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Single Scattering 
• Direct illumination in refractive objects is hard
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• Find direct illumination at V (receiver) from L (light) 
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• Find direct illumination at V (receiver) from L (light)

Ignoring refraction
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• Find direct illumination at V (receiver) from L (light) 
• Light bends at interface according to Snell’s Law
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• Find direct illumination at V (receiver) from L (light) 
• Light bends at interface according to Snell’s Law

–Can have zero, one, or many such paths (and P’s)
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Is it important?
• Glass tile quality comparison
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Our methodShadow rays ignore refraction



Challenges Summary
• Bending of paths
• Multiple paths
• Shading normals
• Large triangle meshes
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• Geometric normals (NG) vs. shading normals (NS)   
–E.g., interpolated normals, bump maps, normal maps
–Alters directions and intensities of light paths

Challenges: Shading Normals
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• Geometric normals (NG) vs. shading normals (NS)   
–E.g., interpolated normals, bump maps, normal maps
–Alters directions and intensities of light paths
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Limitations
• Finds connections that

–Cross the boundary exactly once
–Have no other changes in direction
–Cost depends on path count and boundary
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Prior Work
• Diffusion and multiple scatter

–[eg, Stam 95, Jensen et al. 01, Wang et al. 08]

• Monte Carlo
–[eg, Kajiya 86, Veach 97]

• Beam tracing
–[eg, Nishita & Nakamae 94, Iwasaki et al. 03, Ernst et al. 05]

• Photon mapping
–[eg, Jensen 01, Sun et al. 08, Jarosz et al. 08]

• Fermat’s principle
–[eg, Mitchell & Hanrahan 92, Chen & Arvo 00]
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Prior Work
• Mitchell & Hanrahan 92

–Used Fermat’s principle and Newton’s method
–Reflection (shown) and refraction

• Limitations
–Only supported implicit surfaces
–Cannot handle shading normals
–Expensive 3D search
–Not scalable to complex geometry
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Contributions
• Support triangles with shading normals

–Most widely used geometry format
–Required fundamental problem reformulation
–New search methods and intensity equations

• Hierarchical culling
–Scales to complex objects with many triangles

• CPU and GPU implementations
–Interactive performance on some scenes
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Outline
• Half-vector formulation
• Solving for a single triangle
• Hierarchical culling for meshes
• Results
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• Define optical path length
–d(P) = η ||V-P|| + ||P-L||
–Extrema of d(P) are the refraction points

• Cannot handle shading normals

Fermat’s Principle
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• Used in micro-facet model [Walter et al. 07]

• Direction to receiver: ωV = (V - P) / || V - P ||
• Direction to light: ωL = (L - P) / || L - P ||

Half-Vector Formulation
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• Used in micro-facet model [Walter et al. 07]

• Direction to receiver: ωV = (V - P) / || V - P ||
• Direction to light: ωL = (L - P) / || L - P ||

• Half-vector: H = (η ωV + ωL) / || η ωV + ωL ||

Half-Vector Formulation
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• If H = -N (surface normal) then
–V, P, L, and N are coplanar
–Angles obey Snell’s Law: η sin(θV) = sin(θL)

• It is a refraction solution
–Assuming V and L lie on the correct sides of the normal

Half-Vector Formulation
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• Find all P such that: H + N = 0
–Natural extension to shading normals: H + Ns = 0

• Newton’s method to find zeroes of: f(P) = H + N

Half-Vector Formulation
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• Quadratically convergent near a root
–Each iteration doubles the precision

• Chaotic behavior far from a root
–May diverge or converge to other roots

Newton’s Method Review
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Outline
• Half-vector formulation
• Solving for a single triangle

–Geometric normal - 1D Newton
–Shading normals - 2D Newton
–Subdivision oracles

• Hierarchical culling for meshes
• Results
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• Solution must lie in plane containing V, L, and NG

–Unique solution always exists
–Simple 1D Newton’s method converges

• Typically in just 2 to 4 iterations

–Check if solution lies within the triangle

Triangle Without Shading Normals
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• Solution must lie in plane containing V, L, and NG

–Unique solution always exists
–Simple 1D Newton’s method converges

• Typically in just 2 to 4 iterations

–Check if solution lies within the triangle

Triangle Without Shading Normals
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Triangle with Shading Normal
• Shading normal, NS, varies over triangle

–Full 2D search over triangle’s area

• Function f(P) = H + NS maps 2D to 3D
–Derivative is 2X3 Jacobian matrix is non-invertible
–Use pseudoinverse for Newton’s method:



Triangle with Shading Normal
• Need good starting points
• May have zero, one, or multiple solutions

–Subdivide triangle as needed to isolate solutions
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Two Triangle Subdivision Oracles
• Test with strong guarantees

–Based on [Krawczyk 69], [Mitchell&Hanrahan 92]
–Conditions guarantee uniqueness and convergence

• Fast empirical heuristic
–Based on solid angles of triangle and normals
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Triangle summary
• For each triangle:

–If no shading normals
• Solve for P with 1D Newton

–Else if passes the subdivision oracle
• Solve for P with 2D Newton

–Else
• Subdivide into 4 triangles and try again

–Test if P lies within the triangle
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Outline
• Half-vector formulation
• Solving for a single triangle
• Hierarchical culling for meshes
• Results
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• Most triangles contain no solutions for P
• Three quick culling tests

–Spindle
–Sidedness
–Interval

Culling Tests
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• Refraction bends path by angle ≤ arccos(1/η)
–Solutions must lie within circular arc (2d) or spindle (3d)

Spindle Culling Test
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• Refraction bends path by angle ≤ arccos(1/η)
–Solutions must lie within circular arc (2d) or spindle (3d)
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• Refraction bends path by angle ≤ arccos(1/η)
–Solutions must lie within circular arc (2d) or spindle (3d)

Spindle Culling Test
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• Light L must be on the outside of surface at P
• Receiver V must be inside within the critical angle

Sidedness Culling Test
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• Apply culling test to groups of triangles
• Use 6D position-normal tree [Bala et al. 03] 

–Leaves are boundary triangles
–Boxes and cones bound positions and normals
–Traverse top-down

Hierarchical Culling for Meshes

38Position-normal tree



Algorithm Summary
• Build position-normal tree for each boundary mesh
• For each eye ray

–Trace until hits surface or volume-scatters at V 
–Select a light source point, L
–Traverse tree to solve for all P on boundary
–For each solution point P

• Check for occlusion along path
• Compute effective light distance
• Add contribution to pixel value
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Effective Distance to Source
• Refraction alters usual 1 / r2 intensity falloff

–Can focus or defocus the light

• Compute effective light distance for each path
–Simple formula for triangles without shading normal
–Use ray differentials [Igehy 99] for shading normal case
–See paper for details

40



Outline
• Half-vector formulation
• Solving for a single triangle
• Hierarchical culling for meshes
• Results
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Results - CPU
• Three scenes without shading normals
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Results - CPU
• Three scenes without shading normals
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512x512 images, 64 samples per pixel, 8-core 2.83GHz Intel Core2 
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15.3s
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19.2s

Cuboctahedron
13.9s



Results - Teapot
• Teapot quality comparison
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• Teapot quality comparison
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Results - Cuboctahedron
• Cuboctahedron

movie (13.9s)
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Results - GPU
• Implemented on GPU using CUDA 2.0

–1D, 2D Newton iteration
–Hierarchical pruning
–Ray tracing based on [Popov et al. 2007]
–One kernel thread per eye ray
–Does not yet support all scenes
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Results - GPU
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Name
Render
Time

FPS

Teapot 0.1 s 10 fps
Cuboctahedron 0.14 s 7 fps

Amber 0.3 s 3 fps

512x512 images, 2 eye rays per pixel + 40-60 volume samples,
nVIDIA GTX 280, CUDA 2.0



Results - GPU
• Teapot example

–10 fps on GPU
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Results - CPU
• Three scenes with shading normals
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Results - CPU
• Three scenes with shading normals
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512x512 images, 64 samples per pixel, 8-core 2.83GHz Intel Core2 

Glass tile
66.9s

Pool
59.4s

Glass mosaic
87.8s



Results - Glass Tile
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Our method (66.9s)Photon map (equal time)



Results - Glass Mosaic
• Glass mosaic

movie (87.8s)
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Results - Component Evaluation
• Evaluation of algorithm components

–Pool (2632 triangles in boundary)
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Time Ratio

Without
Hierarchy 1934.6s 32x

Guaranteed
Convergence 141.1s 2.4x

Subdivision
Heuristic 59.4s 1x



Results - Bumpy sphere
• Bumpy sphere (9680 triangles)

–Volume sampling noise
• Used 128 samples per pixel
• Effective distance clamping
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Results - Bumpy sphere
• Bumpy sphere (9680 triangles)
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Our methodShadow rays ignore refraction



Results - Bumpy sphere
• Bumpy sphere (9680 triangles)
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Our methodPath tracing(16x time)



Results - Bumpy sphere
• Bumpy sphere (9680 triangles)
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Our methodPhoton map 10M (equal time)



Conclusion
• New method for single scatter in refractive media

–Applicable to many rendering algorithms
–New half-vector formulation
–Efficient culling and search methods
–Supports shading normals and large triangle meshes
–Interactive performance for some scenes

• Future work
–Better culling 
–Reflections and low-order scattering
–Multiple interfaces
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The End
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Results - CPU timings
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Name
Render
Time

TrianglesTriangles Shading
Normals

Name
Render
Time Surface Other

Shading
Normals

Teapot 15.3 s 12 4096 No
Cuboctahedron 13.9 s 20 0 No

Amber 19.2 s 36 60556 No
Glass tile 66.9 s 798 60 Yes

Glass mosaic 87.8 s 20813 1450 Yes
Pool 59.4 s 2632 4324 Yes

Bumpy Sphere 304.3 s 9680 0 Yes

512x512 images, 64 samples per pixel (128 for bumpy sphere),
8-core 2.83GHz Intel Core2 CPU



• Iterative root finding method
–Start with initial guess x0
–Iteration: xi+1 = xi - f(xi) / f’(xi)

x0

Newton’s Method
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• Iterative root finding method
–Start with initial guess x0
–xi+1 = xi - f(xi) / f’(xi)
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