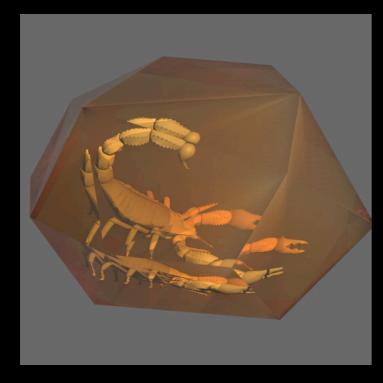
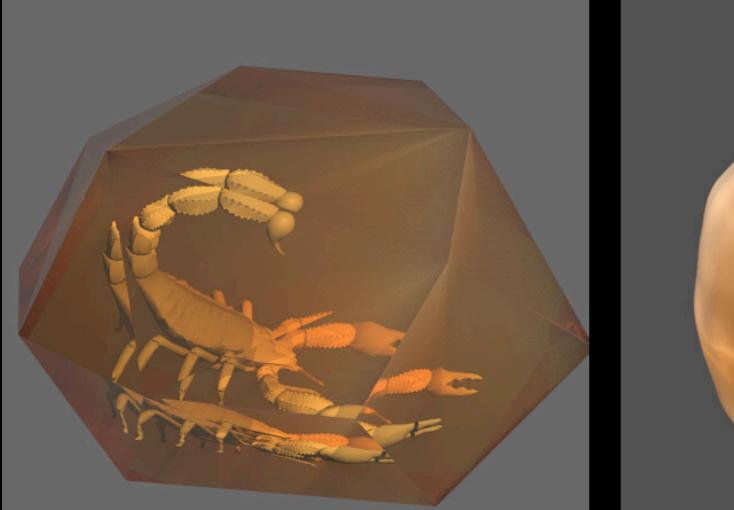
Single Scattering in Refractive Media with Triangle Mesh Boundaries



Bruce WalterCornell Univ.Shuang ZhaoCornell Univ.Nicolas HolzschuchGrenoble Univ.Kavita BalaCornell Univ.

Single Scattering

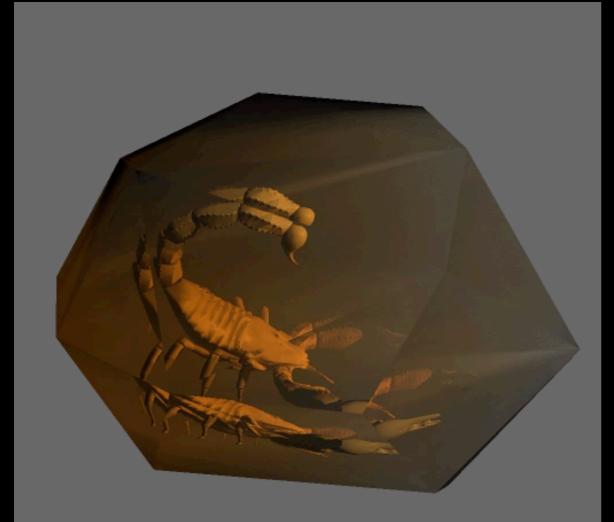
Direct illumination in refractive objects is hard



Single scatter from a single point light source

Single Scattering

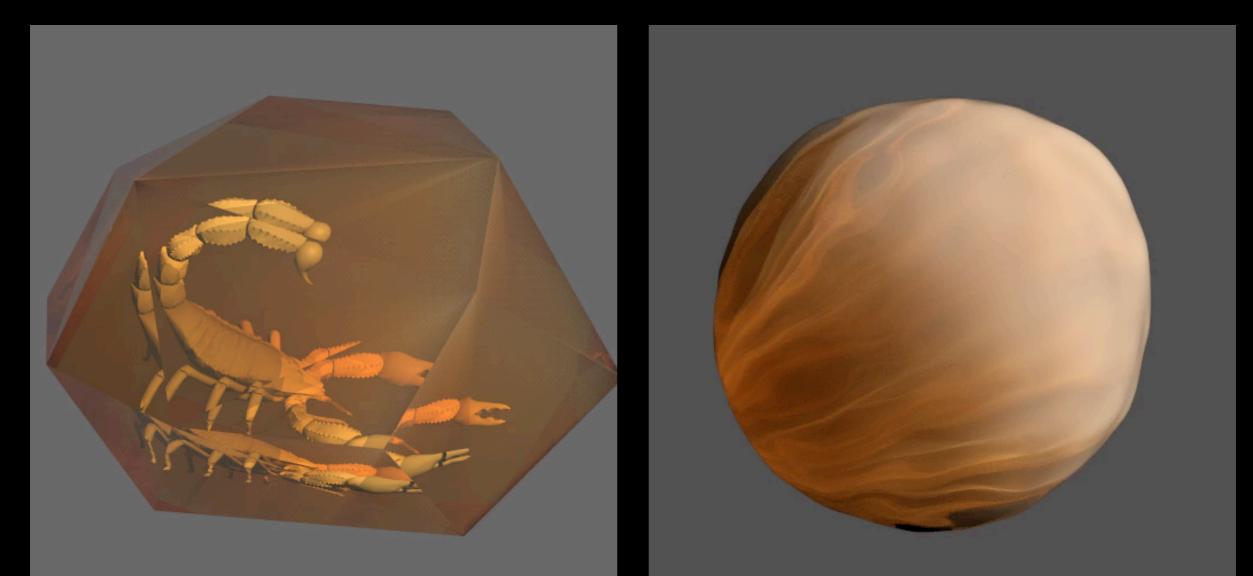
Direct illumination in refractive objects is hard



Single scatter from a single point light source

Single Scattering

Direct illumination in refractive objects is hard

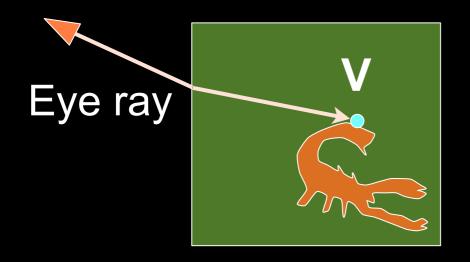


Single scatter from a single point light source

Problem

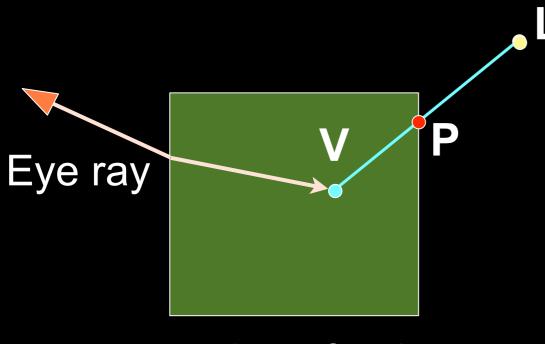
Problem

Find direct illumination at V (receiver) from L (light)



Problem

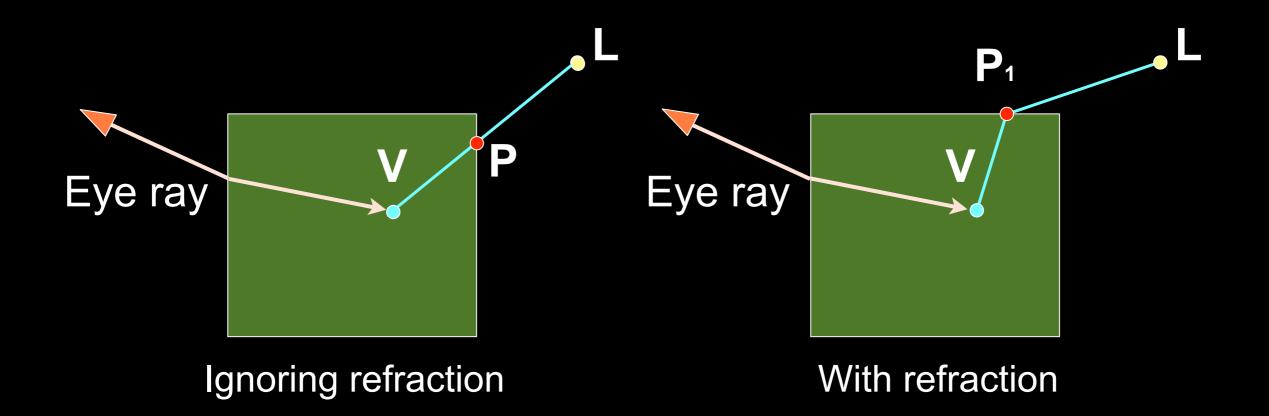
Find direct illumination at V (receiver) from L (light)



Ignoring refraction

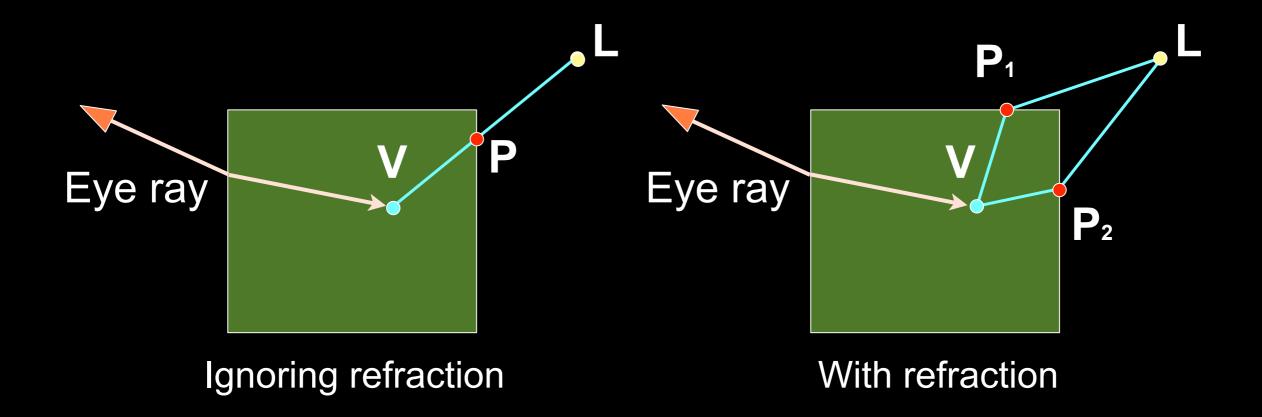
Challenges: Bending of Path

- Find direct illumination at V (receiver) from L (light)
- Light bends at interface according to Snell's Law



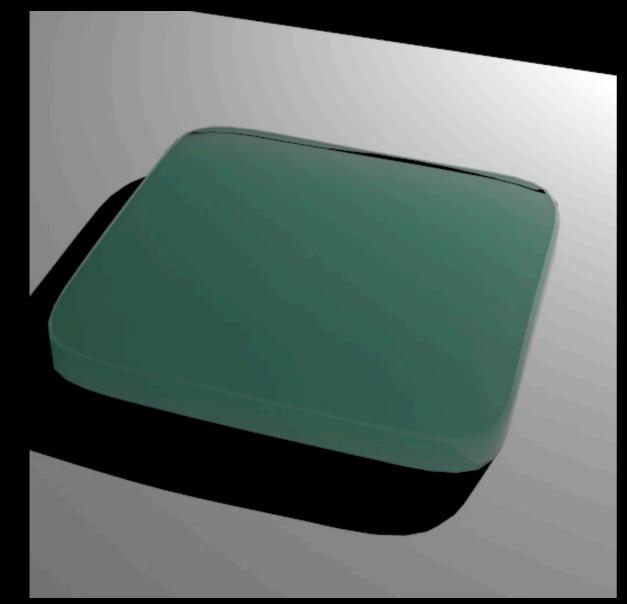
Challenges: Multiple Paths

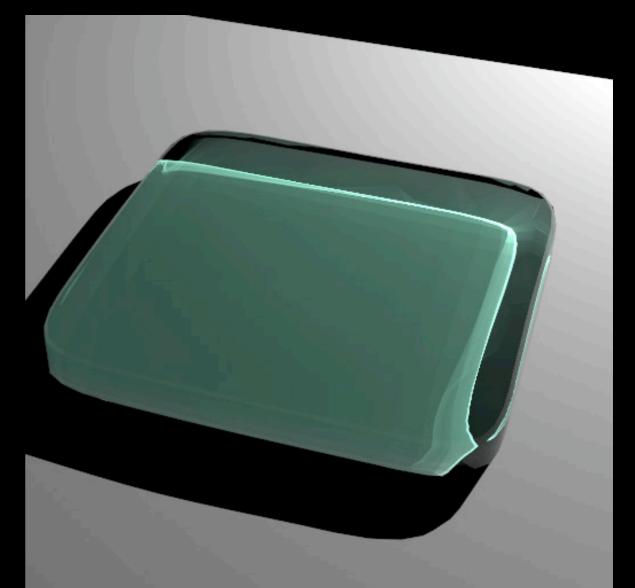
- Find direct illumination at V (receiver) from L (light)
- Light bends at interface according to Snell's Law
 - -Can have zero, one, or many such paths (and P's)



Is it important?

Glass tile quality comparison





Shadow rays ignore refraction

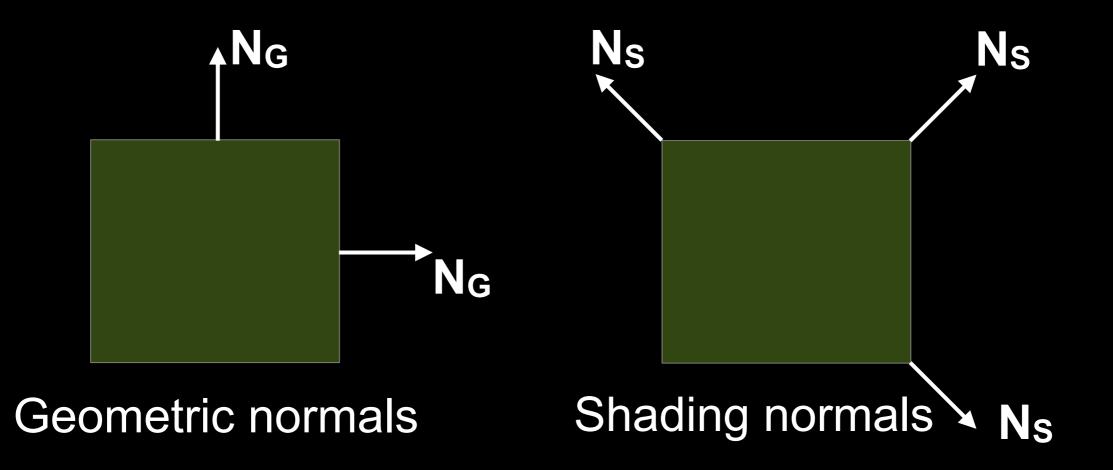
Our method

Challenges Summary

- Bending of paths
- Multiple paths
- Shading normals
- Large triangle meshes

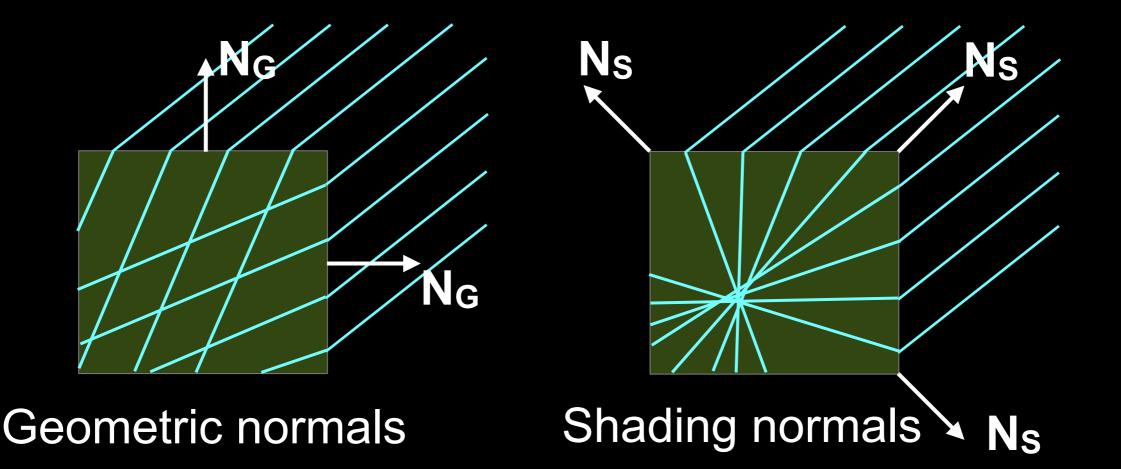
Challenges: Shading Normals

- Geometric normals (N_G) vs. shading normals (N_S)
 - -E.g., interpolated normals, bump maps, normal maps
 - -Alters directions and intensities of light paths



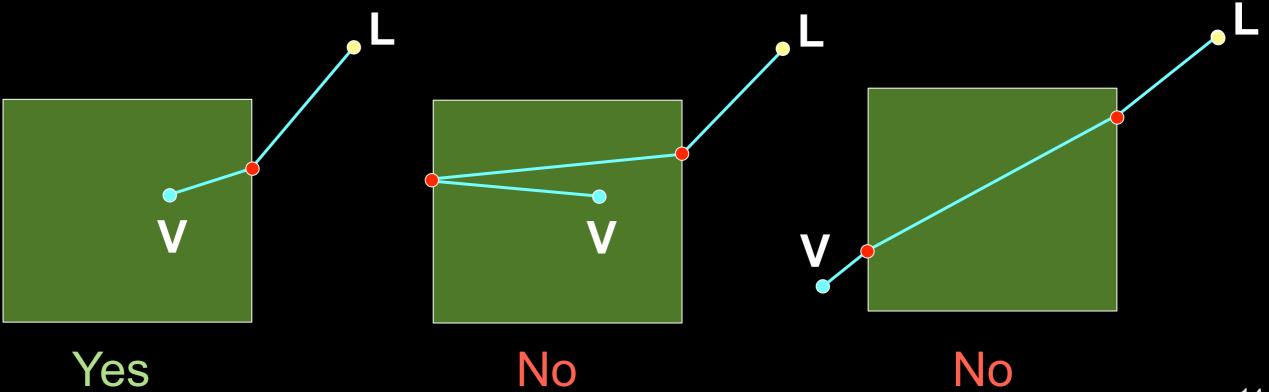
Challenges: Shading Normals

- Geometric normals (N_G) vs. shading normals (N_S)
 - -E.g., interpolated normals, bump maps, normal maps
 - -Alters directions and intensities of light paths



Limitations

- Finds connections that
 - -Cross the boundary exactly once
 - -Have no other changes in direction
 - -Cost depends on path count and boundary



Prior Work

- Diffusion and multiple scatter
 - -[eg, Stam 95, Jensen et al. 01, Wang et al. 08]
- Monte Carlo
 - -[eg, Kajiya 86, Veach 97]
- Beam tracing
 - -[eg, Nishita & Nakamae 94, Iwasaki et al. 03, Ernst et al. 05]
- Photon mapping
 - -[eg, Jensen 01, Sun et al. 08, Jarosz et al. 08]
- Fermat's principle
 - -[eg, Mitchell & Hanrahan 92, Chen & Arvo 00]

Prior Work

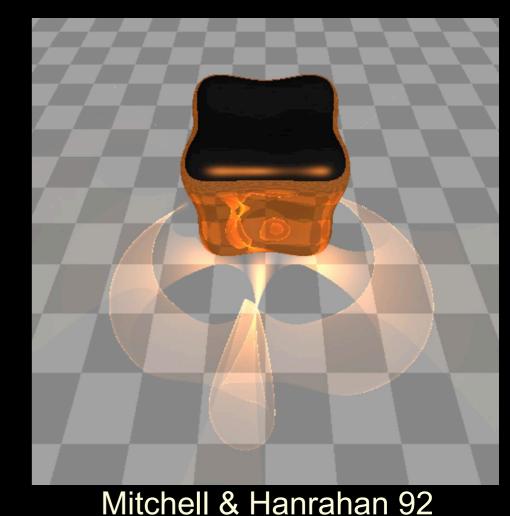
Mitchell & Hanrahan 92

-Used Fermat's principle and Newton's method

-Reflection (shown) and refraction

Limitations

- -Only supported implicit surfaces
- -Cannot handle shading normals
- -Expensive 3D search
- -Not scalable to complex geometry



Contributions

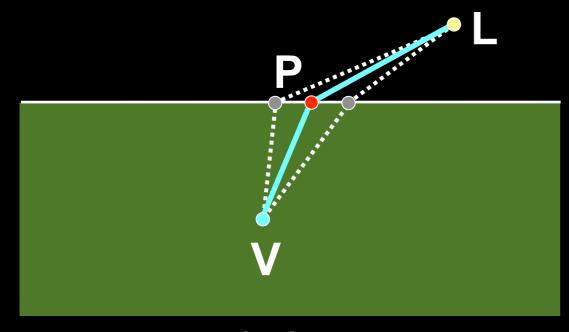
- Support triangles with shading normals
 - -Most widely used geometry format
 - -Required fundamental problem reformulation
 - -New search methods and intensity equations
- Hierarchical culling
 - -Scales to complex objects with many triangles
- CPU and GPU implementations
 - Interactive performance on some scenes

Outline

- Half-vector formulation
- Solving for a single triangle
- Hierarchical culling for meshes
- Results

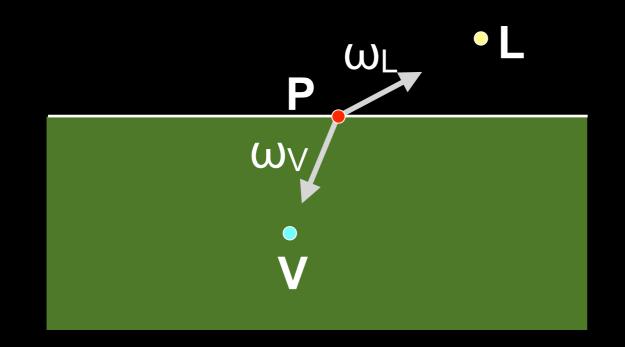
Fermat's Principle

- Define optical path length
 - $-d(P) = \eta ||V-P|| + ||P-L||$
 - -Extrema of d(P) are the refraction points
- Cannot handle shading normals

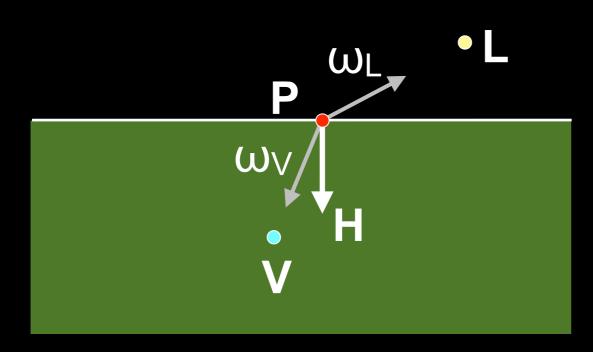


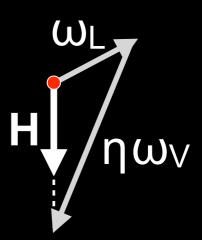
Index of refraction = η

- Used in micro-facet model [Walter et al. 07]
- Direction to receiver: $\omega_V = (V P) / ||V P||$
- Direction to light: $\omega_L = (L P) / ||L P||$



- Used in micro-facet model [Walter et al. 07]
- Direction to receiver: $\omega_V = (V P) / ||V P||$
- Direction to light: $\omega_L = (L P) / ||L P||$
- Half-vector: H = $(\eta \omega_V + \omega_L) / ||\eta \omega_V + \omega_L||$

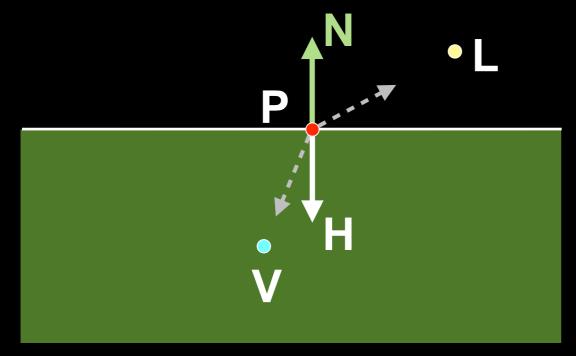




If H = -N (surface normal) then

- -V, P, L, and N are coplanar
- -Angles obey Snell's Law: $\eta \sin(\theta_V) = \sin(\theta_L)$
- It is a refraction solution

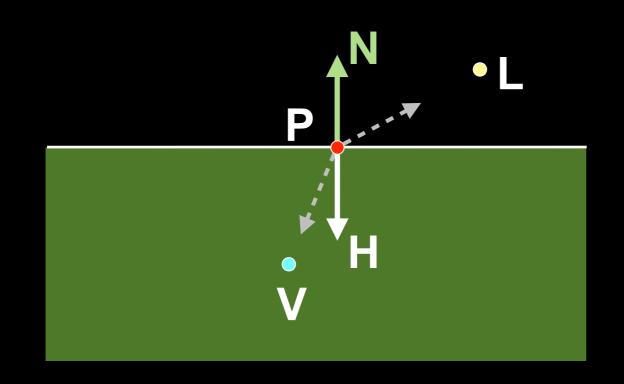
-Assuming V and L lie on the correct sides of the normal



• Find all P such that: H + N = 0

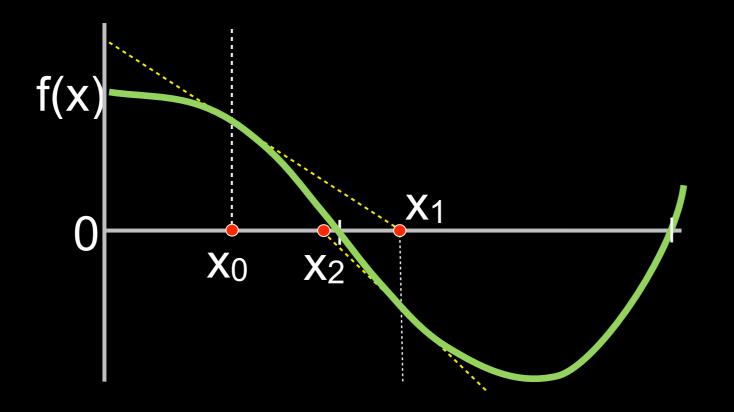
-Natural extension to shading normals: $H + N_s = 0$

Newton's method to find zeroes of: f(P) = H + N



Newton's Method Review

- Quadratically convergent near a root
 Each iteration doubles the precision
- Chaotic behavior far from a root
 - -May diverge or converge to other roots



Outline

- Half-vector formulation
- Solving for a single triangle
 - -Geometric normal 1D Newton
 - -Shading normals 2D Newton
 - -Subdivision oracles
- Hierarchical culling for meshes
- Results

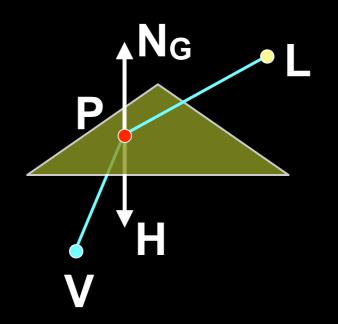
Triangle Without Shading Normals

- Solution must lie in plane containing V, L, and $N_{\rm G}$

-Unique solution always exists

- -Simple 1D Newton's method converges
 - Typically in just 2 to 4 iterations

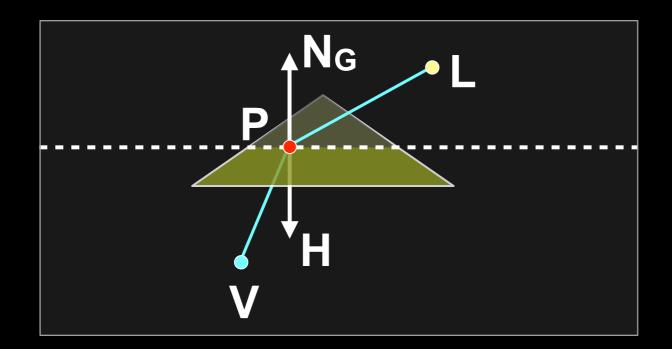
-Check if solution lies within the triangle



Triangle Without Shading Normals

- Solution must lie in plane containing V, L, and $N_{\rm G}$

- -Unique solution always exists
- -Simple 1D Newton's method converges
 - Typically in just 2 to 4 iterations
- -Check if solution lies within the triangle



Triangle with Shading Normal

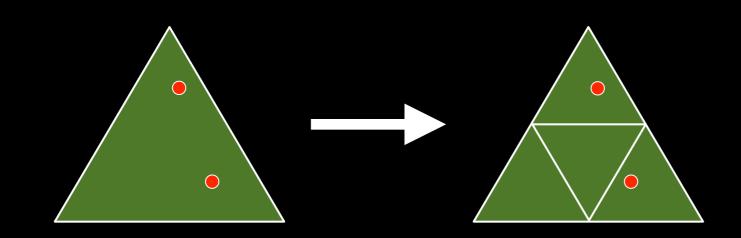
- Shading normal, N_S, varies over triangle
 - -Full 2D search over triangle's area
- Function $f(P) = H + N_s$ maps 2D to 3D
 - -Derivative is 2X3 Jacobian matrix is non-invertible

-Use pseudoinverse for Newton's method:

$$J^+ = (J^T J)^{-1} J^T$$
$$X_{i+1} = X_i - J^+ (X_i) \mathbf{f}(X_i)$$

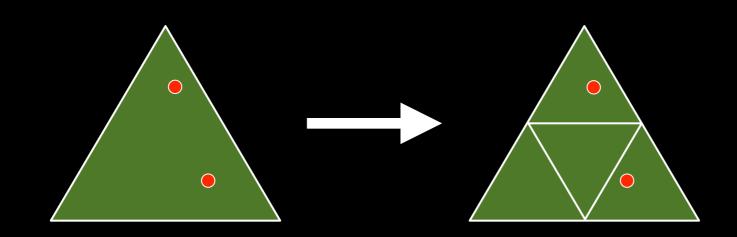
Triangle with Shading Normal

- Need good starting points
- May have zero, one, or multiple solutions
 - -Subdivide triangle as needed to isolate solutions



Two Triangle Subdivision Oracles

- Test with strong guarantees
 - -Based on [Krawczyk 69], [Mitchell&Hanrahan 92]
 - -Conditions guarantee uniqueness and convergence
- Fast empirical heuristic
 - -Based on solid angles of triangle and normals



Triangle summary

- For each triangle:
 - -If no shading normals
 - Solve for P with 1D Newton
 - -Else if passes the subdivision oracle
 - Solve for P with 2D Newton
 - -Else
 - Subdivide into 4 triangles and try again
 - -Test if P lies within the triangle

Outline

- Half-vector formulation
- Solving for a single triangle
- Hierarchical culling for meshes
- Results

Culling Tests

- Most triangles contain no solutions for P
- Three quick culling tests
 - -Spindle
 - -Sidedness
 - Interval

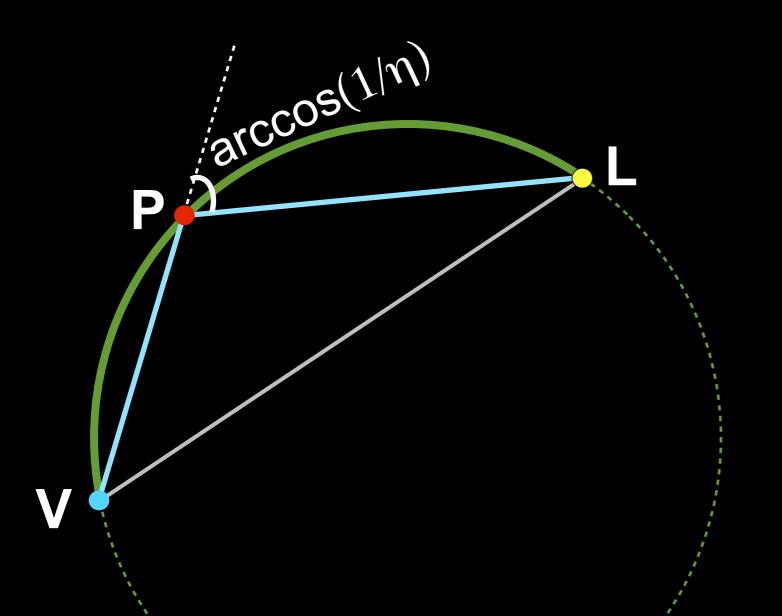
Spindle Culling Test

- Refraction bends path by angle $\leq \arccos(1/\eta)$
 - -Solutions must lie within circular arc (2d) or spindle (3d)



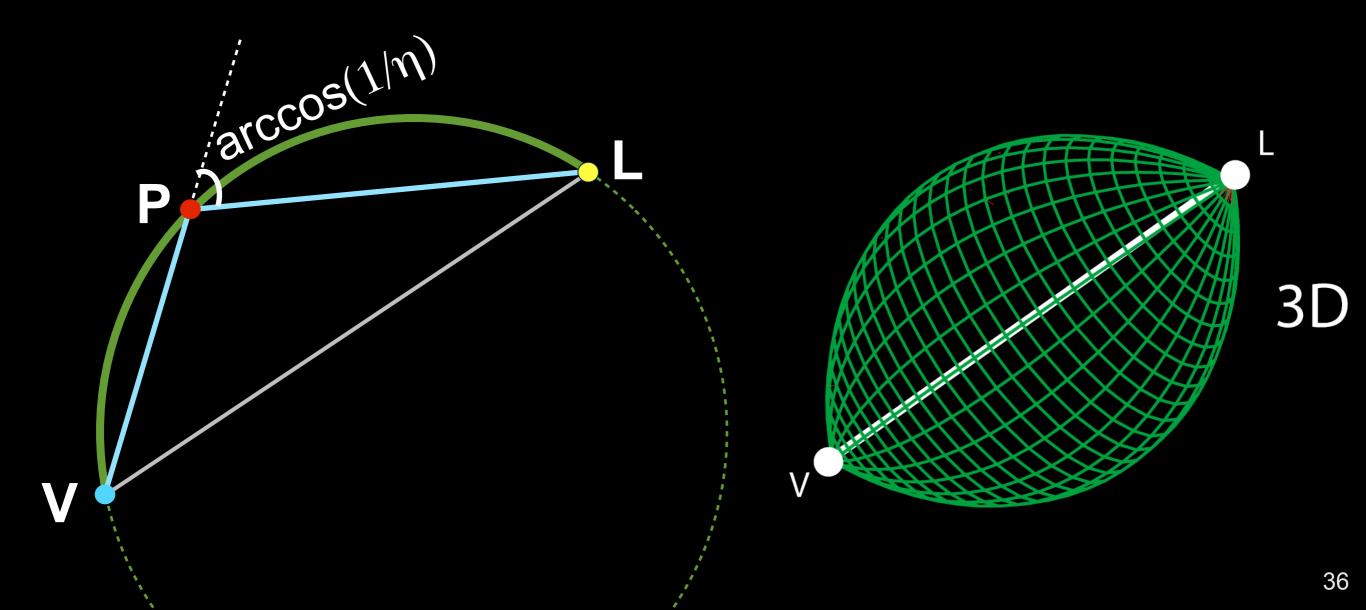
Spindle Culling Test

- Refraction bends path by angle $\leq \arccos(1/\eta)$
 - -Solutions must lie within circular arc (2d) or spindle (3d)



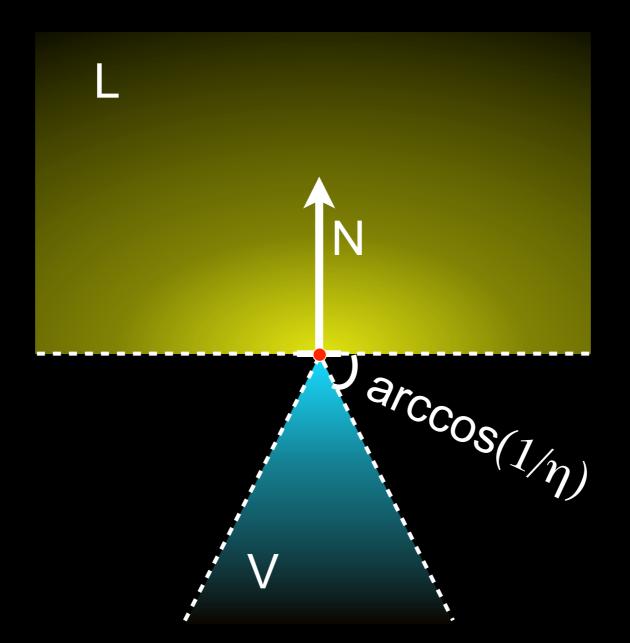
Spindle Culling Test

- Refraction bends path by angle $\leq \arccos(1/\eta)$
 - -Solutions must lie within circular arc (2d) or spindle (3d)



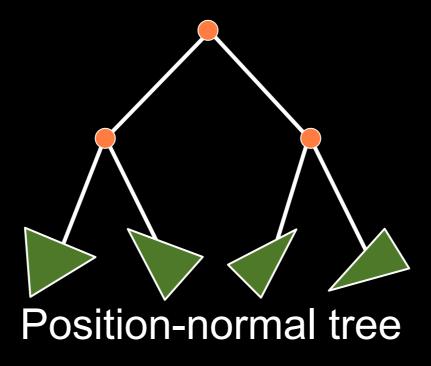
Sidedness Culling Test

- Light L must be on the outside of surface at P
- Receiver V must be inside within the critical angle



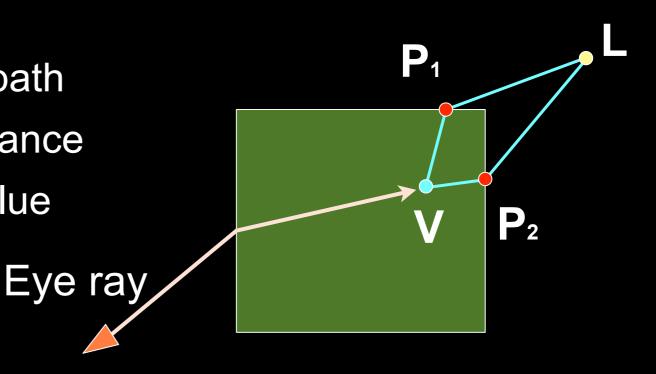
Hierarchical Culling for Meshes

- Apply culling test to groups of triangles
- Use 6D position-normal tree [Bala et al. 03]
 - -Leaves are boundary triangles
 - -Boxes and cones bound positions and normals
 - -Traverse top-down



Algorithm Summary

- Build position-normal tree for each boundary mesh
- For each eye ray
 - -Trace until hits surface or volume-scatters at V
 - -Select a light source point, L
 - -Traverse tree to solve for all P on boundary
 - -For each solution point P
 - Check for occlusion along path
 - Compute effective light distance
 - Add contribution to pixel value



Effective Distance to Source

- Refraction alters usual 1/r² intensity falloff
 Can focus or defocus the light
- Compute effective light distance for each path

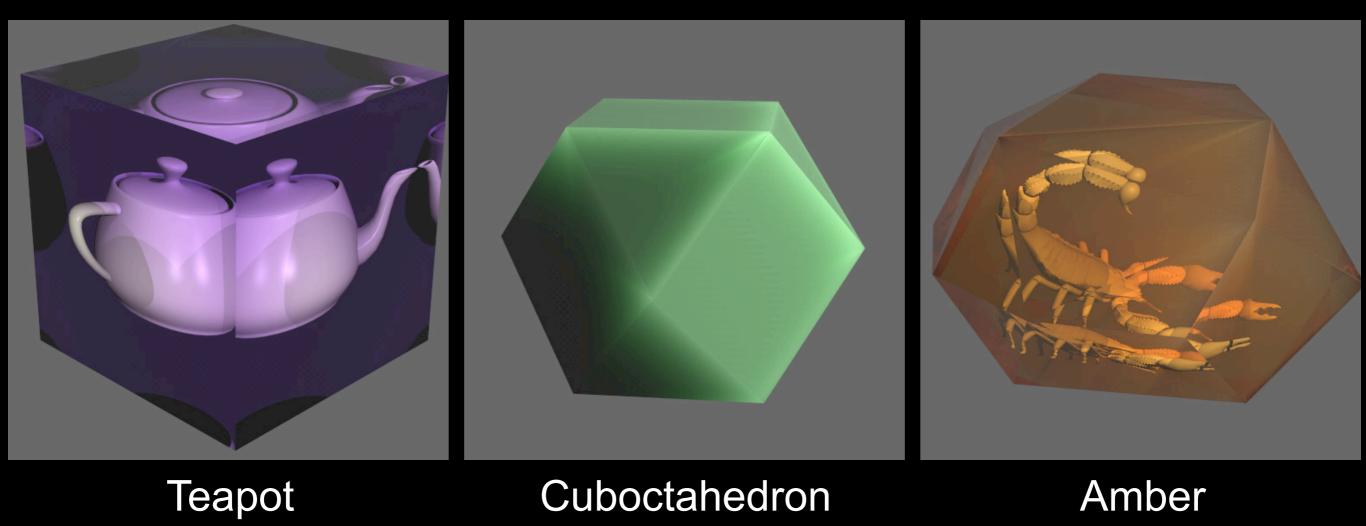
 Simple formula for triangles without shading normal
 Use ray differentials [Igehy 99] for shading normal case
 See paper for details

Outline

- Half-vector formulation
- Solving for a single triangle
- Hierarchical culling for meshes
- Results

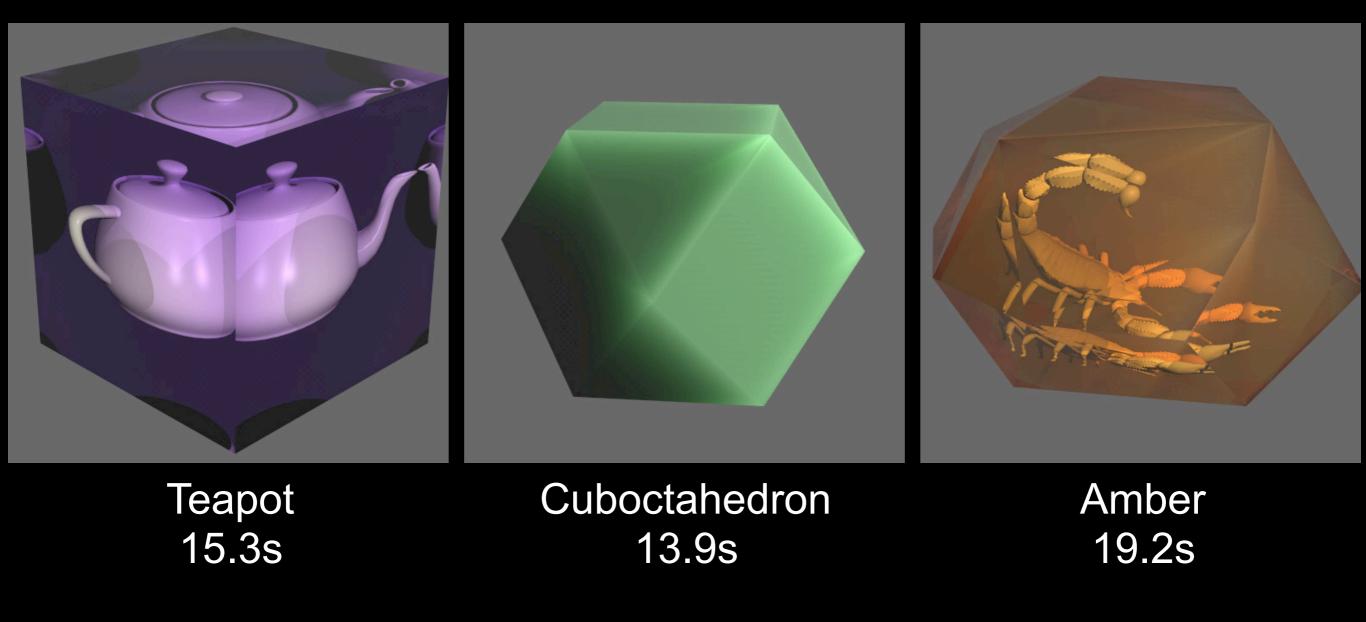
Results - CPU

Three scenes without shading normals



Results - CPU

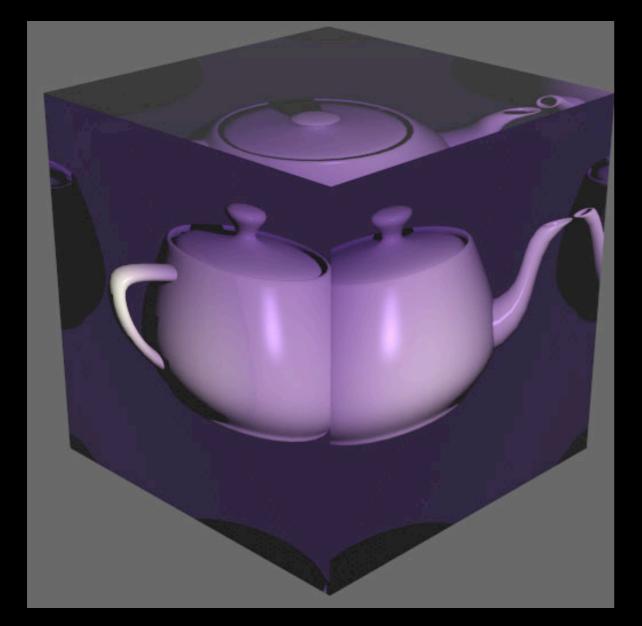
Three scenes without shading normals

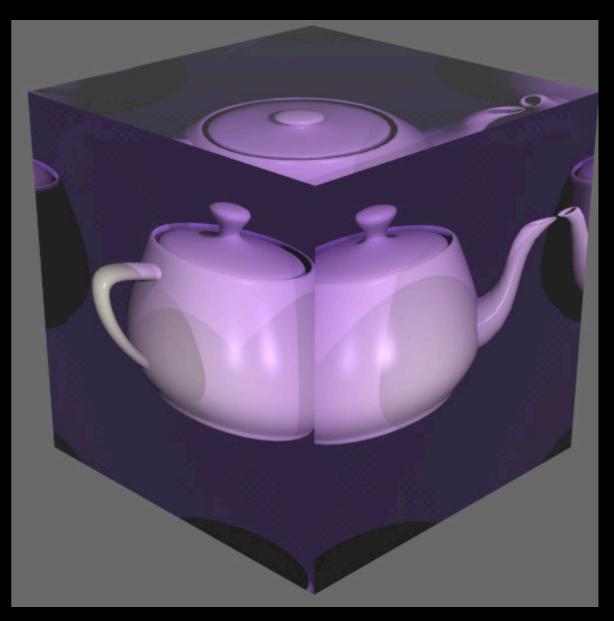


512x512 images, 64 samples per pixel, 8-core 2.83GHz Intel Core2

Results - Teapot

Teapot quality comparison



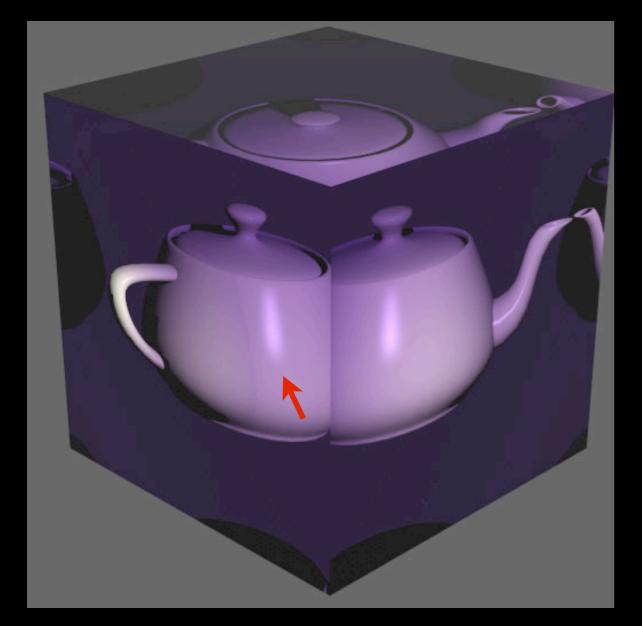


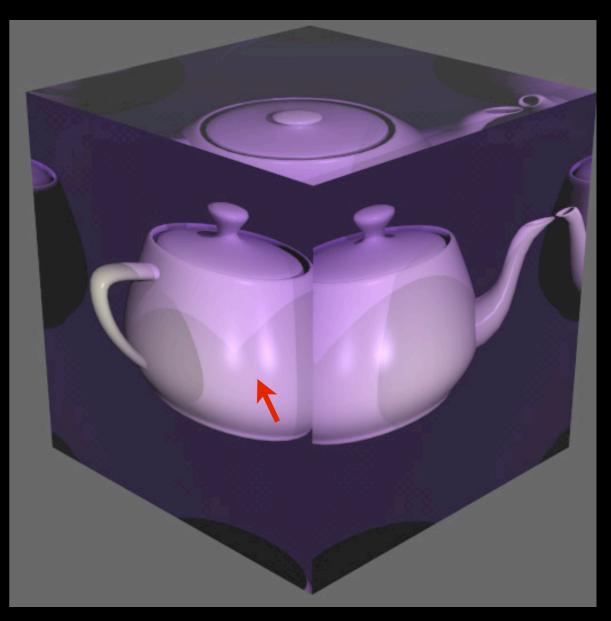
Shadow rays ignore refraction

Our method (15.4s)

Results - Teapot

Teapot quality comparison



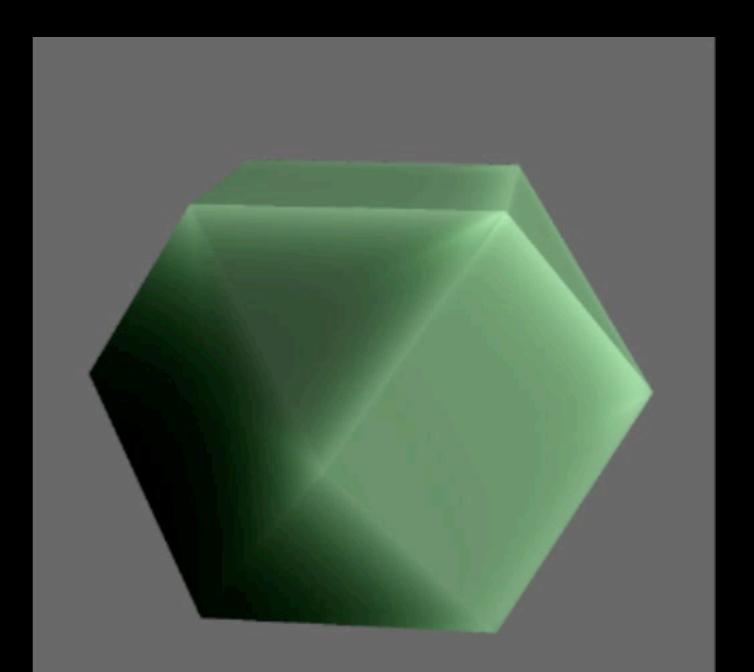


Shadow rays ignore refraction

Our method (15.4s)

Results - Cuboctahedron

 Cuboctahedron movie (13.9s)



Results - GPU

- Implemented on GPU using CUDA 2.0
 - -1D, 2D Newton iteration
 - -Hierarchical pruning
 - -Ray tracing based on [Popov et al. 2007]
 - -One kernel thread per eye ray
 - -Does not yet support all scenes

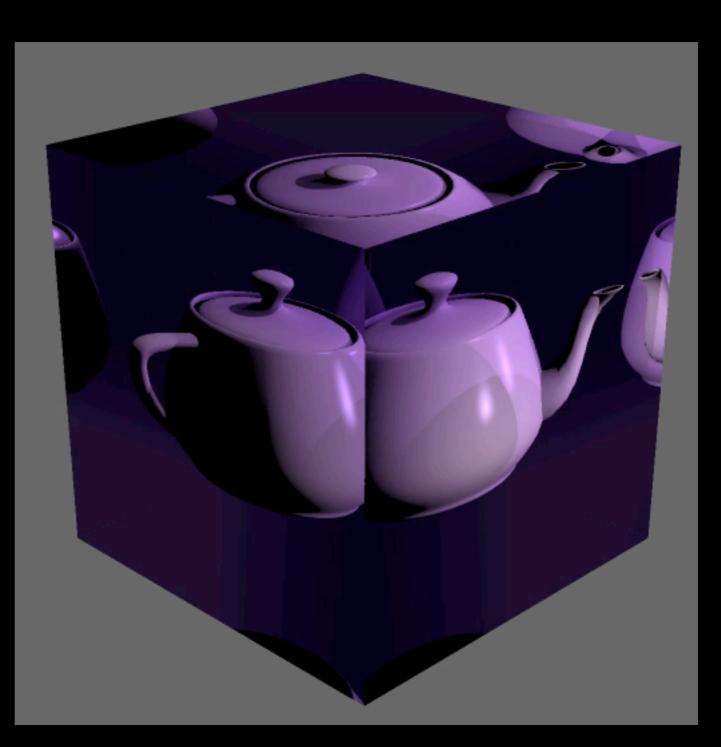
Results - GPU

Name	Render Time	FPS
Teapot	0.1 s	10 fps
Cuboctahedron	0.14 s	7 fps
Amber	0.3 s	3 fps

512x512 images, 2 eye rays per pixel + 40-60 volume samples, nVIDIA GTX 280, CUDA 2.0

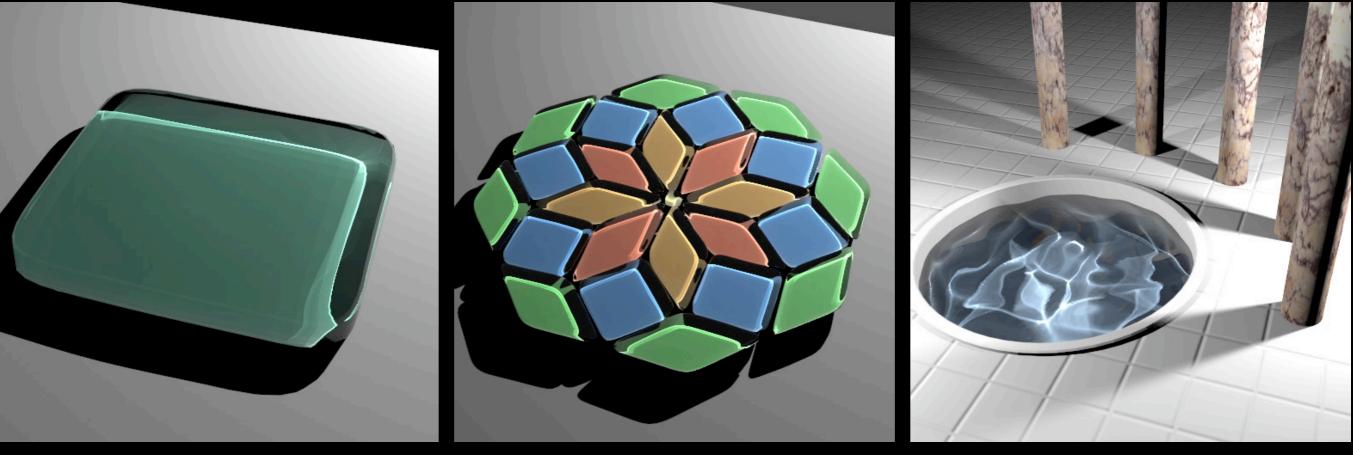
Results - GPU

Teapot example
 –10 fps on GPU



Results - CPU

Three scenes with shading normals

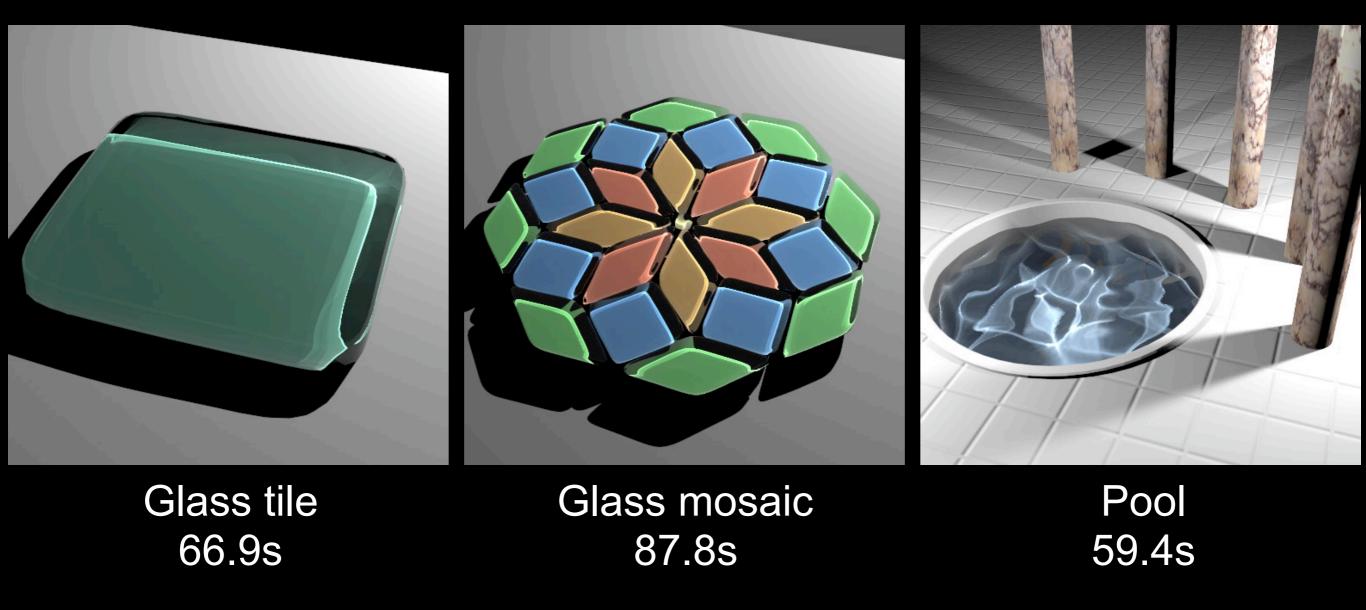


Glass tile

Glass mosaic

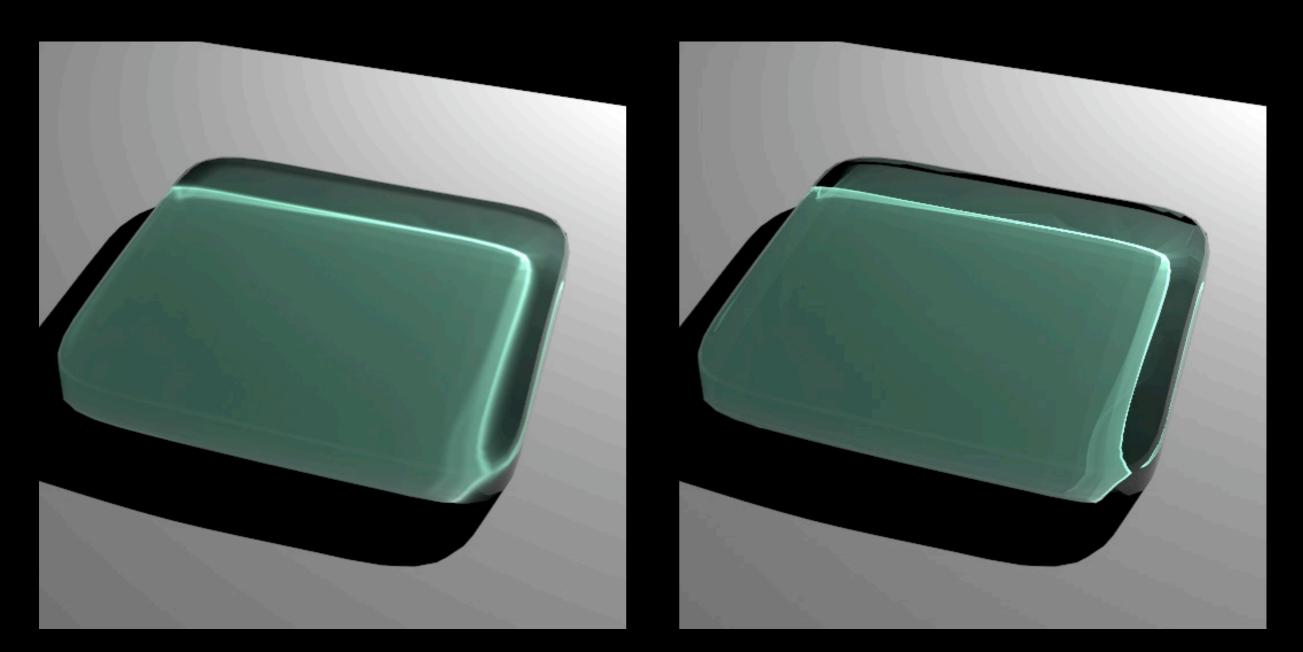
Results - CPU

Three scenes with shading normals



512x512 images, 64 samples per pixel, 8-core 2.83GHz Intel Core2

Results - Glass Tile

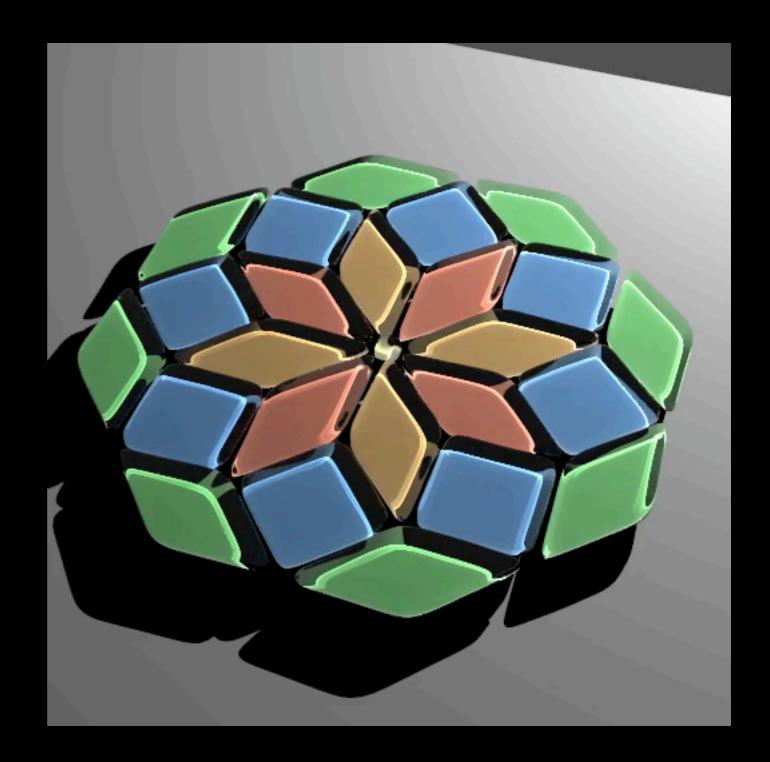


Photon map (equal time)

Our method (66.9s)

Results - Glass Mosaic

 Glass mosaic movie (87.8s)



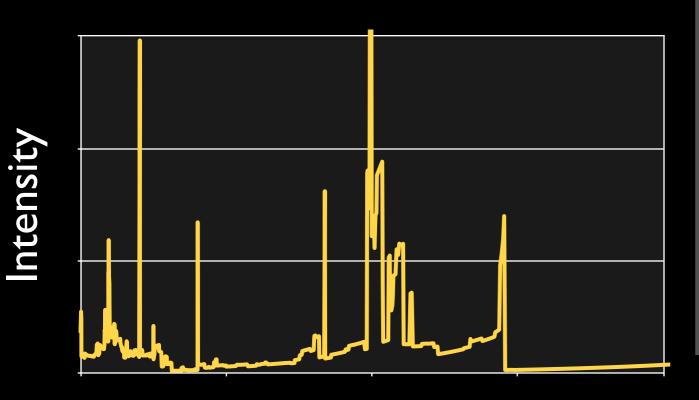
Results - Component Evaluation

Evaluation of algorithm components

-Pool (2632 triangles in boundary)

	Time	Ratio	
Without Hierarchy	1934.6s	32x	
Guaranteed Convergence	4 . s	2.4x	
Subdivision Heuristic	59.4s	1x	

- Bumpy sphere (9680 triangles)
 - -Volume sampling noise
 - Used 128 samples per pixel
 - Effective distance clamping



Our method 304.3 s

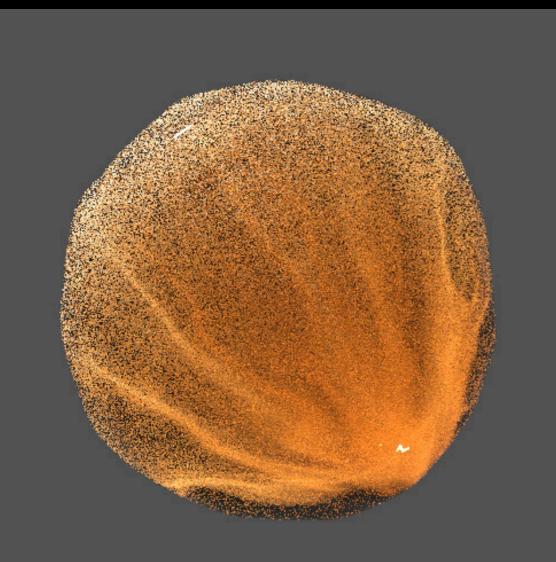
Ray depth

Bumpy sphere (9680 triangles)

Shadow rays ignore refraction

Our method

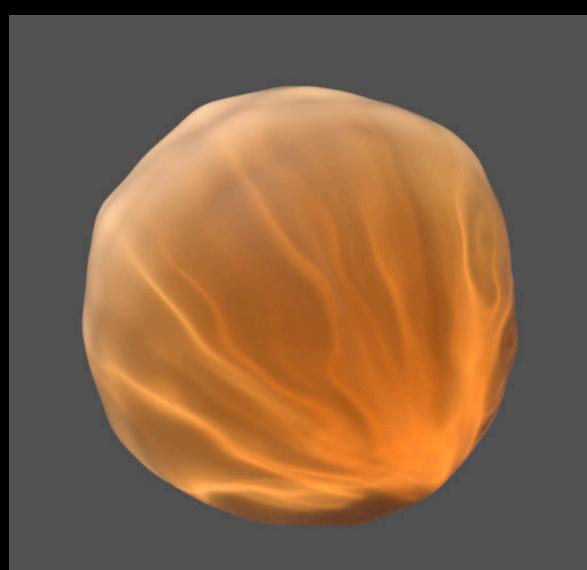
Bumpy sphere (9680 triangles)



Path tracing(16x time)

Our method

Bumpy sphere (9680 triangles)



Photon map 10M (equal time)

Our method

Conclusion

- New method for single scatter in refractive media
 - Applicable to many rendering algorithms
 - -New half-vector formulation
 - -Efficient culling and search methods
 - -Supports shading normals and large triangle meshes
 - Interactive performance for some scenes
- Future work
 - -Better culling
 - -Reflections and low-order scattering
 - -Multiple interfaces

Acknowledgements

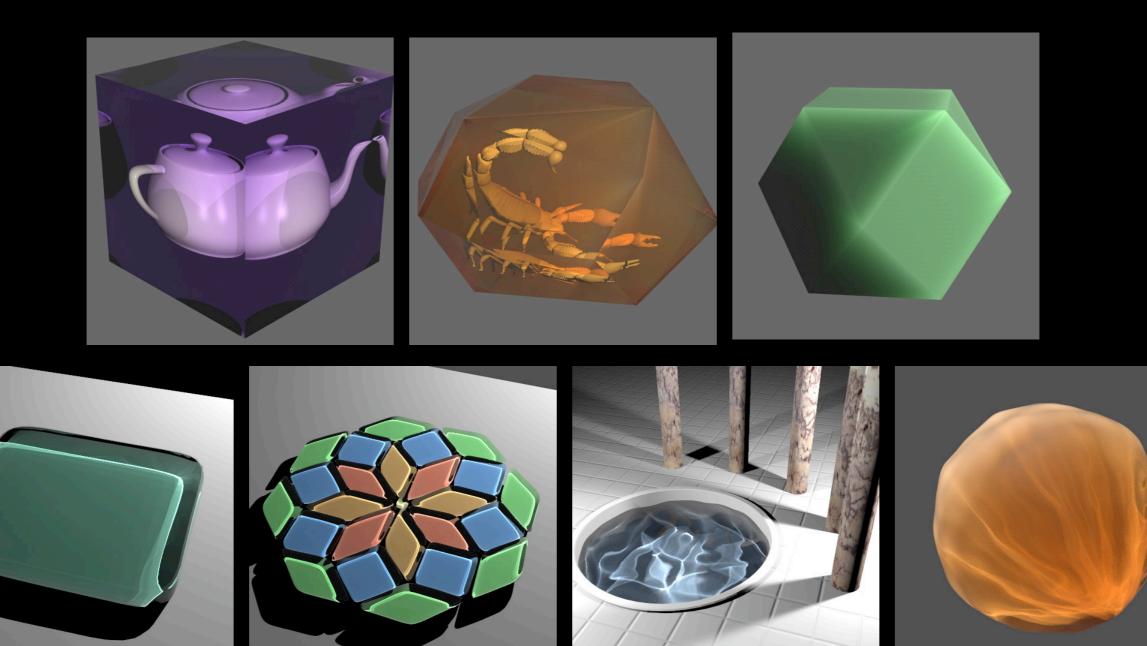
- Sponsors
 - -NSF

• Career 0644175, CPA 0811680, CNS 0615240, CNS 0403340

- -Intel
- -NVidia
- -Microsoft
- -INRIA sabbatical program

PCG Graphics Lab and Elizabeth Popolo

The End



Results - CPU timings

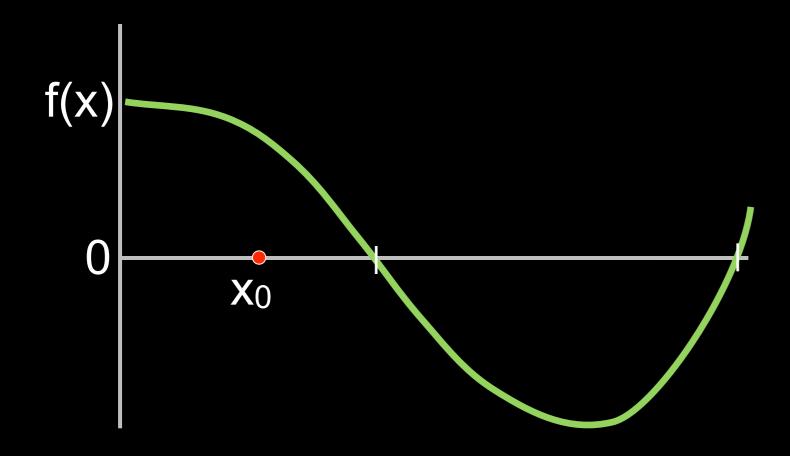
Name	Render	Triangles		Shading
INAME	Time	Surface	Other	Normals
Teapot	15.3 s	12	4096	No
Cuboctahedron	13.9 s	20	0	No
Amber	19.2 s	36	60556	No
Glass tile	66.9 s	798	60	Yes
Glass mosaic	87.8 s	20813	1450	Yes
Pool	59.4 s	2632	4324	Yes
Bumpy Sphere	304.3 s	9680	0	Yes

512x512 images, 64 samples per pixel (128 for bumpy sphere), 8-core 2.83GHz Intel Core2 CPU

Newton's Method

Iterative root finding method

- -Start with initial guess x0
- -Iteration: $x_{i+1} = x_i f(x_i) / f'(x_i)$

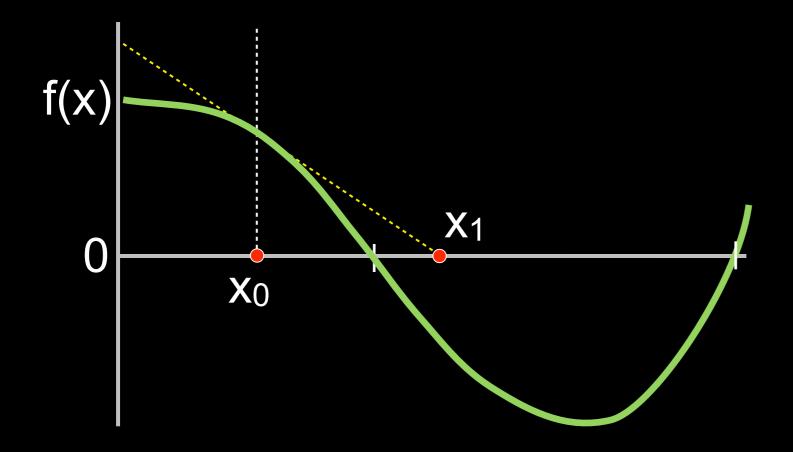


Newton's Method

Iterative root finding method

-Start with initial guess x0

 $-x_{i+1} = x_i - f(x_i) / f'(x_i)$



Newton's Method

Iterative root finding method

-Start with initial guess x0

 $-x_{i+1} = x_i - f(x_i) / f'(x_i)$

