
Single Scattering in
Refractive Media with

Triangle Mesh Boundaries

1

Bruce Walter
Shuang Zhao
Nicolas Holzschuch
Kavita Bala

Cornell Univ.
Cornell Univ.
Grenoble Univ.
Cornell Univ.

Presented at SIGGRAPH 2009

Single Scattering
• Direct illumination in refractive objects is hard

2

Single scatter from a single point light source

• Direct illumination in refractive objects is hard

Single Scattering

3

Single scatter from a single point light source

• Direct illumination in refractive objects is hard

Single Scattering

4

Single scatter from a single point light source

Eye ray

Problem

5

• Find direct illumination at V (receiver) from L (light)

L

VEye ray

Problem

6

• Find direct illumination at V (receiver) from L (light)

Ignoring refraction

P

L

VEye ray

Problem

7

• Find direct illumination at V (receiver) from L (light)
• Light bends at interface according to Snell’s Law

P

L

VEye ray

Challenges: Bending of Path

8

Ignoring refraction With refraction

L

V

P1

Eye ray

• Find direct illumination at V (receiver) from L (light)
• Light bends at interface according to Snell’s Law

–Can have zero, one, or many such paths (and P’s)

P

L

VEye ray

Challenges: Multiple Paths

9

Ignoring refraction With refraction

L

V

P1

P2

Eye ray

Is it important?
• Glass tile quality comparison

10

Our methodShadow rays ignore refraction

Challenges Summary
• Bending of paths
• Multiple paths
• Shading normals
• Large triangle meshes

11

• Geometric normals (NG) vs. shading normals (NS)
–E.g., interpolated normals, bump maps, normal maps
–Alters directions and intensities of light paths

Challenges: Shading Normals

12

Shading normals

NG

NG

Geometric normals

NS

NS

NS

• Geometric normals (NG) vs. shading normals (NS)
–E.g., interpolated normals, bump maps, normal maps
–Alters directions and intensities of light paths

Challenges: Shading Normals

13

Shading normals

NG

NG

Geometric normals

NS

NS

NS

Limitations
• Finds connections that

–Cross the boundary exactly once
–Have no other changes in direction
–Cost depends on path count and boundary

14

L

V

No

L

V

No

L

V

Yes

Prior Work
• Diffusion and multiple scatter

–[eg, Stam 95, Jensen et al. 01, Wang et al. 08]

• Monte Carlo
–[eg, Kajiya 86, Veach 97]

• Beam tracing
–[eg, Nishita & Nakamae 94, Iwasaki et al. 03, Ernst et al. 05]

• Photon mapping
–[eg, Jensen 01, Sun et al. 08, Jarosz et al. 08]

• Fermat’s principle
–[eg, Mitchell & Hanrahan 92, Chen & Arvo 00]

15

Prior Work
• Mitchell & Hanrahan 92

–Used Fermat’s principle and Newton’s method
–Reflection (shown) and refraction

• Limitations
–Only supported implicit surfaces
–Cannot handle shading normals
–Expensive 3D search
–Not scalable to complex geometry

16

Mitchell & Hanrahan 92

Contributions
• Support triangles with shading normals

–Most widely used geometry format
–Required fundamental problem reformulation
–New search methods and intensity equations

• Hierarchical culling
–Scales to complex objects with many triangles

• CPU and GPU implementations
–Interactive performance on some scenes

17

Outline
• Half-vector formulation
• Solving for a single triangle
• Hierarchical culling for meshes
• Results

18

• Define optical path length
–d(P) = η ||V-P|| + ||P-L||
–Extrema of d(P) are the refraction points

• Cannot handle shading normals

Fermat’s Principle

19
Index of refraction = η

L

V

P

• Used in micro-facet model [Walter et al. 07]

• Direction to receiver: ωV = (V - P) / || V - P ||
• Direction to light: ωL = (L - P) / || L - P ||

Half-Vector Formulation

20

L

V

P
ωL

ωV

• Used in micro-facet model [Walter et al. 07]

• Direction to receiver: ωV = (V - P) / || V - P ||
• Direction to light: ωL = (L - P) / || L - P ||

• Half-vector: H = (η ωV + ωL) / || η ωV + ωL ||

Half-Vector Formulation

21

L

V

P
ωL

ωV

ωL

η ωV
H

H

• If H = -N (surface normal) then
–V, P, L, and N are coplanar
–Angles obey Snell’s Law: η sin(θV) = sin(θL)

• It is a refraction solution
–Assuming V and L lie on the correct sides of the normal

Half-Vector Formulation

22

L

V

P

H

N

• Find all P such that: H + N = 0
–Natural extension to shading normals: H + Ns = 0

• Newton’s method to find zeroes of: f(P) = H + N

Half-Vector Formulation

23

L

V

P

H

N

• Quadratically convergent near a root
–Each iteration doubles the precision

• Chaotic behavior far from a root
–May diverge or converge to other roots

Newton’s Method Review

24

x0

x1

x2

f(x)

0

Outline
• Half-vector formulation
• Solving for a single triangle

–Geometric normal - 1D Newton
–Shading normals - 2D Newton
–Subdivision oracles

• Hierarchical culling for meshes
• Results

25

• Solution must lie in plane containing V, L, and NG

–Unique solution always exists
–Simple 1D Newton’s method converges

• Typically in just 2 to 4 iterations

–Check if solution lies within the triangle

Triangle Without Shading Normals

L

V
H

26

P
NG

• Solution must lie in plane containing V, L, and NG

–Unique solution always exists
–Simple 1D Newton’s method converges

• Typically in just 2 to 4 iterations

–Check if solution lies within the triangle

Triangle Without Shading Normals

L

V
H

27

P
NG

Triangle with Shading Normal
• Shading normal, NS, varies over triangle

–Full 2D search over triangle’s area

• Function f(P) = H + NS maps 2D to 3D
–Derivative is 2X3 Jacobian matrix is non-invertible
–Use pseudoinverse for Newton’s method:

Triangle with Shading Normal
• Need good starting points
• May have zero, one, or multiple solutions

–Subdivide triangle as needed to isolate solutions

29

Two Triangle Subdivision Oracles
• Test with strong guarantees

–Based on [Krawczyk 69], [Mitchell&Hanrahan 92]
–Conditions guarantee uniqueness and convergence

• Fast empirical heuristic
–Based on solid angles of triangle and normals

30

Triangle summary
• For each triangle:

–If no shading normals
• Solve for P with 1D Newton

–Else if passes the subdivision oracle
• Solve for P with 2D Newton

–Else
• Subdivide into 4 triangles and try again

–Test if P lies within the triangle

31

Outline
• Half-vector formulation
• Solving for a single triangle
• Hierarchical culling for meshes
• Results

32

• Most triangles contain no solutions for P
• Three quick culling tests

–Spindle
–Sidedness
–Interval

Culling Tests

33

• Refraction bends path by angle ≤ arccos(1/η)
–Solutions must lie within circular arc (2d) or spindle (3d)

Spindle Culling Test

34

L

V

arccos(1/
η)

P

• Refraction bends path by angle ≤ arccos(1/η)
–Solutions must lie within circular arc (2d) or spindle (3d)

Spindle Culling Test

35

L

V

arccos(1/
η)

P

• Refraction bends path by angle ≤ arccos(1/η)
–Solutions must lie within circular arc (2d) or spindle (3d)

Spindle Culling Test

36

L

V

arccos(1/
η)

P

• Light L must be on the outside of surface at P
• Receiver V must be inside within the critical angle

Sidedness Culling Test

37

N

L

V

arccos(1/η)

• Apply culling test to groups of triangles
• Use 6D position-normal tree [Bala et al. 03]

–Leaves are boundary triangles
–Boxes and cones bound positions and normals
–Traverse top-down

Hierarchical Culling for Meshes

38Position-normal tree

Algorithm Summary
• Build position-normal tree for each boundary mesh
• For each eye ray

–Trace until hits surface or volume-scatters at V
–Select a light source point, L
–Traverse tree to solve for all P on boundary
–For each solution point P

• Check for occlusion along path
• Compute effective light distance
• Add contribution to pixel value

39

L

V

P1

P2

Eye ray

Effective Distance to Source
• Refraction alters usual 1 / r2 intensity falloff

–Can focus or defocus the light

• Compute effective light distance for each path
–Simple formula for triangles without shading normal
–Use ray differentials [Igehy 99] for shading normal case
–See paper for details

40

Outline
• Half-vector formulation
• Solving for a single triangle
• Hierarchical culling for meshes
• Results

41

Results - CPU
• Three scenes without shading normals

42

Teapot AmberCuboctahedron

Results - CPU
• Three scenes without shading normals

43
512x512 images, 64 samples per pixel, 8-core 2.83GHz Intel Core2

Teapot
15.3s

Amber
19.2s

Cuboctahedron
13.9s

Results - Teapot
• Teapot quality comparison

44
Our method (15.4s)Shadow rays ignore refraction

Results - Teapot
• Teapot quality comparison

45
Shadow rays ignore refraction Our method (15.4s)

Results - Cuboctahedron
• Cuboctahedron

movie (13.9s)

46

Results - GPU
• Implemented on GPU using CUDA 2.0

–1D, 2D Newton iteration
–Hierarchical pruning
–Ray tracing based on [Popov et al. 2007]
–One kernel thread per eye ray
–Does not yet support all scenes

47

Results - GPU

48

Name
Render
Time

FPS

Teapot 0.1 s 10 fps
Cuboctahedron 0.14 s 7 fps

Amber 0.3 s 3 fps

512x512 images, 2 eye rays per pixel + 40-60 volume samples,
nVIDIA GTX 280, CUDA 2.0

Results - GPU
• Teapot example

–10 fps on GPU

49

Results - CPU
• Three scenes with shading normals

50

Glass tile PoolGlass mosaic

Results - CPU
• Three scenes with shading normals

51
512x512 images, 64 samples per pixel, 8-core 2.83GHz Intel Core2

Glass tile
66.9s

Pool
59.4s

Glass mosaic
87.8s

Results - Glass Tile

52
Our method (66.9s)Photon map (equal time)

Results - Glass Mosaic
• Glass mosaic

movie (87.8s)

53

Results - Component Evaluation
• Evaluation of algorithm components

–Pool (2632 triangles in boundary)

54

Time Ratio

Without
Hierarchy 1934.6s 32x

Guaranteed
Convergence 141.1s 2.4x

Subdivision
Heuristic 59.4s 1x

Results - Bumpy sphere
• Bumpy sphere (9680 triangles)

–Volume sampling noise
• Used 128 samples per pixel
• Effective distance clamping

55
Our method 304.3 s

In
te

ns
ity

Ray depth

Results - Bumpy sphere
• Bumpy sphere (9680 triangles)

56
Our methodShadow rays ignore refraction

Results - Bumpy sphere
• Bumpy sphere (9680 triangles)

57
Our methodPath tracing(16x time)

Results - Bumpy sphere
• Bumpy sphere (9680 triangles)

58
Our methodPhoton map 10M (equal time)

Conclusion
• New method for single scatter in refractive media

–Applicable to many rendering algorithms
–New half-vector formulation
–Efficient culling and search methods
–Supports shading normals and large triangle meshes
–Interactive performance for some scenes

• Future work
–Better culling
–Reflections and low-order scattering
–Multiple interfaces

59

Acknowledgements
• Sponsors

–NSF
• Career 0644175, CPA 0811680, CNS 0615240, CNS 0403340

–Intel
–NVidia
–Microsoft
–INRIA sabbatical program

• PCG Graphics Lab and Elizabeth Popolo

60

The End

61

Results - CPU timings

62

Name
Render
Time

TrianglesTriangles Shading
Normals

Name
Render
Time Surface Other

Shading
Normals

Teapot 15.3 s 12 4096 No
Cuboctahedron 13.9 s 20 0 No

Amber 19.2 s 36 60556 No
Glass tile 66.9 s 798 60 Yes

Glass mosaic 87.8 s 20813 1450 Yes
Pool 59.4 s 2632 4324 Yes

Bumpy Sphere 304.3 s 9680 0 Yes

512x512 images, 64 samples per pixel (128 for bumpy sphere),
8-core 2.83GHz Intel Core2 CPU

• Iterative root finding method
–Start with initial guess x0
–Iteration: xi+1 = xi - f(xi) / f’(xi)

x0

Newton’s Method

63

f(x)

0

• Iterative root finding method
–Start with initial guess x0
–xi+1 = xi - f(xi) / f’(xi)

x0

Newton’s Method

64

x1

f(x)

0

• Iterative root finding method
–Start with initial guess x0
–xi+1 = xi - f(xi) / f’(xi)

x0

Newton’s Method

65

x1

x2

f(x)

0

