test trees [Lin and Gottschalk 1998],
and this could be explored for BD-Trees. Finally, BD-Trees pro-
vide a unique opportunity to explore continuous collision detection
strategies for deformable models.

A ∆R for Smooth Displacement Fields
In this appendix, we show that in the important case of smooth dis-
placement fields, the magnitude of the radius growth factors∆R in
the sphere tree can be bounded by a function that decreases withR,
and thus maintains a useful bounding hierarchy under deformation.

Consider the important case whereUi j , i ∈ Λ is Lipschitz contin-
uous on the point set{pi}i∈Λ, so that

‖Ui j −Uk j‖2 ≤ LΛ
j ‖pi −pk‖2, i,k∈ Λ,

whereLΛ
j is the Lipschitz constant1, such that for smoother dis-

placement fields one expects smallerLΛ
j values.

From the definition of∆Rj (with β representing an affine com-
bination) we obtain the bound

∆Rj = max
i∈Λ

‖Ui j − Ū j‖2 = max
i∈Λ

‖Ui j − ∑
k∈Λ

βkUk j‖2 (12)

≤ max
i,k∈Λ

‖Ui j −Uk j‖2 = ‖UI j −UK j‖2 (13)

whereI andK yield the maximum. Note that, in general, the growth
factor‖UI j −UK j‖2 can be larger thanδR. Applying the definition
of Lipschitz continuity,

∆Rj ≤ ‖UI j −UK j‖2 ≤ LΛ
j ‖pI −pK‖2 (14)

and since points in the undeformed sphere are closer than its diam-
eter, 2R, we obtain

∆Rj ≤ 2LΛ
j R . (15)

Note also that the Lipschitz constantLΛ
j is never larger than its par-

ent sphere’s constantLΛ′

j , sinceΛ ⊂ Λ′ implies thatLΛ ≤ LΛ′ . Con-
sequently, ‖∆R‖2 is bounded by a constant times the radius Rof
the undeformed sphere, and the constant is monotonically de-
creasing for child spheres.

Acknowledgements: A special thanks to the anonymous re-
viewers; Chris Twigg for video production; modeling assistance
from Chris, Jernej Barbic, and Robert Y. Wang; and NVIDIA for
graphics hardware. Supported in part by NSF grants CAREER-
0430528, IIS-0308157, EIA-0215887, and ITR-0205671.

References

ALEXA , M., AND M ÜLLER, W. 2000. Representing Anima-
tions by Principal Components.Computer Graphics Forum 19,
3 (Aug.), 411–418.

BRADSHAW, G., AND O’SULLIVAN , C. 2004. Adaptive Medial-
Axis Approximation for Sphere-Tree Construction.ACM Trans-
actions on Graphics 23, 1, 1–26.

BRIDSON, R., FEDKIW, R. P.,AND ANDERSON, J. 2002. Robust
Treatment of Collisions, Contact, and Friction for Cloth Anima-
tion. ACM Transactions on Graphics 21, 3 (July), 594–603.

BROWN, J., SORKIN, S., BRUYNS, C., LATOMBE, J., MONT-
GOMERY, K., AND STEPHANIDES, M. 2001. Real-Time Sim-
ulation of Deformable Objects: Tools and Application. InPro-
ceedings of Computer Animation 2001.

DEBUNNE, G., DESBRUN, M., CANI , M.-P., AND BARR, A. H.
2001. Dynamic Real-Time Deformations Using Space & Time
Adaptive Sampling. InProc. of ACM SIGGRAPH 2001, 31–36.

DINGLIANA , J., AND O’SULLIVAN , C. 2000. Graceful Degrada-
tion of Collision Handling in Physically Based Animation.Com-
puter Graphics Forum 19, 3 (Aug.), 239–248.

1For finite point sets,LΛ
j can be taken as maxik∈Λ, i 6=k

‖Ui j −Uk j‖2
‖pi−pk‖2

.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
1997. Dynamic Free-Form Deformations for Animation Synthe-
sis. IEEE Trans. on Vis. and Comp. Graph. 3, 3, 201–214.

GANOVELLI , F., DINGLIANA , J., AND O’SULLIVAN , C.
2000. BucketTree: Improving collision detection between de-
formable objects. InSpring Conference in Computer Graphics
(SCCG2000), 156–163.

GOTTSCHALK, S., LIN , M. C., AND MANOCHA, D. 1996. OBB-
Tree: A Hierarchical Structure for Rapid Interference Detection.
In Proceedings of ACM SIGGRAPH 96, 171–180.

GUIBAS, L., NGUYEN, A., RUSSEL, D., AND ZHANG, L. 2002.
Collision Detection for Deforming Necklaces. InProceedings of
the Eighteenth Annual Symposium on Computational Geometry,
ACM Press, 33–42.

HUBBARD, P. M. 1995. Collision Detection for Interactive Graph-
ics Applications.IEEE Transactions on Visualization and Com-
puter Graphics 1, 3, 218–230.

JAMES, D. L., AND PAI , D. K. 1999. ARTDEFO: Accurate Real
Time Deformable Objects. InProceedings of ACM SIGGRAPH
99, Computer Graphics Proceedings, 65–72.

JAMES, D. L., AND PAI , D. K. 2002. DyRT: Dynamic Response
Textures for Real Time Deformation Simulation With Graphics
Hardware.ACM Transactions on Graphics 21, 3, 582–585.

JIMENEZ, P., THOMAS, F., AND TORRAS, C. 2001. 3D Collision
Detection: A Survey. Computers and Graphics 25, 2 (Apr.),
269–285.

LARSSON, T., AND AKENINE-M ÖLLER, T. 2001. Collision De-
tection for Continuously Deforming Bodies. InEurographics
2001, A. Chalmers and T.-M. Rhyne, Eds., Eurographics, 325–
333.

LARSSON, T., AND AKENINE-M ÖLLER, T. 2003. Efficient col-
lision detection for models deformed by morphing.The Visual
Computer 19, 2, 164–174.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose Space
Deformations: A Unified Approach to Shape Interpolation and
Skeleton-Driven Deformation. InProceedings of ACM SIG-
GRAPH 2000, 165–172.

L IN , M. C., AND GOTTSCHALK, S. 1998. Collision detection be-
tween geometric models: A survey. InProc. of IMA Conference
on Mathematics of Surfaces, 37–56.

MANOCHA, D., LIN , M. C., DOGGETT, M., GREENE, N., HOFF,
K., K ILGARD , M., AND KRISHNAN, S. 2002. Interactive Geo-
metric Computations Using Graphics Hardware. InSIGGRAPH
2002 Course Notes, ACM SIGGRAPH.

QUINLAN , S. 1994. Efficient Distance Computation between Non-
Convex Objects. InIEEE Intern. Conf. on Robotics and Automa-
tion, IEEE, 3324–3329.

VAN DEN BERGEN, G. 1997. Efficient Collision Detection of Com-
plex Deformable Models using AABB Trees.Journal of Graph-
ics Tools 2, 4, 1–14.

WARREN, J., AND WEIMER, H. 2001. Subdivision Methods for
Geometric Design: A Constructive Approach, first ed. Morgan
Kaufmann Publishers, October.

WELZL , E. 1991. Smallest enclosing disks (balls and ellipsoids).
In New Results and New Trends in Comp. Sci., H. Maurer, Ed.,
vol. 555 ofLecture Notes Comp. Sci.Springer-Verlag, 359–370.

